Machine Learning - Classification

Amir H. Payberah
payberah@kth.se
14/11/2018

https://id2223kth.github.io

Where Are We?

Deep Learning

| RNN Autoencoder |
| :---: | :---: | :---: |

> Deep Feedforward Network Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification More Supervised Learning
Spark ML

Where Are We?

Let's Start with an Example

Example (1/4)

- Given the dataset of m cancer tests.

Tumor size	Cancer
330	1
120	0
400	1
\vdots	\vdots

- Predict the risk of cancer, as a function of the tumor size?

Example (2/4)

- $\mathbf{x}^{(i)} \in \mathbb{R}: \mathbf{x}_{1}^{(i)}$ is the tumor size of the ith instance in the training set.

Example (3/4)

- Predict the risk of cancer \hat{y} as a function of the tumor sizes x_{1}, i.e., $\hat{y}=f\left(x_{1}\right)$
- E.g., what is \hat{y}, if $\mathrm{x}_{1}=500$?
- As an initial choice: $\hat{y}=f_{w}(x)=w_{0}+w_{1} x_{1}$
- Bad model!

- A better model $\hat{\mathrm{y}}=\frac{1}{1+\mathrm{e}^{-\left(\underline{w}_{0}+w_{1} \times \times_{1}\right)}}$

Sigmoid Function

- The sigmoid function, denoted by $\sigma($.$) , outputs a number between 0$ and 1 .

$$
\sigma(\mathrm{t})=\frac{1}{1+\mathrm{e}^{-\mathrm{t}}}
$$

- When $\mathrm{t}<0$, then $\sigma(\mathrm{t})<0.5$
- when $t \geq 0$, then $\sigma(\mathrm{t}) \geq 0.5$

Binomial Logistic Regression

Binomial Logistic Regression (1/2)

- Our goal: to build a system that takes input $x \in \mathbb{R}^{n}$ and predicts output $\hat{y} \in\{0,1\}$.
- To specify which of 2 categories an input \mathbf{x} belongs to.

Binomial Logistic Regression (2/2)

- Linear regression: the model computes the weighted sum of the input features (plus a bias term).

$$
\hat{y}=w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\mathbf{w}^{\top} \mathbf{x}
$$

- Binomial logistic regression: the model computes a weighted sum of the input features (plus a bias term), but it outputs the logistic of this result.

$$
\begin{gathered}
z=w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}=\mathbf{w}^{\top} \mathbf{x} \\
\hat{y}=\sigma(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-w^{\top} x}}
\end{gathered}
$$

How to Learn Model Parameters w?

Linear Regression - Cost Function

- One reasonable model should make \hat{y} close to y, at least for the training dataset.
- Cost function $J(\mathbf{w})$: the mean squared error (MSE)

$$
\begin{gathered}
\operatorname{cost}\left(\hat{y}^{(i)}, y^{(i)}\right)=\left(\hat{y}^{(i)}-y^{(i)}\right)^{2} \\
J(\mathbf{w})=\frac{1}{m} \sum_{i}^{m} \operatorname{cost}\left(\hat{y}^{(i)}, y^{(i)}\right)=\frac{1}{m} \sum_{i}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right)^{2}
\end{gathered}
$$

Binomial Logistic Regression - Cost Function (1/5)

- Naive idea: minimizing the Mean Squared Error (MSE)

$$
\begin{gathered}
\operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)=\left(\hat{\mathrm{y}}^{(i)}-\mathrm{y}^{(\mathrm{i})}\right)^{2} \\
\mathrm{~J}(\mathbf{w})=\frac{1}{\mathrm{~m}} \sum_{i}^{\mathrm{m}} \operatorname{cost}\left(\hat{\mathrm{y}}^{(i)}, \mathrm{y}^{(\mathrm{i})}\right)=\frac{1}{\mathrm{~m}} \sum_{i}^{m}\left(\hat{\mathrm{y}}^{(i)}-\mathrm{y}^{(\mathrm{i})}\right)^{2} \\
J(\mathbf{w})=\operatorname{MSE}(\mathbf{w})=\frac{1}{m} \sum_{i}^{m}\left(\frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}}-y^{(i)}\right)^{2}
\end{gathered}
$$

- This cost function is a non-convex function for parameter optimization.

Binomial Logistic Regression - Cost Function (2/5)

-What do we mean by non-convex?

- If a line joining two points on the curve, crosses the curve.
- The algorithm may converge to a local minimum.
- We want a convex logistic regression cost function J(w).

Binomial Logistic Regression - Cost Function (3/5)

- The predicted value $\hat{\mathrm{y}}=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+\mathrm{e}^{-\mathbf{w}^{\top} \mathbf{x}}}$
$-\operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)=?$
- The $\operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)$ should be
- Close to 0 , if the predicted value \hat{y} will be close to true value y.
- Large, if the predicted value \hat{y} will be far from the true value y.

$$
\operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)= \begin{cases}-\log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right) & \text { if } \mathrm{y}^{(\mathrm{i})}=1 \\ -\log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right) & \text { if } \mathrm{y}^{(\mathrm{i})}=0\end{cases}
$$

Binomial Logistic Regression - Cost Function (4/5)

Binomial Logistic Regression - Cost Function (5/5)

- We can define $J(\mathbf{w})$ as below

$$
\operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)= \begin{cases}-\log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right) & \text { if } \mathrm{y}^{(\mathrm{i})}=1 \\ -\log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right) & \text { if } \mathrm{y}^{(\mathrm{i})}=0\end{cases}
$$

$$
J(\mathbf{w})=\frac{1}{m} \sum_{i}^{m} \operatorname{cost}\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)=-\frac{1}{\mathrm{~m}} \sum_{\mathrm{i}}^{\mathrm{m}}\left(\mathrm{y}^{(\mathrm{i})} \log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)\right)
$$

How to Learn Model Parameters w?

- We want to choose w so as to minimize $J(\mathbf{w})$.
- An approach to find w: gradient descent
- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Binomial Logistic Regression Gradient Descent (1/3)

- Goal: find \mathbf{w} that minimizes $\mathrm{J}(\mathbf{w})=-\frac{1}{\mathrm{~m}} \sum_{\mathrm{i}}^{\mathrm{m}}\left(\mathrm{y}^{(\mathrm{i})} \log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)\right)$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:

1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$
2. Choose a step size η
3. Update the parameters: $w^{(n e x t)}=w-\eta \frac{\partial J(w)}{\partial w}$ (simultaneously for all parameters)

Binomial Logistic Regression Gradient Descent (2/3)

- 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$.

$$
\begin{gathered}
\hat{y}=\sigma\left(\mathbf{w}^{\top} x\right)=\frac{1}{1+e^{-w^{\top} x}} \\
\begin{aligned}
J(w)=\frac{1}{m} \sum_{i}^{m} \operatorname{cost}\left(\hat{y}^{(i)}, y^{(i)}\right)=-\frac{1}{m} \sum_{i}^{m}\left(y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right) \\
\begin{aligned}
\frac{\partial J(w)}{\partial w_{j}} & =\frac{1}{m} \sum_{i}^{m}-\left(y^{(i)} \frac{1}{\hat{y}^{(i)}}-\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right) \frac{\partial \hat{\mathbf{y}}^{(i)}}{\partial w_{j}} \\
= & \frac{1}{m} \sum_{i}^{m}-\left(y^{(i)} \frac{1}{\hat{y}^{(i)}}-\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right) \hat{y}^{(i)}\left(1-\hat{y}^{(i)}\right) \frac{\partial w^{\top} x}{\partial w_{j}} \\
= & \frac{1}{m} \sum_{i}^{m}-\left(y^{(i)}\left(1-\hat{y}^{(i)}\right)-\left(1-y^{(i)}\right) \hat{y}^{(i)}\right) x_{j} \\
= & \frac{1}{m} \sum_{i}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}
\end{aligned}
\end{aligned} .
\end{gathered}
$$

Binomial Logistic Regression Gradient Descent (3/3)

- 2. Choose a step size η
- 3. Update the parameters: $\mathrm{w}_{\mathrm{j}}^{(\text {next })}=\mathrm{w}_{\mathrm{j}}-\eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{j}}$
- $0 \leq \mathrm{j} \leq \mathrm{n}$, where n is the number of features.

Binomial Logistic Regression Gradient Descent - Example (1/4)

Tumor size	Cancer
330	1
120	0
400	1

$$
\mathbf{X}=\left[\begin{array}{l|l}
1 & 330 \\
1 & 120 \\
1 & 400
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

- Predict the risk of cancer \hat{y} as a function of the tumor sizes x_{1}.
- E.g., what is \hat{y}, if $\mathrm{x}_{1}=500$?

Binomial Logistic Regression Gradient Descent - Example (2/4)

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{l|l}
1 & 330 \\
1 & 120 \\
1 & 400
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\hat{\mathbf{y}}=\sigma\left(\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}\right)=\frac{1}{1+\mathrm{e}^{-\left(\mathrm{w}_{0}+\mathrm{w}_{1} x_{1}\right)}} \\
J(\mathbf{w})=-\frac{1}{m} \sum_{i}^{m}\left(y^{(i)} \log \left(\hat{\mathrm{y}}^{(i)}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathbf{y}}^{(\mathrm{i})}\right)\right) \\
\frac{\partial J(\mathbf{w})}{\partial \mathrm{w}_{0}}=\frac{1}{3} \sum_{i}^{3}\left(\hat{\mathrm{y}}^{(\mathrm{i})}-\mathrm{y}^{(\mathrm{i})}\right) \mathrm{x}_{0} \\
=\frac{1}{3}\left[\left(\frac{1}{1+e^{-\left(\mathrm{w}_{0}+330 \mathrm{w}_{1}\right)}}-1\right)+\left(\frac{1}{1+e^{-\left(\mathrm{w}_{0}+120 \mathrm{w}_{1}\right)}}-0\right)+\left(\frac{1}{1+e^{-\left(\mathrm{w}_{0}+400 \mathrm{w}_{1}\right)}}-1\right)\right]
\end{gathered}
$$

Binomial Logistic Regression Gradient Descent - Example (3/4)

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{l|l}
1 & 330 \\
1 & 120 \\
1 & 400
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\hat{y}=\sigma\left(w_{0}+w_{1} x_{1}\right)=\frac{1}{1+e^{-\left(w_{0}+w_{1} x_{1}\right)}} \\
J(\mathbf{w})=-\frac{1}{m} \sum_{i}^{m}\left(y^{(i)} \log \left(\hat{\mathrm{y}}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)\right) \\
\frac{\partial J(\mathbf{w})}{\partial \mathrm{w}_{1}}=\frac{1}{3} \sum_{i}^{3}\left(\hat{\mathrm{y}}^{(\mathrm{i})}-\mathrm{y}^{(\mathrm{i})}\right) \mathrm{x}_{1} \\
=\frac{1}{3}\left[330\left(\frac{1}{1+e^{-\left(w_{0}+330 w_{1}\right)}}-1\right)+120\left(\frac{1}{1+e^{-\left(w_{0}+120 w_{1}\right)}}-0\right)+400\left(\frac{1}{1+e^{-\left(w_{0}+400 w_{1}\right)}}-1\right)\right]
\end{gathered}
$$

Binomial Logistic Regression Gradient Descent - Example (4/4)

$$
\begin{aligned}
& \mathrm{w}_{0}^{(\text {next })}=\mathrm{w}_{0}-\eta \frac{\partial \mathrm{J}(\mathbf{w})}{\partial \mathrm{w}_{0}} \\
& \mathrm{w}_{1}^{(\mathrm{next})}=\mathrm{w}_{1}-\eta \frac{\partial \mathrm{J}(\mathbf{w})}{\partial \mathrm{w}_{1}}
\end{aligned}
$$

Binomial Logistic Regression in Spark

```
case class cancer(x1: Long, y: Long)
val trainData = Seq(cancer(330, 1), cancer(120, 0), cancer(400, 1)).toDF
val testData = Seq(cancer (500, 0)).toDF
```

```
import org.apache.spark.ml.feature.VectorAssembler
val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")
val train = va.transform(trainData)
val test = va.transform(testData)
```

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression().setFeaturesCol("features").setLabelCol("y")
    .setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val lrModel = lr.fit(train)
lrModel.transform(test).show
```


Binomial Logistic Regression Probabilistic Interpretation

Probability and Likelihood (1/2)

- Let $\mathrm{X}:\left\{\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \cdots, \mathrm{x}^{(\mathrm{m})}\right\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.
- For six tosses of a coin, $\mathrm{X}:\{\mathrm{h}, \mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{h}, \mathrm{t}\}$, h : head, and t : tail.
- Suppose you have a coin with probability θ to land heads and $(1-\theta)$ to land tails.
- $\mathrm{p}\left(\mathrm{X} \left\lvert\, \theta=\frac{2}{3}\right.\right)$ is the probability of X given $\theta=\frac{2}{3}$.
- $\mathrm{p}(\mathrm{X}=\mathrm{h} \mid \theta)$ is the likelihood of θ given $\mathrm{X}=\mathrm{h}$.
- Likelihood (L): a function of the parameters (θ) of a probability model, given specific observed data, e.g., $\mathrm{X}=\mathrm{h}$.

$$
\mathrm{L}(\theta)=\mathrm{p}(\mathrm{X} \mid \theta)
$$

Probability and Likelihood (2/2)

- If samples in X are independent we have:

$$
\begin{aligned}
\mathrm{L}(\theta)=\mathrm{p}(\mathrm{X} \mid \theta) & =\mathrm{p}\left(\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \cdots, \mathrm{x}^{(\mathrm{m})} \mid \theta\right) \\
& =\mathrm{p}\left(\mathrm{x}^{(1)} \mid \theta\right) \mathrm{p}\left(\mathrm{x}^{(2)} \mid \theta\right) \cdots \mathrm{p}\left(\mathrm{x}^{(\mathrm{m})} \mid \theta\right)=\prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}\left(\mathrm{x}^{(\mathrm{i})} \mid \theta\right)
\end{aligned}
$$

Likelihood and Log-Likelihood

- The Likelihood product is prone to numerical underflow.

$$
\mathrm{L}(\theta)=\mathrm{p}(\mathrm{X} \mid \theta)=\prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}\left(\mathrm{x}^{(\mathrm{i})} \mid \theta\right)
$$

- To overcome this problem we can use the logarithm of the likelihood.
- Transforms a product into a sum.

$$
\log (\mathrm{L}(\theta))=\log (\mathrm{p}(\mathrm{X} \mid \theta))=\sum_{\mathrm{i}=1}^{\mathrm{m}} \operatorname{logp}\left(\mathrm{x}^{(\mathrm{i})} \mid \theta\right)
$$

- Negative Log-Likelihood: $-\log L(\theta)=-\sum_{i=1}^{m} \operatorname{logp}\left(x^{(i)} \mid \theta\right)$

Binomial Logistic Regression and Log-Likelihood (1/2)

- Let's consider the value of $\hat{\mathrm{y}}^{(\mathrm{i})}$ as the probability:

$$
\left\{\begin{array}{l}
\mathrm{p}\left(\mathrm{y}^{(\mathrm{i})}=1 \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=\hat{\mathrm{y}}^{(\mathrm{i})} \\
\mathrm{p}\left(\mathrm{y}^{(\mathrm{i})}=0 \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=1-\hat{\mathrm{y}}^{(\mathrm{i})}
\end{array} \quad \Rightarrow \mathrm{p}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=\left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)^{\mathrm{y}^{(i)}}\left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)^{\left(1-\mathrm{y}^{(i)}\right)}\right.
$$

- So the likelihood is:

$$
\mathrm{L}(\mathbf{w})=\mathrm{p}(\mathrm{y} \mid \mathbf{x} ; \mathbf{w})=\prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=\prod_{\mathrm{i}=1}^{\mathrm{m}}\left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)^{\mathrm{y}^{(\mathrm{i})}}\left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)^{\left(1-\mathrm{y}^{(\mathrm{i})}\right)}
$$

- And the negative log-likelihood:

$$
-\log (\mathrm{L}(\mathbf{w}))=-\sum_{\mathrm{i}=1}^{\mathrm{m}} \operatorname{logp}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{y}^{(\mathrm{i})} \log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)
$$

Binomial Logistic Regression and Log-Likelihood (2/2)

- The negative log-likelihood:

$$
-\log (\mathrm{L}(\mathbf{w}))=-\sum_{\mathrm{i}=1}^{\mathrm{m}} \operatorname{logp}\left(\mathrm{y}^{(\mathrm{i})} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}\right)=-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{y}^{(\mathrm{i})} \log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)
$$

- This equation is the same as the the logistic regression cost function.

$$
J(\mathbf{w})=\frac{1}{m} \sum_{i}^{m}\left(y^{(\mathrm{i})} \log \left(\hat{\mathrm{y}}^{(\mathrm{i})}\right)+\left(1-\mathrm{y}^{(\mathrm{i})}\right) \log \left(1-\hat{\mathrm{y}}^{(\mathrm{i})}\right)\right)
$$

- Minimize the negative log-likelihood to minimize the cost function $J(\mathbf{w})$.

Binomial Logistic Regression and Cross-Entropy (1/2)

- Negative log-likelihood is also called the cross-entropy
- Coss-entropy: quantify the difference (error) between two probability distributions.
- How close is the predicted distribution to the true distribution?

$$
H(p, q)=-\sum_{j} p_{j} \log \left(q_{j}\right)
$$

- Where p is the true distriution, and q is the predicted distribution.

Binomial Logistic Regression and Cross-Entropy (2/2)

$$
\mathrm{H}(\mathrm{p}, \mathrm{q})=-\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \log \left(\mathrm{q}_{\mathrm{j}}\right)
$$

- The true probability distribution: $p(y=1)=y$ and $p(y=0)=1-y$
- The predicted probability distribution: $\mathrm{q}(\mathrm{y}=1)=\hat{\mathrm{y}}$ and $\mathrm{q}(\mathrm{y}=0)=1-\hat{\mathrm{y}}$
- $\mathrm{p} \in\{\mathrm{y}, 1-\mathrm{y}\}$ and $\mathrm{q} \in\{\hat{\mathrm{y}}, 1-\hat{\mathrm{y}}\}$
- So, the cross-entropy of p and q is nothing but the logistic cost function.

$$
\begin{gathered}
H(p, q)=-\sum_{j} p_{j} \log \left(q_{j}\right)=-(y \log (\hat{y})+(1-y) \log (1-\hat{y}))=\operatorname{cost}(y, \hat{y}) \\
J(w)=\frac{1}{m} \sum_{i}^{m} \operatorname{cost}(y, \hat{y})=\frac{1}{m} \sum_{i}^{m} H(p, q)=-\frac{1}{m} \sum_{i}^{m}\left(y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right)
\end{gathered}
$$

- Minimize the cross-entropy to minimize the cost function $J(\mathbf{w})$.

Multinomial Logistic Regression

- Multinomial classifiers can distinguish between more than two classes.
- Instead of $\mathrm{y} \in\{0,1\}$, we have $\mathrm{y} \in\{1,2, \cdots, \mathrm{k}\}$.

Binomial vs. Multinomial Logistic Regression (1/2)

- In a binomial classifier, $\mathrm{y} \in\{0,1\}$, the estimator is $\hat{\mathrm{y}}=\mathrm{p}(\mathrm{y}=1 \mid \mathbf{x} ; \mathbf{w})$.
- We find one set of parameters \mathbf{w}.

$$
\mathbf{w}^{\top}=\left[\mathrm{w}_{0}, \mathrm{w}_{1}, \cdots, \mathrm{w}_{\mathrm{n}}\right]
$$

- In multinomial classifier, $\mathrm{y} \in\{1,2, \cdots, \mathrm{k}\}$, we need to estimate the result for each individual label, i.e., $\hat{\mathrm{y}}_{\mathrm{j}}=\mathrm{p}(\mathrm{y}=\mathrm{j} \mid \mathbf{x} ; \mathbf{w})$.
- We find k set of parameters \mathbf{W}.

$$
\mathbf{W}=\left[\begin{array}{c}
{\left[w_{0,1}, w_{1,1}, \cdots, w_{n, 1}\right]} \\
{\left[w_{0,2}, w_{1,2}, \cdots, w_{n, 2}\right]} \\
\vdots \\
{\left[w_{0, k}, w_{1, k}, \cdots, w_{n, k}\right]}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top} \\
\vdots \\
\mathbf{w}_{k}^{\top}
\end{array}\right]
$$

Binomial vs. Multinomial Logistic Regression (2/2)

- In a binary class, $y \in\{0,1\}$, we use the sigmoid function.

$$
\begin{gathered}
\mathbf{w}^{\top} \mathbf{x}=\mathrm{w}_{0} \mathrm{x}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}+\cdots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \\
\hat{\mathrm{y}}=\mathrm{p}(\mathrm{y}=1 \mid \mathbf{x} ; \mathbf{w})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+\mathrm{e}^{-\mathbf{w}^{\top} \mathbf{x}}}
\end{gathered}
$$

- In multiclasses, $\mathrm{y} \in\{1,2, \cdots, \mathrm{k}\}$, we use the softmax function.

$$
\begin{aligned}
& \mathbf{w}_{j}^{\top} \mathbf{x}=w_{0, j} x_{0}+w_{1, j} x_{1}+\cdots+w_{n, j} x_{n}, 1 \leq j \leq k \\
& \hat{y}_{j}=p\left(y=j \mid x_{;} ; w_{j}\right)=\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}\right)=\frac{e^{w_{j}^{\top} x}}{\sum_{i=1}^{k} e^{w_{i}^{\top} x}}
\end{aligned}
$$

Sigmoid vs. Softmax

- Sigmoid function: $\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+\mathrm{e}^{-\mathbf{w}^{\top} \mathbf{x}}}$
- Softmax function: $\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}\right)=\frac{e^{\mathbf{w}_{j}^{\top} \mathbf{x}}}{\sum_{i=1}^{k} e^{\mathbf{w}_{i}^{\top} x}}$
- Calculate the probabilities of each target class over all possible target classes.
- The softmax function for two classes is equivalent the sigmoid function.

Softmax Vs Sigmoid

How Does Softmax Work? - Step 1

- For each instance $\mathbf{x}^{(i)}$, computes the score $\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}$ for each class j.

$$
\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}=w_{0, j} x_{0}^{(i)}+w_{1, j} x_{1}^{(i)}+\cdots+w_{n_{j}} x_{n}^{(i)}
$$

- Note that each class \mathbf{j} has its own dedicated parameter vector \mathbf{w}_{j}.

$$
\mathbf{W}=\left[\begin{array}{c}
{\left[\mathrm{w}_{0,1}, \mathrm{w}_{1,1}, \cdots, \mathrm{w}_{\mathrm{n}, 1}\right]} \\
{\left[\mathrm{w}_{0,2}, \mathrm{w}_{1,2}, \cdots, \mathrm{w}_{\mathrm{n}, 2}\right]} \\
\vdots \\
{\left[\mathrm{w}_{0, \mathrm{k}}, \mathrm{w}_{1, k}, \cdots, \mathrm{w}_{\mathrm{n}, \mathrm{k}}\right]}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top} \\
\vdots \\
\mathbf{w}_{\mathrm{k}}^{\top}
\end{array}\right]
$$

How Does Softmax Work? - Step 2

- For each instance $\mathbf{x}^{(i)}$, apply the softmax function on its scores: $\mathbf{w}_{1}^{\top} \mathbf{x}^{(i)}, \cdots, \mathbf{w}_{k}^{\top} \mathbf{x}^{(i)}$
- Estimates the probability that the instance $\mathbf{x}^{(i)}$ belongs to class j.

$$
\hat{\mathrm{y}}_{\mathrm{j}}^{(\mathrm{i})}=\mathrm{p}\left(\mathrm{y}^{(\mathrm{i})}=\mathrm{j} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}_{\mathrm{j}}\right)=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{x}^{(\mathrm{i})}\right)=\frac{\mathrm{e}^{\mathbf{w}_{j}^{\top} \mathbf{x}^{(\mathrm{i})}}}{\sum_{l=1}^{\mathrm{k}} \mathrm{e}^{\mathbf{w}_{1}^{\top} \mathbf{x}^{(i)}}}
$$

- k : the number of classes.
- $\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}$: the scores of class j for the instance $\mathbf{x}^{(i)}$.
- $\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}\right)$: the estimated probability that $\mathbf{x}^{(i)}$ belongs to class j.
- Predicts the class with the highest estimated probability.

Softmax Model Estimation and Prediction - Example (1/2)

- Assume we have a training set consisting of $m=4$ instances from $k=3$ classes.

$$
\begin{aligned}
& \mathbf{x}^{(1)} \rightarrow \text { class } 1, \mathbf{y}^{(1) T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& \mathbf{x}^{(2)} \rightarrow \text { class } 2, \mathbf{y}^{(2) T}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
& \mathbf{x}^{(3)} \rightarrow \text { class }, \mathbf{y}^{(3) \tau}=\left[\begin{array}{llll}
0 & 0 & 1
\end{array}\right] \\
& \mathbf{x}^{(4)} \rightarrow \text { class } 3, \mathbf{y}^{(4) \tau}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned} \quad \mathbf{Y}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

- Assume training set \mathbf{X} and random parameters \mathbf{W} are as below:

$$
\mathbf{X}=\left[\begin{array}{c|cc}
1 & 0.1 & 0.5 \\
1 & 1.1 & 2.3 \\
1 & -1.1 & -2.3 \\
1 & -1.5 & -2.5
\end{array}\right] \quad \mathbf{W}=\left[\begin{array}{ccc}
0.01 & 0.1 & 0.1 \\
0.1 & 0.2 & 0.3 \\
0.1 & 0.2 & 0.3
\end{array}\right]
$$

Softmax Model Estimation and Prediction - Example (2/2)

- Now, let's compute the softmax activation:

$$
\hat{\mathrm{y}}_{\mathrm{j}}^{(\mathrm{i})}=\mathrm{p}\left(\mathrm{y}^{(\mathrm{i})}=\mathrm{j} \mid \mathbf{x}^{(\mathrm{i})} ; \mathbf{w}_{\mathrm{j}}\right)=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{x}^{(\mathrm{i})}\right)=\frac{\mathrm{e}^{\mathbf{w}_{j}^{\top} x^{(\mathrm{i})}}}{\sum_{1=1}^{\mathrm{k}} \mathrm{e}^{\mathbf{w}_{1}^{\top} \mathbf{x}^{(\mathrm{i})}}}
$$

$\hat{\mathbf{Y}}=\left[\begin{array}{l}\hat{\mathbf{y}}^{(1) \top} \\ \hat{\mathbf{y}}^{(2)} \\ \hat{\mathbf{y}}^{(3)} \mathrm{T} \\ \hat{\mathbf{y}}^{(4)} \mathrm{T}\end{array}\right]=\left[\begin{array}{lll}0.29 & 0.34 & 0.36 \\ 0.21 & 0.33 & 0.46 \\ 0.43 & 0.33 & 0.24 \\ 0.45 & 0.33 & 0.22\end{array}\right] \quad$ the predicted classes $=\left[\begin{array}{l}3 \\ 3 \\ 1 \\ 1\end{array}\right] \quad$ The correct classes $=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right]$

- They are terribly wrong.
- We need to update the weights based on the cost function.
- What is the cost function?

Multinomial Logistic Regression - Cost Function (1/2)

- The objective is to have a model that estimates a high probability for the target class, and consequently a low probability for the other classes.
- Cost function: the cross-entropy between the correct classes and predicted class for all classes.

$$
J\left(\mathbf{w}_{j}\right)=-\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} y_{j}^{(i)} \log \left(\hat{y}_{j}^{(i)}\right)
$$

- $y_{j}^{(i)}$ is 1 if the target class for the ith instance is j, otherwise, it is 0 .

Multinomial Logistic Regression - Cost Function (2/2)

- If there are two classes $(\mathrm{k}=2)$, this cost function is equivalent to the logistic regression's cost function.

$$
J(\mathbf{w})=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right]
$$

How to Learn Model Parameters W?

- Goal: find \mathbf{W} that minimizes $J(\mathbf{W})$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:

1. Determine a descent direction $\frac{\partial J(W)}{\partial \mathrm{W}}$
2. Choose a step size η
3. Update the parameters: $\mathrm{w}^{(\text {next })}=\mathrm{w}-\eta \frac{\partial J(\mathbf{W})}{\partial \mathrm{w}}$ (simultaneously for all parameters)

Multinomial Logistic Regression in Spark

```
val training = spark.read.format("libsvm").load("multiclass_data.txt")
```

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val lrModel = lr.fit(training)
```

println(s"Coefficients: \n\$\{lrModel.coefficientMatrix\}")
println(s"Intercepts: \n\$\{lrModel.interceptVector\}")

Performance Measures

Performance Measures

- Evaluate the performance of a model.
- Depends on the application and its requirements.
- There are many different types of classification algorithms, but the evaluation of them share similar principles.

Evaluation of Classification Models (1/3)

- In a classification problem, there exists a true output y and a model-generated predicted output \hat{y} for each data point.
- The results for each instance point can be assigned to one of four categories:
- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

Evaluation of Classification Models (2/3)

- True Positive (TP): the label y is positive and prediction \hat{y} is also positive.
- True Negative (TN): the label y is negative and prediction \hat{y} is also negative.

Evaluation of Classification Models (3/3)

- False Positive (FP): the label y is negative but prediction \hat{y} is positive (type I error).
- False Negative (FN): the label y is positive but prediction \hat{y} is negative (type II error).

Why Pure Accuracy Is Not A Good Metric?

- Accuracy: how close the prediction is to the true value.
- Assume a highly unbalanced dataset
- E.g., a dataset where 95% of the data points are not fraud and 5\% of the data points are fraud.
- A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.
- For this reason, metrics like precision and recall are typically used.

Precision

- It is the accuracy of the positive predictions.

$$
\text { Precision }=p(y=1 \mid \hat{y}=1)=\frac{T P}{T P+F P}
$$

Recall

- Is is the ratio of positive instances that are correctly detected by the classifier.
- Also called sensitivity or true positive rate (TPR).

$$
\text { Recall }=p(\hat{y}=1 \mid y=1)=\frac{T P}{T P+F N}
$$

F1 Score

- F1 score: combine precision and recall into a single metric.
- The F1 score is the harmonic mean of precision and recall.
- Whereas the regular mean treats all values equally, the harmonic mean gives much more weight to low values.
- F1 only gets high score if both recall and precision are high.

$$
\mathrm{F} 1=\frac{2}{\frac{1}{\text { precision }}+\frac{1}{\text { recall }}}
$$

Confusion Matrix

- The confusion matrix is $\mathrm{K} \times \mathrm{K}$, where K is the number of classes.
- It shows the number of correct and incorrect predictions made by the classification model compared to the actual outcomes in the data.

Confusion Matrix - Example

$$
\begin{gathered}
\mathrm{TP}=3, \mathrm{TN}=5, \mathrm{FP}=1, \mathrm{FN}=2 \\
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}=\frac{3}{3+1}=\frac{3}{4} \\
\text { Recall }(\mathrm{TPR})=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}=\frac{3}{3+2}=\frac{3}{5} \\
\mathrm{FPR}=\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}=\frac{1}{5+1}=\frac{5}{6}
\end{gathered}
$$

Precision-Recall Tradeoff

- Precision-recall tradeoff: increasing precision reduces recall, and vice versa.
- Assume a classifier that detects number 5 from the other digits.
- If an instance score is greater than a threshold, it assigns it to the positive class, otherwise to the negative class.
- Raising the threshold (move it to the arrow on the right), the false positive (the 6) becomes a true negative, thereby increasing precision.
- Lowering the threshold increases recall and reduces precision.

The ROC Curve (1/2)

- True positive rate $(T P R)($ recall $): ~ p(\hat{y}=1 \mid y=1) \quad$ Recall $=$
- False positive rate (FPR): $\mathrm{p}(\hat{\mathrm{y}}=1 \mid \mathrm{y}=0)$

- The receiver operating characteristic (ROC) curves summarize the trade-off between the TPR and FPR for a model using different probability thresholds.

The ROC Curve ($2 / 2$)

- Here is a tradeoff: the higher the TPR, the more FPR the classifier produces.
- The dotted line represents the ROC curve of a purely random classifier.
- A good classifier moves toward the top-left corner.
- Area under the curve (AUC)

Binomial Logistic Regression Measurements in Spark

```
val lr = new LogisticRegression()
val lrModel = lr.fit(training)
val trainingSummary = lrModel.binarySummary
// obtain the objective per iteration.
val objectiveHistory = trainingSummary.objectiveHistor
objectiveHistory.foreach(loss => println(loss))
// obtain the ROC as a dataframe and areaUnderROC.
val roc = trainingSummary.roc
roc.show()
println(s"areaUnderROC: ${trainingSummary.areaUnderROC}")
// set the model threshold to maximize F-Measure
val fMeasure = trainingSummary.fMeasureByThreshold
val maxFMeasure = fMeasure.select(max("F-Measure")).head().getDouble(0)
val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure)
    .select("threshold").head().getDouble(0)
lrModel.setThreshold(bestThreshold)
```


Multinomial Logistic Regression in Spark (1/2)

```
val trainingSummary = lrModel.summary
// for multiclass, we can inspect metrics on a per-label basis
println("False positive rate by label:")
trainingSummary.falsePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
    println(s"label $label: $rate")
}
println("True positive rate by label:")
trainingSummary.truePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
    println(s"label $label: $rate")
}
```


Multinomial Logistic Regression in Spark (2/2)

```
println("Precision by label:")
trainingSummary.precisionByLabel.zipWithIndex.foreach { case (prec, label) =>
    println(s"label $label: $prec")
}
println("Recall by label:")
trainingSummary.recallByLabel.zipWithIndex.foreach { case (rec, label) =>
    println(s"label $label: $rec")
}
val accuracy = trainingSummary.accuracy
val falsePositiveRate = trainingSummary.weightedFalsePositiveRate
val truePositiveRate = trainingSummary.weightedTruePositiveRate
val fMeasure = trainingSummary.weightedFMeasure
val precision = trainingSummary.weightedPrecision
val recall = trainingSummary.weightedRecall
```


Summary

Summary

- Binomial logistic regression
- $\mathrm{y} \in\{0,1\}$
- Sigmoid function
- Minimize the cross-entropy
- Multinomial logistic regression
- $y \in\{1,2, \cdots, k\}$
- Softmax function
- Minimize the cross-entropy
- Performance measurements
- TP, TF, FP, FN
- Precision, recall, F1
- Threshold and ROC
- Ian Goodfellow et al., Deep Learning (Ch. 4, 5)
- Aurélien Géron, Hands-On Machine Learning (Ch. 3)
- Matei Zaharia et al., Spark - The Definitive Guide (Ch. 26)

Questions?

