

More on Supervised Learning

Amir H. Payberah payberah@kth.se 21/11/2018

https://id2223kth.github.io

Deep Learning						
CNN	RI	RNN Autoenc				
Deep Feedforward Network Training Feedforward Network						
TensorFlow						
Machine Learning						
Regression Classification More Supervised Learning						
Spark ML						

Let's Start with an Example

► Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
:	:	:	:	i i	÷

► Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
:	i i	÷	:	:	÷

▶ Predict if a new person buys a computer?

▶ Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
:				÷	:
.			•		•

- ▶ Predict if a new person buys a computer?
- ▶ Given an instance $\mathbf{x}^{(i)}$, e.g., $\mathbf{x}_1^{(i)} = \text{senior}$, $\mathbf{x}_2^{(i)} = \text{medium}$, $\mathbf{x}_3^{(i)} = \text{no}$, and $\mathbf{x}_4^{(i)} = \text{fair}$, then $\mathbf{y}^{(i)} = ?$

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
1.0	:	:	:		:

▶ Given an input instance $x^{(i)}$, for which the class label $y^{(i)}$ is unknown.

- ▶ Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathbf{y}^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.

- ▶ Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathbf{y}^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.
- ▶ A path is traced from the root to a leaf node, which holds the class prediction for that input.

- ▶ Given an input instance $x^{(i)}$, for which the class label $y^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.
- ▶ A path is traced from the root to a leaf node, which holds the class prediction for that input.
- ▶ E.g., input $\mathbf{x}^{(i)}$ with $\mathbf{x}_1^{(i)} = \text{senior}$, $\mathbf{x}_2^{(i)} = \text{medium}$, $\mathbf{x}_3^{(i)} = \text{no}$, and $\mathbf{x}_4^{(i)} = \text{fair}$.

► A decision tree is a flowchart-like tree structure.

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test
 - Each internal node: denotes a test on an attribute

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test
 - Each internal node: denotes a test on an attribute
 - Each leaf: holds a class label

▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ► The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).
 - Feature list: list of features $\{x_1^{(i)}, \dots, x_n^{(i)}\}\$ of each data instance $x^{(i)}$.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ► The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).
 - Feature list: list of features $\{\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_n^{(i)}\}$ of each data instance $\mathbf{x}^{(i)}$.
 - Feature selection method: determines the splitting criterion.

▶ 1. The tree starts as a single node, N, representing the training data instances D.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances x in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.
 - Indicates (i) the splitting feature x_k , and (ii) a split-point or a splitting subset.
 - The instances in D are partitioned accordingly.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.
 - Indicates (i) the splitting feature x_k , and (ii) a split-point or a splitting subset.
 - The instances in D are partitioned accordingly.
- ▶ 4. The algorithm repeats the same process recursively to form a decision tree.

► The training algorithm stops only when any one of the following conditions is true.

- ▶ The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.

- ▶ The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.

- ▶ The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.
- \triangleright 3. There are no instances for a given branch, that is, a partition D_i is empty.

- ▶ The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.
- \triangleright 3. There are no instances for a given branch, that is, a partition D_i is empty.
- ▶ In conditions 2 and 3:
 - Convert node N into a leaf.
 - Label it either with the most common class in D.
 - Or, the class distribution of the node tuples may be stored.

Training Algorithm - Partitioning Instances (1/3)

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued

Training Algorithm - Partitioning Instances (1/3)

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values $\{a_1, a_2, \dots, a_v\}$

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values $\{a_1, a_2, \dots, a_v\}$
 - A branch is created for each known value a; of A and labeled with that value.

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values {a₁, a₂, · · · , a_v}
 - A branch is created for each known value a_i of A and labeled with that value.
 - Partition D_i is the subset of tuples in D having value a_i of A.

- ▶ 2. A is discrete-valued
 - A binary tree must be produced.

- · A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.

- A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.

- A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.
- The right branch out of N corresponds to the instances in D that do not satisfy the test.

▶ 3. A is continuous-valued

- ▶ 3. A is continuous-valued
 - A test at node N has two possible outcomes: corresponds to $A \le s$ or A > s, with s as the split point.

▶ 3. A is continuous-valued

- A test at node N has two possible outcomes: corresponds to A ≤ s or A > s, with s as the split point.
- The instances are partitioned such that D_1 holds the instances in D for which $A \leq s$, while D_2 holds the rest.

▶ 3. A is continuous-valued

- A test at node N has two possible outcomes: corresponds to A ≤ s or A > s, with s as the split point.
- The instances are partitioned such that D_1 holds the instances in D for which $A \leq s$, while D_2 holds the rest.
- Two branches are labeled according to the previous outcomes.

Training Algorithm - Feature Selection Measures (1/2)

▶ Feature selection measure: how to split instances at a node N.

Training Algorithm - Feature Selection Measures (1/2)

- ► Feature selection measure: how to split instances at a node N.
- ▶ Pure partition: if all instances in a partition belong to the same class.

Training Algorithm - Feature Selection Measures (1/2)

- ▶ Feature selection measure: how to split instances at a node N.
- ▶ Pure partition: if all instances in a partition belong to the same class.
- ▶ The best splitting criterion is the one that most closely results in a pure scenario.

Training Algorithm - Feature Selection Measures (2/2)

▶ It provides a ranking for each feature describing the given training instances.

Training Algorithm - Feature Selection Measures (2/2)

- ▶ It provides a ranking for each feature describing the given training instances.
- ► The feature having the best score for the measure is chosen as the splitting feature for the given instances.

Training Algorithm - Feature Selection Measures (2/2)

- ▶ It provides a ranking for each feature describing the given training instances.
- ► The feature having the best score for the measure is chosen as the splitting feature for the given instances.
- ► Two popular feature selection measures are:
 - Information gain (ID3 and C4.5)
 - Gini index (CART)

Information Gain (Entropy)

▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.

- ▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- ► The feature with the highest information gain is chosen as the splitting feature for node N.

- ▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- ► The feature with the highest information gain is chosen as the splitting feature for node N.
- ► The information gain is based on the decrease in entropy after a dataset is split on a feature.

► What's entropy?

- ► What's entropy?
- ▶ The average information needed to identify the class label of an instance in D.

- ► What's entropy?
- The average information needed to identify the class label of an instance in D.

$$\texttt{entropy}(\texttt{D}) = -\sum_{\texttt{i}=1}^{\texttt{m}} \texttt{p}_{\texttt{i}} \log_2(\texttt{p}_{\texttt{i}})$$

▶ p_i is the probability that an instance in D belongs to class i, with m distinct classes.

- ▶ What's entropy?
- The average information needed to identify the class label of an instance in D.

$$\texttt{entropy}(\texttt{D}) = -\sum_{\texttt{i}=1}^{\texttt{m}} \texttt{p}_{\texttt{i}} \log_2(\texttt{p}_{\texttt{i}})$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ D's entropy is zero when it contains instances of only one class (pure partition).

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{entropy(D)} = -\sum_{\texttt{i}=1}^{\texttt{m}} \texttt{p_i} \, \mathsf{log_2(p_i)}$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{entropy}(\texttt{D}) = -\sum_{\texttt{i}=\texttt{1}}^{\texttt{m}} \texttt{p}_{\texttt{i}} \log_2(\texttt{p}_{\texttt{i}})$$

$$label = buys_computer \Rightarrow m = 2$$

$$\mathtt{entropy}(\mathtt{D}) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.94$$

KTH ID3 (4/8)

Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.

KTH ID3 (4/8)

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$\texttt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=1}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \texttt{entropy}(\mathtt{D}_{\mathtt{j}})$$

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$entropy(A,D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} entropy(D_{j})$$

 $ightharpoonup \frac{|D_j|}{D}$ is the weight of the jth partition.

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$entropy(A,D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} entropy(D_j)$$

- $ightharpoonup \frac{|D_j|}{D}$ is the weight of the jth partition.
- ► The smaller the expected information required, the greater the purity of the partitions.

income student		credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=1}^{\mathtt{v}} \frac{|\mathtt{D}_\mathtt{j}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_\mathtt{j})$$

income student		credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_{\mathtt{j}})$$

$$\texttt{entropy}(\texttt{age}, \texttt{D}) = \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{youth}}) + \frac{4}{14} \texttt{entropy}(\texttt{D}_{\texttt{middle_aged}}) + \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{senior}})$$

income student		credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$ext{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} ext{entropy}(\mathtt{D}_{\mathtt{j}})$$

$$\texttt{entropy}(\texttt{age}, \texttt{D}) = \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{youth}}) + \frac{4}{14} \texttt{entropy}(\texttt{D}_{\texttt{middle_aged}}) + \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{senior}})$$

$$\text{entropy}(\text{age}, \textbf{D}) = \frac{5}{14}(-\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5})) + \frac{4}{14}(-\frac{4}{4}\log_2(\frac{4}{4})) + \frac{5}{14}(-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5})) = 0.694$$

► The information gain Gain(A, D) is defined as:

$${\tt Gain}({\tt A},{\tt D}) = {\tt entropy}({\tt D}) - {\tt entropy}({\tt A},{\tt D})$$

► The information gain Gain(A, D) is defined as:

$${\tt Gain}({\tt A},{\tt D}) = {\tt entropy}({\tt D}) - {\tt entropy}({\tt A},{\tt D})$$

▶ It shows how much would be gained by branching on A.

► The information gain Gain(A, D) is defined as:

$$Gain(A,D) = entropy(D) - entropy(A,D)$$

- ▶ It shows how much would be gained by branching on A.
- ► The feature A with the highest Gain(A,D) is chosen as the splitting feature at node N.

KTH ID3 (7/8)

Now, we can compute the information gain Gain(A) for the feature A = age.

$$\texttt{Gain}(\texttt{age}, \texttt{D}) = \texttt{entropy}(\texttt{D}) - \texttt{entropy}(\texttt{age}, \texttt{D}) = 0.940 - 0.694 = 0.246$$

ID3 (7/8)

Now, we can compute the information gain Gain(A) for the feature A = age.

$$\texttt{Gain}(\texttt{age}, \texttt{D}) = \texttt{entropy}(\texttt{D}) - \texttt{entropy}(\texttt{age}, \texttt{D}) = 0.940 - 0.694 = 0.246$$

- Similarly we have:
 - Gain(income, D) = 0.029
 - Gain(student, D) = 0.151
 - Gain(credit_rating,D) = 0.048

KTH ID3 (7/8)

Now, we can compute the information gain Gain(A) for the feature A = age.

$$\texttt{Gain}(\texttt{age}, \texttt{D}) = \texttt{entropy}(\texttt{D}) - \texttt{entropy}(\texttt{age}, \texttt{D}) = 0.940 - 0.694 = 0.246$$

- Similarly we have:
 - Gain(income, D) = 0.029
 - Gain(student, D) = 0.151
 - Gain(credit_rating,D) = 0.048
- ► The age has the highest information gain among the attributes, it is selected as the splitting feature.

KTH ID3 (8/8)

► The bias problem: information gain prefers to select features having a large number of values.

ID3 (8/8)

► The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	по	fair	no
2	youth	high	по	excellent	no
3	middle.aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle.aged	low	yes	excellent	yes
8	youth	medium	по	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle.aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- ► For example, a split on RID would result in a large number of partitions.
 - Each partition is pure.
 - Info product entropy(RID, D) = 0, thus, the information gained by partitioning on this feature is maximal.

► The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle.aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle.aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle.aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- ► For example, a split on RID would result in a large number of partitions.
 - Each partition is pure.
 - Info product entropy(RID, D) = 0, thus, the information gained by partitioning on this
 feature is maximal.
- ► Clearly, such a partitioning is useless for classification.

- ▶ C4.5 is a successor of ID3 that overcomes its bias problem.
- ▶ It normalizes the information gain using a split information value:

$$\begin{split} \text{SplitInfo}(\texttt{A},\texttt{D}) &= -\sum_{\texttt{j}=1}^{\texttt{v}} \frac{|\texttt{D}_{\texttt{j}}|}{|\texttt{D}|} \log_2(\frac{|\texttt{D}_{\texttt{j}}|}{|\texttt{D}|}) \\ \text{GainRatio}(\texttt{A},\texttt{D}) &= \frac{\texttt{Gain}(\texttt{A},\texttt{D})}{\texttt{SplitInfo}(\texttt{A},\texttt{D})} \end{split}$$

RID age income student credit. rating Class: buys.computer 2 youth high no cacelent no 3 middle.aged high no fair yes 4 senior medium no fair yes 5 senior low yes fair yes 7 middle.aged low yes excellent no 9 youth low yes fair yes 10 senior medium yes fair yes 11 youth medium yes cacellent yes 10 senior medium yes cacellent yes 11 youth medium no excellent yes						
2 youth didle.aged high no fair excellent no fair yes 3 middle.aged high no fair yes 4 senior nedium no fair yes 5 senior low yes fair yes 6 senior low yes excellent no 7 middle.aged low yes excellent yes yes 8 youth no fair no yes 9 youth nedium yes fair yes 10 senior nedium yes fair yes 11 youth nedium nedium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged ligh yes fair yes	RID	age	income	student	credit_rating	Class: buys_computer
3 middle.aged high no fair yes 4 senior medium no fair yes 5 senior low yes fair yes 6 senior low yes excellent no yes 7 middle.aged low yes excellent youth nedium no fair no fair no fair no fair yes 8 youth medium no fair yes 10 senior medium yes fair yes 11 youth middle.aged medium no excellent yes 13 middle.aged ligh yes fair yes	1	youth	high	no	fair	no
4 senior medium no fair yes 5 senior low yes fair yes 6 senior low yes excellent no 7 middle.aged low yes excellent yes 8 youth medium no fair no 10 senior medium yes fair yes 10 senior medium yes fair yes 11 youth medium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged medium yes fair yes	2	youth	high	no	excellent	no
5 senior low yes fair yes 6 senior low yes excellent no 7 middle.aged low yes excellent yes 8 youth medium no fair no 9 youth medium yes fair yes 10 senior medium yes excellent yes 11 youth medium yes excellent yes 12 middle.aged medium yes fair yes 13 middle.aged high yes fair yes	3	middle_aged	high	no	fair	yes
6 senior low yes excellent no 7 middle.aged low yes excellent yes 8 youth medium no fair no 9 youth low yes fair yes 10 youth medium yes fair yes 11 youth medium yes excellent yes 13 middle.aged high yes fair yes	4	senior	medium	no	fair	yes
7 middle.aged low yes excellent yes 8 youth medium no fair no 9 youth low yes fair yes 10 senior medium yes fair yes 11 youth medium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged high yes fair yes	5	senior	low	yes	fair	yes
8 youth medium no fair no 9 youth low yes fair yes 10 senior medium yes fair yes 11 youth medium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged high yes fair yes	6	senior	low	yes	excellent	no
9 youth low yes fair yes 10 senior medium yes fair yes 11 middle.aged medium no excellent yes 12 middle.aged high yes fair yes	7	middle_aged	low	yes	excellent	yes
10 senior medium yes fair yes 11 youth medium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged high yes fair yes	8	youth	medium	no	fair	no
11 youth medium yes excellent yes 12 middle.aged medium no excellent yes 13 middle.aged high yes fair yes	9	youth	low	yes	fair	yes
12 middle.aged medium no excellent yes 13 middle.aged high yes fair yes	10	senior	medium	yes	fair	yes
13 middle_aged high yes fair yes	11	youth	medium	yes	excellent	yes
	12	middle_aged	medium	no	excellent	yes
14 senior medium no excellent no	13	middle_aged	high	yes	fair	yes
	14	senior	medium	no	excellent	no

$$\begin{split} \text{SplitInfo(A,D)} &= -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \log_{2}(\frac{|D_{j}|}{|D|}) \\ \text{SplitInfo(income,D)} &= -\frac{4}{14} \log_{2}(\frac{4}{14}) - \frac{6}{14} \log_{2}(\frac{6}{14}) - \frac{4}{14} \log_{2}(\frac{4}{14}) = 1.557 \end{split}$$

▶ Gain(income, D) = 0.029, therefore $GainRatio(income, D) = \frac{0.029}{1.557} = 0.019$.

Gini Impurity

CART (1/8)

► CART (Classification And Regression Tree) considers a binary split for each feature.

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$ext{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2$$

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

 \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$ext{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ It will be zero if all partitions are pure. Why?

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$exttt{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ It will be zero if all partitions are pure. Why?
- ▶ We need to determine the splitting criterion: splitting feature + splitting subset.

CART (2/8)

Assume A is a discrete-valued feature with v distinct values, $\{a_1, a_2, \cdots, a_v\}$, occurring in D.

- ► Assume A is a discrete-valued feature with v distinct values, {a₁, a₂, ···, a_v}, occurring in D.
- $ightharpoonup S_A$ will be all possible subsets of A.

- ► Assume A is a discrete-valued feature with v distinct values, {a₁, a₂, ···, a_v}, occurring in D.
- ► S_A will be all possible subsets of A.
 - E.g., A = income = {low, medium, high}
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\text{low}, \text{high}\}, \{\{\text{low}\}, \{\text{medium}\}, \{\text{high}\}, \{\}\}$

- Assume A is a discrete-valued feature with v distinct values, $\{a_1, a_2, \dots, a_v\}$, occurring in D.
- ► S_A will be all possible subsets of A.
 - E.g., A = income = {low, medium, high}
 - $S_A = \{\{low, medium, high\}, \{low, medium\}, \{medium, high\}, \{low, high\}, \{low\}, \{medium\}, \{high\}, \{\}\}$
 - The test is of the form $D_1 \in s_A$?, where s_A is a subset of S_A , e.g., $s_A = \{low, high\}$.

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{Gini(D)} = 1 - \sum_{i=1}^m p_i^2$$

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\mathtt{Gini}(\mathtt{D}) = 1 - \sum_{\mathtt{i}=1}^{\mathtt{m}} \mathtt{p}_{\mathtt{i}}^{2}$$

 $label = {\tt buys_computer} \Rightarrow {\tt m} = 2$

$$\mathtt{Gini}(\mathtt{D}) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

▶ If a binary split on A partitions D into D₁ and D₂, the Gini index of D given that partitioning is:

$$\mathtt{Gini}(\mathtt{A},\mathtt{D}) = \frac{|\mathtt{D}_1|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_1) + \frac{|\mathtt{D}_2|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_2)$$

▶ If a binary split on A partitions D into D_1 and D_2 , the Gini index of D given that partitioning is:

$$\mathtt{Gini}(\mathtt{A},\mathtt{D}) = \frac{|\mathtt{D}_1|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_1) + \frac{|\mathtt{D}_2|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_2)$$

► The subset that gives the minimum Gini index is selected as its splitting subset.

CART (5/8)

► For a feature A = income, we consider each of the possible splitting subsets.

CART (5/8)

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{low, medium, high\}, \{low, medium\}, \{medium, high\}, \{low, high\}, \{low\}, \{medium\}, \{high\}, \{\}\}$

KTH CART (5/8)

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{low, medium, high\}, \{low, medium\}, \{medium, high\}, \{low, high\}, \{low\}, \{medium\}, \{high\}, \{\}\}$
- ▶ Assume, we choose the splitting subset $s_A = \{low, medium\}$.

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\text{low}, \text{high}\}, \{\text{low}\}, \{\text{medium}\}, \{\text{high}\}, \{\}\}$
- ▶ Assume, we choose the splitting subset $s_A = \{low, medium\}$.
- ▶ Consider partition D_1 satisfies the condition $D_1 \in s_A$, and D_2 does not.

$$\begin{split} & \text{Gini}_{\text{income} \in \{\text{low,medium}\}}(\textbf{A},\textbf{D}) = \frac{10}{14} \text{Gini}(\textbf{D}_1) + \frac{4}{14} \text{Gini}(\textbf{D}_2) \\ &= \frac{10}{14} \text{Gini}(1 - (\frac{7}{10})^2 - (\frac{3}{10})^2) + \frac{4}{14} (1 - (\frac{2}{4})^2 - (\frac{2}{4})^2) = 0.443 \end{split}$$

► Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$\begin{split} & \text{Gini}_{\text{income} \in \{\text{low}, \text{medium}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{high}\}}(A, D) = 0.443 \\ & \text{Gini}_{\text{income} \in \{\text{low}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{medium}\}}(A, D) = 0.458 \\ & \text{Gini}_{\text{income} \in \{\text{medium}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{low}\}}(A, D) = 0.450 \end{split}$$

► Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$\begin{split} & \text{Gini}_{\text{income} \in \{\text{low}, \text{medium}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{high}\}}(A, D) = 0.443 \\ & \text{Gini}_{\text{income} \in \{\text{low}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{medium}\}}(A, D) = 0.458 \\ & \text{Gini}_{\text{income} \in \{\text{medium}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{low}\}}(A, D) = 0.450 \end{split}$$

▶ The best binary split for attribute A = income is on $s_A = \{low, medium\}$ because it minimizes the Gini index.

► But, which feature?

- ► But, which feature?
- ▶ The reduction in impurity that would be incurred by a binary split on feature A is:

$$\Delta \texttt{Gini}(\texttt{A}) = \texttt{Gini}(\texttt{D}) - \texttt{Gini}(\texttt{A},\texttt{D})$$

- ► But, which feature?
- ▶ The reduction in impurity that would be incurred by a binary split on feature A is:

$$\Delta Gini(A) = Gini(D) - Gini(A, D)$$

► The feature that maximizes the reduction in impurity (has the minimum Gini index) is selected as the splitting feature.

- ▶ Now, we can compute the information gain Gain(A) for different features.
 - $\Delta Gini(income) = 0.459 0.443 = 0.016$
 - $\Delta \text{Gini}(\text{age}) = 0.459 0.357 = 0.102$
 - $\Delta Gini(student) = 0.459 0.367 = 0.092$
 - $\Delta Gini(credit_rating) = 0.459 0.429 = 0.03$

- ▶ Now, we can compute the information gain Gain(A) for different features.
 - $\Delta Gini(income) = 0.459 0.443 = 0.016$
 - $\Delta Gini(age) = 0.459 0.357 = 0.102$
 - $\Delta Gini(student) = 0.459 0.367 = 0.092$
 - $\Delta Gini(credit_rating) = 0.459 0.429 = 0.03$
- ▶ The feature A = age and splitting subset $s_A = \{\text{youth}, \text{senior}\}$ gives the minimum Gini index overall.

- ► Two classes in spark.ml.
- ► Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

Decision Tree in Spark (1/4)

- ► Two classes in spark.ml.
- ► Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

► Classifier DecisionTreeClassifier

```
val dt_classifier = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features")
val model = dt_classifier.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

Decision Tree in Spark (2/4)

► Input and output columns

Decision Tree in Spark (2/4)

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.

Decision Tree in Spark (2/4)

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- ► rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- ► rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.
- probabilityCol is a vector of length of number of classes equal to rawPrediction normalized to a multinomial distribution.

Decision Tree in Spark (3/4)

► Tunable parameters

Decision Tree in Spark (3/4)

- ► Tunable parameters
- ▶ maxBins: number of bins used when discretizing continuous features.

- ► Tunable parameters
- ▶ maxBins: number of bins used when discretizing continuous features.
- ▶ impurity: impurity measure used to choose between candidate splits, e.g., entropy and gini.

```
val maxBins = ...
val dt_classifier = new DecisionTreeClassifier().setMaxBins(maxBins).setImpurity("gini")
```

Decision Tree in Spark (4/4)

► Stopping criteria that determines when the tree stops building.

- ▶ Stopping criteria that determines when the tree stops building.
- ▶ maxDepth: maximum depth of a tree.

Decision Tree in Spark (4/4)

- ▶ Stopping criteria that determines when the tree stops building.
- ▶ maxDepth: maximum depth of a tree.
- ▶ minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.

Decision Tree in Spark (4/4)

- ▶ Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.
- ▶ minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.
- ▶ minInfoGain: for a node to be split further, the split must improve at least this much (in terms of information gain).

Ensemble Methods

- ► Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.

Wisdom of the Crowd

- ► Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.
- ► This is called the wisdom of the crowd.

- Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.
- ▶ This is called the wisdom of the crowd.
- ▶ Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or regressors), often gets better estimations than with the best individual estimator.
- ▶ A group of estimators is an ensemble, and this technique is called Ensemble Learning.

Ensemble Learning

► Two main categories of ensemble learning algorithms.

Ensemble Learning

- ▶ Two main categories of ensemble learning algorithms.
- Bagging
 - Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
 - E.g., random forest

Ensemble Learning

▶ Two main categories of ensemble learning algorithms.

Bagging

- Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
- E.g., random forest

Boosting

- Train estimators sequentially, each trying to correct its predecessor.
- E.g., adaboost and gradient boosting

- ► Random forest builds multiple decision trees that are most of the time trained with the bagging method.
- ▶ It, then, merges the trees together to get a more accurate and stable prediction.

Random Forest in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: RandomForestRegressor

Random Forest in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: RandomForestRegressor

► Classifier: RandomForestClassifier

Random Forest in Spark (2/2)

▶ numTrees: number of trees in the forest.

- ▶ numTrees: number of trees in the forest.
- ▶ subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
 - Default is 1.0 and decreasing it can speed up training.

- numTrees: number of trees in the forest.
- ▶ subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
 - Default is 1.0 and decreasing it can speed up training.
- ► featureSubsetStrategy: number of features to use as candidates for splitting at each tree node, as a fraction of the total number of features.
 - Possible values: auto, all, onethird, sqrt, log2, n

AdaBoost (1/3)

► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.

KTH AdaBoost (1/3)

- ► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- ► Each estimator is trained on a random subset of the total training set.

AdaBoost (1/3)

- ► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- ► Each estimator is trained on a random subset of the total training set.
- AdaBoost assigns a weight to each training instance, which determines the probability that each instance should appear in the training set.

AdaBoost (2/3)

► Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.

- ► Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.
- \blacktriangleright An estimator j is trained and its weighted error rate \mathbf{r}_i is computed as follows:

$$\mathtt{r_{j}} = \frac{\sum_{i=1, y_{j}^{(i)} \neq y_{j}^{(i)}}^{\mathtt{m}} h^{(i)}}{\sum_{i=1}^{\mathtt{m}} h^{(i)}}$$

- ▶ Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.
- \blacktriangleright An estimator j is trained and its weighted error rate r_j is computed as follows:

$$\mathtt{r_{j}} = \frac{\sum_{i=1, \mathfrak{F}_{j}^{(i)} \neq \mathtt{Y}_{j}^{(i)}}^{\mathtt{m}} h^{(i)}}{\sum_{i=1}^{\mathtt{m}} h^{(i)}}$$

▶ The jth estimator's weight α_j is then computed as follows:

$$\alpha_{j} = \eta \frac{1 - r_{j}}{r_{j}}$$

▶ Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} = \mathbf{y_{j}^{(i)}} \\ \mathbf{h^{(i)}} e^{\alpha_{j}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} \neq \mathbf{y_{j}^{(i)}} \end{array} \right.$$

► Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \hat{\mathbf{y}}_{j}^{(i)} = \mathbf{y}_{j}^{(i)} \\ \mathbf{h^{(i)}} \mathbf{e}^{\alpha_{j}} & \text{if} \quad \hat{\mathbf{y}}_{j}^{(i)} \neq \mathbf{y}_{j}^{(i)} \end{array} \right.$$

► Then, a new estimator is trained using the updated weights, and the whole process is repeated.

► Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} = \mathbf{y_{j}^{(i)}} \\ \mathbf{h^{(i)}} \mathbf{e}^{\alpha_{j}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} \neq \mathbf{y_{j}^{(i)}} \end{array} \right.$$

- ► Then, a new estimator is trained using the updated weights, and the whole process is repeated.
- ▶ To make predictions, AdaBoost computes the predictions of all the estimators and weighs them using the estimator weights α_j .

Gradient Boosting (1/3)

- ▶ Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an ensemble, each one correcting its predecessor.
- ► However, instead of tweaking the instance weights at every iteration, this method tries to fit the new estimator to the residual errors made by the previous estimator.

- ▶ Let's go through a regression example using Gradient Boosted Regression Trees.
- ► Fit the first estimator on the training set.

```
tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
```

▶ Now train the second estimator on the residual errors made by the first estimator.

```
y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg2.fit(X, y2)
```

Then we train the third estimator on the residual errors made by the second estimator.

```
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)
```

- ▶ Now we have an ensemble containing three trees.
- ▶ It can make predictions on a new instance simply by adding up the predictions of all the trees.

```
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
```


Gradient Boosting in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: GBTRegressor

Gradient Boosting in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: GBTRegressor

► Classifier: GBTClassifier

Summary

- Decision tree
 - Top-down training algorithm
 - Termination condition
 - Feature selection: entropy, gini
- ► Ensemble models
 - Bagging: random forest
 - Boosting: AdaBoost, Gradient Boosting

- ► Aurélien Géron, Hands-On Machine Learning (Ch. 5, 6, 7)
- ▶ Matei Zaharia et al., Spark The Definitive Guide (Ch. 27)

Questions?