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Let’s Start with an Example
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Buying Computer Example (1/3)

I Given the dataset of m people.

id age income student credit rating buys computer

1 youth high no fair no

2 youth high no excellent no

3 middleage high no fair yes

4 senior medium no fair yes

5 senior low yes fair yes
...

...
...

...
...

...

I Predict if a new person buys a computer?

I Given an instance x(i), e.g., x
(i)
1 = senior, x

(i)
2 = medium, x

(i)
3 = no, and x

(i)
4 =

fair, then y(i) =?
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Buying Computer Example (2/3)

id age income student credit rating buys computer

1 youth high no fair no

2 youth high no excellent no

3 middleage high no fair yes

4 senior medium no fair yes

5 senior low yes fair yes

...
...

...
...

...
...
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Buying Computer Example (3/3)

I Given an input instance x(i), for which the class label y(i) is unknown.

I The attribute values of the input (e.g., age or income) are tested.

I A path is traced from the root to a leaf node, which holds the class prediction for
that input.

I E.g., input x(i) with x
(i)
1 = senior, x

(i)
2 = medium, x

(i)
3 = no, and x

(i)
4 = fair.
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Decision Tree

8 / 58



Decision Tree

I A decision tree is a flowchart-like tree structure.

• The topmost node: represents the root
• Each branch: represents an outcome of the test
• Each internal node: denotes a test on an attribute
• Each leaf: holds a class label
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Training Algorithm (1/2)

I Decision trees are constructed in a top-down recursive divide-and-conquer manner.

I The algorithm is called with the following parameters.

• Data partition D: initially the complete set of training data and labels D = (X, y).

• Feature list: list of features {x(i)1 , · · · , x(i)n } of each data instance x(i).

• Feature selection method: determines the splitting criterion.
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Training Algorithm (2/2)

I 1. The tree starts as a single node, N, representing the training data instances D.

I 2. If all instances x in D are all of the same class, then node N becomes a leaf.

I 3. The algorithm calls feature selection method to determine the splitting criterion.

• Indicates (i) the splitting feature xk, and (ii) a split-point or a splitting subset.
• The instances in D are partitioned accordingly.

I 4. The algorithm repeats the same process recursively to form a decision tree.
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Training Algorithm - Termination Conditions

I The training algorithm stops only when any one of the following conditions is true.

I 1. All the instances in partition D at a node N belong to the same class.
• It is labeled with that class.

I 2. No remaining features on which the instances may be further partitioned.

I 3. There are no instances for a given branch, that is, a partition Dj is empty.

I In conditions 2 and 3:
• Convert node N into a leaf.
• Label it either with the most common class in D.
• Or, the class distribution of the node tuples may be stored.
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Training Algorithm - Partitioning Instances (1/3)

I Assume A is the splitting feature

I Three possibilities to partition instances in D based on the feature A.

I 1. A is discrete-valued

• Assume A has v distinct values {a1, a2, · · · , av}
• A branch is created for each known value aj of A and labeled with that value.
• Partition Dj is the subset of tuples in D having value aj of A.
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Training Algorithm - Partitioning Instances (2/3)

I 2. A is discrete-valued

• A binary tree must be produced.
• The test at node N is of the form A ∈ SA?, where SA is the splitting subset for A.
• The left branch out of N corresponds to the instances in D that satisfy the test.
• The right branch out of N corresponds to the instances in D that do not satisfy the test.
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Training Algorithm - Partitioning Instances (3/3)

I 3. A is continuous-valued

• A test at node N has two possible outcomes: corresponds to A ≤ s or A > s, with s as
the split point.

• The instances are partitioned such that D1 holds the instances in D for which A ≤ s,
while D2 holds the rest.

• Two branches are labeled according to the previous outcomes.
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Training Algorithm - Feature Selection Measures (1/2)

I Feature selection measure: how to split instances at a node N.

I Pure partiton: if all instances in a partition belong to the same class.

I The best splitting criterion is the one that most closely results in a pure scenario.
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Training Algorithm - Feature Selection Measures (2/2)

I It provides a ranking for each feature describing the given training instances.

I The feature having the best score for the measure is chosen as the splitting feature
for the given instances.

I Two popular feature selection measures are:
• Information gain (ID3 and C4.5)
• Gini index (CART)
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Information Gain (Entropy)
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ID3 (1/8)

I ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.

I The feature with the highest information gain is chosen as the splitting feature for
node N.

I The information gain is based on the decrease in entropy after a dataset is split on
a feature.
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ID3 (2/8)

I What’s entropy?

I The average information needed to identify the class label of an instance in D.

entropy(D) = −
m∑

i=1

pi log2(pi)

I pi is the probability that an instance in D belongs to class i, with m distinct classes.

I D’s entropy is zero when it contains instances of only one class (pure partition).
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ID3 (3/8)

entropy(D) = −
m∑

i=1

pi log2(pi)

label = buys computer⇒ m = 2

entropy(D) = − 9

14
log2(

9

14
)− 5

14
log2(

5

14
) = 0.94
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ID3 (4/8)

I Suppose we want to partition instances in D on some feature A with v distinct values,
{a1, a2, · · · , av}.

I A can split D into v partitions {D1, D2, · · · , Dv}.

I The expected information required to classify an instance from D based on the par-
titioning by A is:

entropy(A, D) =
v∑

j=1

|Dj|
|D|

entropy(Dj)

I
|Dj|
D

is the weight of the jth partition.

I The smaller the expected information required, the greater the purity of the partitions.
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ID3 (5/8)

entropy(A, D) =
v∑

j=1

|Dj|
|D|

entropy(Dj)

entropy(age, D) =
5

14
entropy(Dyouth) +

4

14
entropy(Dmiddle aged) +

5

14
entropy(Dsenior)

entropy(age, D) =
5

14
(−

2

5
log2(

2

5
)−

3

5
log2(

3

5
)) +

4

14
(−

4

4
log2(

4

4
)) +

5

14
(−

3

5
log2(

3

5
)−

2

5
log2(

2

5
)) = 0.694
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ID3 (6/8)

I The information gain Gain(A, D) is defined as:

Gain(A, D) = entropy(D)− entropy(A, D)

I It shows how much would be gained by branching on A.

I The feature A with the highest Gain(A, D) is chosen as the splitting feature at node
N.
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ID3 (7/8)

I Now, we can compute the information gain Gain(A) for the feature A = age.

Gain(age, D) = entropy(D)− entropy(age, D) = 0.940− 0.694 = 0.246

I Similarly we have:
• Gain(income, D) = 0.029
• Gain(student, D) = 0.151
• Gain(credit rating, D) = 0.048

I The age has the highest information gain among the attributes, it is selected as the
splitting feature.
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ID3 (8/8)

I The bias problem: information gain prefers to select features having a large number
of values.

I For example, a split on RID would result in a large number of partitions.
• Each partition is pure.
• Info product entropy(RID, D) = 0, thus, the information gained by partitioning on this

feature is maximal.

I Clearly, such a partitioning is useless for classification.
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C4.5 (1/2)

I C4.5 is a successor of ID3 that overcomes its bias problem.

I It normalizes the information gain using a split information value:

SplitInfo(A, D) = −
v∑

j=1

|Dj|
|D|

log2(
|Dj|
|D|

)

GainRatio(A, D) =
Gain(A, D)

SplitInfo(A, D)
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C4.5 (2/2)

SplitInfo(A, D) = −
v∑

j=1

|Dj|
|D|

log2(
|Dj|
|D|

)

SplitInfo(income, D) = −
4

14
log2(

4

14
)−

6

14
log2(

6

14
)−

4

14
log2(

4

14
) = 1.557

I Gain(income, D) = 0.029, therefore GainRatio(income, D) = 0.029
1.557 = 0.019.
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Gini Impurity
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CART (1/8)

I CART (Classification And Regression Tree) considers a binary split for each feature.

I It uses the Gini index to measure the misclassification (impurity of D).

Gini(D) = 1−
m∑

i=1

p2i

I pi is the probability that an instance in D belongs to class i, with m distinct classes.

I It will be zero if all partitions are pure. Why?

I We need to determine the splitting criterion: splitting feature + splitting subset.
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CART (2/8)

I Assume A is a discrete-valued feature with v distinct values, {a1, a2, · · · , av}, occur-
ring in D.

I SA will be all possible subsets of A.

• E.g., A = income = {low, medium, high}
• SA = {{low, medium, high}, {low, medium}, {medium, high}, {low, high},
{low}, {medium}, {high}, {}}

• The test is of the form D1 ∈ sA?, where sA is a subset of SA, e.g., sA = {low, high}.
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CART (3/8)

Gini(D) = 1−
m∑

i=1

p2i

label = buys computer⇒ m = 2

Gini(D) = 1− (
9

14
)2 − (

5

14
)2 = 0.459
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CART (4/8)

I If a binary split on A partitions D into D1 and D2, the Gini index of D given that
partitioning is:

Gini(A, D) =
|D1|
D

Gini(D1) +
|D2|
D

Gini(D2)

I The subset that gives the minimum Gini index is selected as its splitting subset.
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CART (5/8)

I For a feature A = income, we consider each of the possible splitting subsets.

• SA = {{low, medium, high}, {low, medium}, {medium, high}, {low, high},
{low}, {medium}, {high}, {}}

I Assume, we choose the splitting subset sA = {low, medium}.

I Consider partition D1 satisfies the condition D1 ∈ sA, and D2 does not.

Giniincome∈{low,medium}(A, D) =
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14
Gini(1− (

7

10
)2 − (

3

10
)2) +

4

14
(1− (

2

4
)2 − (

2

4
)2) = 0.443
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CART (6/8)

I Similarly, we calculate the Gini index values for splits on the remaining subsets.

Giniincome∈{low,medium}(A, D) = Giniincome∈{high}(A, D) = 0.443

Giniincome∈{low,high}(A, D) = Giniincome∈{medium}(A, D) = 0.458

Giniincome∈{medium,high}(A, D) = Giniincome∈{low}(A, D) = 0.450

I The best binary split for attribute A = income is on sA = {low, medium} because it
minimizes the Gini index.
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CART (7/8)

I But, which feature?

I The reduction in impurity that would be incurred by a binary split on feature A is:

∆Gini(A) = Gini(D)− Gini(A, D)

I The feature that maximizes the reduction in impurity (has the minimum Gini index)
is selected as the splitting feature.
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CART (8/8)

I Now, we can compute the information gain Gain(A) for different features.
• ∆Gini(income) = 0.459− 0.443 = 0.016
• ∆Gini(age) = 0.459− 0.357 = 0.102
• ∆Gini(student) = 0.459− 0.367 = 0.092
• ∆Gini(credit rating) = 0.459− 0.429 = 0.03

I The feature A = age and splitting subset sA = {youth, senior} gives the minimum
Gini index overall.
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Decision Tree in Spark (1/4)

I Two classes in spark.ml.

I Regression: DecisionTreeRegressor

val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")

val model = dt_regressor.fit(trainingData)

val predictions = model.transform(testData)

predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)

I Classifier: DecisionTreeClassifier

val dt_classifier = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features")

val model = dt_classifier.fit(trainingData)

val predictions = model.transform(testData)

predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
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Decision Tree in Spark (2/4)

I Input and output columns

I labelCol and featuresCol identify label and features column’s names.

I predictionCol indicates the predicted label.

I rawPredictionCol is a vector of length of number of classes, with the counts of
training instance labels at the tree node which makes the prediction.

I probabilityCol is a vector of length of number of classes equal to rawPrediction

normalized to a multinomial distribution.
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Decision Tree in Spark (3/4)

I Tunable parameters

I maxBins: number of bins used when discretizing continuous features.

I impurity: impurity measure used to choose between candidate splits, e.g., entropy
and gini.

val maxBins = ...

val dt_classifier = new DecisionTreeClassifier().setMaxBins(maxBins).setImpurity("gini")
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Decision Tree in Spark (4/4)

I Stopping criteria that determines when the tree stops building.

I maxDepth: maximum depth of a tree.

I minInstancesPerNode: for a node to be split further, each of its children must
receive at least this number of training instances.

I minInfoGain: for a node to be split further, the split must improve at least this
much (in terms of information gain).

val maxDepth = ...

val minInstancesPerNode = ...

val minInfoGain = ...

val dt_classifier = new DecisionTreeClassifier()

.setMaxDepth(maxDepth)

.setMinInstancesPerNode(minInstancesPerNode)

.setMinInfoGain(minInfoGain)
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Ensemble Methods

42 / 58



Wisdom of the Crowd

I Ask a complex question to thousands of random people, then aggregate their answers.

I In many cases, this aggregated answer is better than an expert’s answer.

I This is called the wisdom of the crowd.

I Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or
regressors), often gets better estimations than with the best individual estimator.

I A group of estimators is an ensemble, and this technique is called Ensemble Learning.
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Ensemble Learning

I Two main categories of ensemble learning algorithms.

I Bagging
• Use the same training algorithm for every estimator, but to train them on different

random subsets of the training set.
• E.g., random forest

I Boosting
• Train estimators sequentially, each trying to correct its predecessor.
• E.g., adaboost and gradient boosting
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Random Forest

I Random forest builds multiple decision trees that are most of the time trained with
the bagging method.

I It, then, merges the trees together to get a more accurate and stable prediction.
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Random Forest in Spark (1/2)

I Two classes in spark.ml.

I Regression: RandomForestRegressor

val rf_regressor = new RandomForestRegressor().setLabelCol("label")

.setFeaturesCol("features").setNumTrees(10)

val model = rf_regressor.fit(trainingData)

val predictions = model.transform(testData)

predictions.select("prediction", "label", "features").show(5)

I Classifier: RandomForestClassifier

val rf_classifier = new RandomForestClassifier().setLabelCol("label")

.setFeaturesCol("features").setNumTrees(10)

val model = rf_classifier.fit(trainingData)

val predictions = model.transform(testData)

predictions.select("prediction", "label", "features").show(5)
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val predictions = model.transform(testData)

predictions.select("prediction", "label", "features").show(5)
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Random Forest in Spark (2/2)

I numTrees: number of trees in the forest.

I subsamplingRate: specifies the size of the dataset used for training each tree in
the forest, as a fraction of the size of the original dataset.

• Default is 1.0 and decreasing it can speed up training.

I featureSubsetStrategy: number of features to use as candidates for splitting at
each tree node, as a fraction of the total number of features.

• Possible values: auto, all, onethird, sqrt, log2, n
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AdaBoost (1/3)

I AdaBoost: train a new estimator by paying more attention to the training instances
that the predecessor underfitted.

I Each estimator is trained on a random subset of the total training set.

I AdaBoost assigns a weight to each training instance, which determines the probability
that each instance should appear in the training set.
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AdaBoost (2/3)

I Each instance weight h(i) is initially set to 1
m

for m instances.

I An estimator j is trained and its weighted error rate rj is computed as follows:

rj =

∑m

i=1,ŷ
(i)
j 6=y

(i)
j

h(i)∑m
i=1 h

(i)

I The jth estimator’s weight αj is then computed as follows:

αj = η
1− rj

rj
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AdaBoost (3/3)

I Next the instance weights are updated:

h(i) =

{
h(i) if ŷ

(i)
j = y

(i)
j

h(i)eαj if ŷ
(i)
j 6= y

(i)
j

I Then, a new estimator is trained using the updated weights, and the whole process
is repeated.

I To make predictions, AdaBoost computes the predictions of all the estimators and
weighs them using the estimator weights αj.
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Gradient Boosting (1/3)

I Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an
ensemble, each one correcting its predecessor.

I However, instead of tweaking the instance weights at every iteration, this method
tries to fit the new estimator to the residual errors made by the previous estimator.
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Gradient Boosting (2/3)

I Let’s go through a regression example using Gradient Boosted Regression Trees.

I Fit the first estimator on the training set.

tree_reg1 = DecisionTreeRegressor(max_depth=2)

tree_reg1.fit(X, y)

I Now train the second estimator on the residual errors made by the first estimator.

y2 = y - tree_reg1.predict(X)

tree_reg2 = DecisionTreeRegressor(max_depth=2)

tree_reg2.fit(X, y2)
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Gradient Boosting (3/3)

I Then we train the third estimator on the residual errors made by the second estimator.

y3 = y2 - tree_reg2.predict(X)

tree_reg3 = DecisionTreeRegressor(max_depth=2)

tree_reg3.fit(X, y3)

I Now we have an ensemble containing three trees.

I It can make predictions on a new instance simply by adding up the predictions of all
the trees.

y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
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Gradient Boosting in Spark (1/2)

I Two classes in spark.ml.

I Regression: GBTRegressor

val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("features")

.setMaxIter(10).setFeatureSubsetStrategy("auto")

val model = gbt.fit(trainingData)

val predictions = model.transform(testData)

I Classifier: GBTClassifier

val gbt = new GBTClassifier().setLabelCol("label").setFeaturesCol("features")

.setMaxIter(10).setFeatureSubsetStrategy("auto")

val model = gbt.fit(trainingData)

val predictions = model.transform(testData)
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Summary
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Summary

I Decision tree
• Top-down training algorithm
• Termination condition
• Feature selection: entropy, gini

I Ensemble models
• Bagging: random forest
• Boosting: AdaBoost, Gradient Boosting
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Reference

I Aurélien Géron, Hands-On Machine Learning (Ch. 5, 6, 7)

I Matei Zaharia et al., Spark - The Definitive Guide (Ch. 27)

57 / 58



Questions?
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