More on Supervised Learning

Amir H. Payberah
payberah@kth.se
21/11/2018

https://id2223kth.github.io

Where Are We?

Deep Learning

| RNN RNN |
| :---: | :---: |

> Deep Feedforward Network Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification More Supervised Learning
Spark ML

Where Are We?

Let's Start with an Example

Buying Computer Example (1/3)

- Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Buying Computer Example (1/3)

- Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

- Predict if a new person buys a computer?

Buying Computer Example (1/3)

- Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

- Predict if a new person buys a computer?
- Given an instance $\mathbf{x}^{(i)}$, e.g., $\mathrm{x}_{1}^{(\mathrm{i})}=$ senior, $\mathrm{x}_{2}^{(\mathrm{i})}=$ medium, $\mathrm{x}_{3}^{(\mathrm{i})}=\mathrm{no}$, and $\mathrm{x}_{4}^{(\mathrm{i})}=$ fair, then $\mathrm{y}^{(\mathrm{i})}=$?

Buying Computer Example (2/3)

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	yair	\vdots
\vdots	\vdots	\vdots			

Buying Computer Example (3/3)

- Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathrm{y}^{(i)}$ is unknown.

Buying Computer Example (3/3)

- Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathrm{y}^{(\mathrm{i})}$ is unknown.
- The attribute values of the input (e.g., age or income) are tested.

Buying Computer Example (3/3)

- Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathrm{y}^{(\mathrm{i})}$ is unknown.
- The attribute values of the input (e.g., age or income) are tested.
- A path is traced from the root to a leaf node, which holds the class prediction for that input.

Buying Computer Example (3/3)

- Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathrm{y}^{(\mathrm{i})}$ is unknown.
- The attribute values of the input (e.g., age or income) are tested.
- A path is traced from the root to a leaf node, which holds the class prediction for that input.
- E.g., input $\mathbf{x}^{(i)}$ with $\mathrm{x}_{1}^{(\mathrm{i})}=$ senior, $\mathrm{x}_{2}^{(\mathrm{i})}=$ medium, $\mathrm{x}_{3}^{(\mathrm{i})}=$ no, and $\mathrm{x}_{4}^{(\mathrm{i})}=$ fair.

Decision Tree

- A decision tree is a flowchart-like tree structure.

Decision Tree

- A decision tree is a flowchart-like tree structure.
- The topmost node: represents the root

Decision Tree

- A decision tree is a flowchart-like tree structure.
- The topmost node: represents the root
- Each branch: represents an outcome of the test

Decision Tree

- A decision tree is a flowchart-like tree structure.
- The topmost node: represents the root
- Each branch: represents an outcome of the test
- Each internal node: denotes a test on an attribute

Decision Tree

- A decision tree is a flowchart-like tree structure.
- The topmost node: represents the root
- Each branch: represents an outcome of the test
- Each internal node: denotes a test on an attribute
- Each leaf: holds a class label

- Decision trees are constructed in a top-down recursive divide-and-conquer manner.

Training Algorithm (1/2)

- Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- The algorithm is called with the following parameters.

Training Algorithm (1/2)

- Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- The algorithm is called with the following parameters.
- Data partition D : initially the complete set of training data and labels $\mathrm{D}=(\mathbf{X}, \mathbf{y})$.

Training Algorithm (1/2)

- Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- The algorithm is called with the following parameters.
- Data partition D : initially the complete set of training data and labels $\mathrm{D}=(\mathbf{X}, \mathbf{y})$.
- Feature list: list of features $\left\{\mathbf{x}_{1}^{(\mathrm{i})}, \cdots, \mathbf{x}_{n}^{(\mathrm{i})}\right\}$ of each data instance $\mathbf{x}^{(\mathrm{i})}$.

Training Algorithm (1/2)

- Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- The algorithm is called with the following parameters.
- Data partition D : initially the complete set of training data and labels $\mathrm{D}=(\mathbf{X}, \mathbf{y})$.
- Feature list: list of features $\left\{\mathbf{x}_{1}^{(\mathrm{i})}, \cdots, \mathbf{x}_{\mathrm{n}}^{(\mathrm{i})}\right\}$ of each data instance $\mathbf{x}^{(\mathrm{i})}$.
- Feature selection method: determines the splitting criterion.
- 1. The tree starts as a single node, N, representing the training data instances D.

Training Algorithm (2/2)

- 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances \mathbf{x} in D are all of the same class, then node N becomes a leaf.
- 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances \mathbf{x} in D are all of the same class, then node N becomes a leaf.
- 3. The algorithm calls feature selection method to determine the splitting criterion.

Training Algorithm (2/2)

- 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances \mathbf{x} in D are all of the same class, then node N becomes a leaf.
- 3. The algorithm calls feature selection method to determine the splitting criterion.
- Indicates (i) the splitting feature x_{k}, and (ii) a split-point or a splitting subset.
- The instances in D are partitioned accordingly.
- 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances \mathbf{x} in D are all of the same class, then node N becomes a leaf.
- 3. The algorithm calls feature selection method to determine the splitting criterion.
- Indicates (i) the splitting feature x_{k}, and (ii) a split-point or a splitting subset.
- The instances in D are partitioned accordingly.
- 4. The algorithm repeats the same process recursively to form a decision tree.

Training Algorithm - Termination Conditions

- The training algorithm stops only when any one of the following conditions is true.

Training Algorithm - Termination Conditions

- The training algorithm stops only when any one of the following conditions is true.
- 1. All the instances in partition D at a node N belong to the same class.
- It is labeled with that class.

Training Algorithm - Termination Conditions

- The training algorithm stops only when any one of the following conditions is true.
- 1. All the instances in partition D at a node N belong to the same class.
- It is labeled with that class.
- 2. No remaining features on which the instances may be further partitioned.

Training Algorithm - Termination Conditions

- The training algorithm stops only when any one of the following conditions is true.
- 1. All the instances in partition D at a node N belong to the same class.
- It is labeled with that class.
- 2. No remaining features on which the instances may be further partitioned.
- 3. There are no instances for a given branch, that is, a partition D_{j} is empty.

Training Algorithm - Termination Conditions

- The training algorithm stops only when any one of the following conditions is true.
- 1. All the instances in partition D at a node N belong to the same class.
- It is labeled with that class.
- 2. No remaining features on which the instances may be further partitioned.
- 3. There are no instances for a given branch, that is, a partition D_{j} is empty.
- In conditions 2 and 3:
- Convert node N into a leaf.
- Label it either with the most common class in D.
- Or, the class distribution of the node tuples may be stored.

- Assume A is the splitting feature
- Three possibilities to partition instances in D based on the feature A.
- 1. A is discrete-valued

Training Algorithm - Partitioning Instances (1/3)

- Assume A is the splitting feature
- Three possibilities to partition instances in D based on the feature A.
- 1. A is discrete-valued
- Assume A has v distinct values $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$

Training Algorithm - Partitioning Instances (1/3)

- Assume A is the splitting feature
- Three possibilities to partition instances in D based on the feature A.
- 1. A is discrete-valued
- Assume A has v distinct values $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$
- A branch is created for each known value a_{j} of A and labeled with that value.

Training Algorithm - Partitioning Instances (1/3)

- Assume A is the splitting feature
- Three possibilities to partition instances in D based on the feature A.
- 1. A is discrete-valued
- Assume A has v distinct values $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$
- A branch is created for each known value a_{j} of A and labeled with that value.
- Partition D_{j} is the subset of tuples in D having value a_{j} of A.

Training Algorithm - Partitioning Instances (2/3)

- 2. A is discrete-valued

Training Algorithm - Partitioning Instances (2/3)

- 2. A is discrete-valued
- A binary tree must be produced.

Training Algorithm - Partitioning Instances (2/3)

- 2. A is discrete-valued
- A binary tree must be produced.
- The test at node N is of the form $A \in S_{A}$?, where S_{A} is the splitting subset for A.

Training Algorithm - Partitioning Instances (2/3)

- 2. A is discrete-valued
- A binary tree must be produced.
- The test at node N is of the form $A \in S_{A}$?, where S_{A} is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.

Training Algorithm - Partitioning Instances (2/3)

- 2. A is discrete-valued
- A binary tree must be produced.
- The test at node N is of the form $A \in S_{A}$?, where S_{A} is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.
- The right branch out of N corresponds to the instances in D that do not satisfy the test.

Training Algorithm - Partitioning Instances (3/3)

- 3. A is continuous-valued

Training Algorithm - Partitioning Instances (3/3)

- 3. A is continuous-valued
- A test at node N has two possible outcomes: corresponds to $\mathrm{A} \leq \mathrm{s}$ or $\mathrm{A}>\mathrm{s}$, with s as the split point.

Training Algorithm - Partitioning Instances (3/3)

- 3. A is continuous-valued
- A test at node N has two possible outcomes: corresponds to $\mathrm{A} \leq \mathrm{s}$ or $\mathrm{A}>\mathrm{s}$, with s as the split point.
- The instances are partitioned such that D_{1} holds the instances in D for which $\mathrm{A} \leq \mathrm{s}$, while D_{2} holds the rest.

Training Algorithm - Partitioning Instances (3/3)

- 3. A is continuous-valued
- A test at node N has two possible outcomes: corresponds to $\mathrm{A} \leq \mathrm{s}$ or $\mathrm{A}>\mathrm{s}$, with s as the split point.
- The instances are partitioned such that D_{1} holds the instances in D for which $\mathrm{A} \leq \mathrm{s}$, while D_{2} holds the rest.
- Two branches are labeled according to the previous outcomes.

Training Algorithm - Feature Selection Measures (1/2)

- Feature selection measure: how to split instances at a node N .
- Feature selection measure: how to split instances at a node N .
- Pure partiton: if all instances in a partition belong to the same class.

Training Algorithm - Feature Selection Measures (1/2)

- Feature selection measure: how to split instances at a node N .
- Pure partiton: if all instances in a partition belong to the same class.
- The best splitting criterion is the one that most closely results in a pure scenario.

Training Algorithm - Feature Selection Measures (2/2)

- It provides a ranking for each feature describing the given training instances.

Training Algorithm - Feature Selection Measures (2/2)

- It provides a ranking for each feature describing the given training instances.
- The feature having the best score for the measure is chosen as the splitting feature for the given instances.

Training Algorithm - Feature Selection Measures (2/2)

- It provides a ranking for each feature describing the given training instances.
- The feature having the best score for the measure is chosen as the splitting feature for the given instances.
- Two popular feature selection measures are:
- Information gain (ID3 and C4.5)
- Gini index (CART)

Information Gain (Entropy)

- ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- The feature with the highest information gain is chosen as the splitting feature for node N .
- ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- The feature with the highest information gain is chosen as the splitting feature for node N.
- The information gain is based on the decrease in entropy after a dataset is split on a feature.
- What's entropy?
- What's entropy?
- The average information needed to identify the class label of an instance in D.

ID3 (2/8)

- What's entropy?
- The average information needed to identify the class label of an instance in D.

$$
\operatorname{entropy}(D)=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right)
$$

- p_{i} is the probability that an instance in D belongs to class i, with m distinct classes.
- What's entropy?
- The average information needed to identify the class label of an instance in D.

$$
\operatorname{entropy}(D)=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right)
$$

- p_{i} is the probability that an instance in D belongs to class i, with m distinct classes.
- D's entropy is zero when it contains instances of only one class (pure partition).

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no
					m

$$
\begin{aligned}
& \operatorname{entropy}(D)=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right) \\
& \text { label }=\text { buys_computer } \Rightarrow \mathrm{m}=2 \\
& \operatorname{entropy}(D)=-\frac{9}{14} \log _{2}\left(\frac{9}{14}\right)-\frac{5}{14} \log _{2}\left(\frac{5}{14}\right)=0.94
\end{aligned}
$$

- Suppose we want to partition instances in D on some feature A with v distinct values, $\left\{a_{1}, a_{2}, \cdots, a_{v}\right\}$.
- Suppose we want to partition instances in D on some feature A with v distinct values, $\left\{a_{1}, a_{2}, \cdots, a_{v}\right\}$.
- A can split D into v partitions $\left\{D_{1}, D_{2}, \cdots, D_{v}\right\}$.
- Suppose we want to partition instances in D on some feature A with v distinct values, $\left\{a_{1}, a_{2}, \cdots, a_{v}\right\}$.
- A can split D into v partitions $\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \cdots, \mathrm{D}_{\mathrm{v}}\right\}$.
- The expected information required to classify an instance from D based on the partitioning by A is:

$$
\operatorname{entropy}(A, D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \operatorname{entropy}\left(D_{j}\right)
$$

- Suppose we want to partition instances in D on some feature A with v distinct values, $\left\{a_{1}, a_{2}, \cdots, a_{v}\right\}$.
- A can split D into v partitions $\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \cdots, \mathrm{D}_{\mathrm{v}}\right\}$.
- The expected information required to classify an instance from D based on the partitioning by A is:

$$
\operatorname{entropy}(A, D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \operatorname{entropy}\left(D_{j}\right)
$$

- $\frac{\left|D_{j}\right|}{D}$ is the weight of the j th partition.
- Suppose we want to partition instances in D on some feature A with v distinct values, $\left\{a_{1}, a_{2}, \cdots, a_{v}\right\}$.
- A can split D into v partitions $\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \cdots, \mathrm{D}_{\mathrm{v}}\right\}$.
- The expected information required to classify an instance from D based on the partitioning by A is:

$$
\operatorname{entropy}(A, D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \operatorname{entropy}\left(D_{j}\right)
$$

- $\frac{\left|D_{j}\right|}{D}$ is the weight of the j th partition.
- The smaller the expected information required, the greater the purity of the partitions.

ID3 (5/8)

$$
\operatorname{entropy}(A, D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \operatorname{entropy}\left(D_{j}\right)
$$

$\operatorname{entropy}($ age,$D)=\frac{5}{14}$ entropy $\left(D_{\text {youth }}\right)+\frac{4}{14} \operatorname{entropy}\left(D_{\text {middle_aged }}\right)+\frac{5}{14} \operatorname{entropy}\left(D_{\text {senior }}\right)$

$$
\operatorname{entropy}(A, D)=\sum_{j=1}^{v} \frac{\left|D_{j}\right|}{|D|} \operatorname{entropy}\left(D_{j}\right)
$$

entropy $($ age,$D)=\frac{5}{14} \operatorname{entropy}\left(D_{\text {youth }}\right)+\frac{4}{14} \operatorname{entropy}\left(D_{\text {middle_aged }}\right)+\frac{5}{14} \operatorname{entropy}\left(D_{\text {senior }}\right)$
$\operatorname{entropy}(\operatorname{age}, \mathrm{D})=\frac{5}{14}\left(-\frac{2}{5} \log _{2}\left(\frac{2}{5}\right)-\frac{3}{5} \log _{2}\left(\frac{3}{5}\right)\right)+\frac{4}{14}\left(-\frac{4}{4} \log _{2}\left(\frac{4}{4}\right)\right)+\frac{5}{14}\left(-\frac{3}{5} \log _{2}\left(\frac{3}{5}\right)-\frac{2}{5} \log _{2}\left(\frac{2}{5}\right)\right)=0.694$

- The information gain $\operatorname{Gain}(A, D)$ is defined as:

$$
\operatorname{Gain}(\mathrm{A}, \mathrm{D})=\operatorname{entropy}(\mathrm{D})-\operatorname{entropy}(\mathrm{A}, \mathrm{D})
$$

- The information gain $\operatorname{Gain}(A, D)$ is defined as:

$$
\operatorname{Gain}(\mathrm{A}, \mathrm{D})=\operatorname{entropy}(\mathrm{D})-\operatorname{entropy}(\mathrm{A}, \mathrm{D})
$$

- It shows how much would be gained by branching on A.
- The information gain $\operatorname{Gain}(A, D)$ is defined as:

$$
\operatorname{Gain}(\mathrm{A}, \mathrm{D})=\operatorname{entropy}(\mathrm{D})-\operatorname{entropy}(\mathrm{A}, \mathrm{D})
$$

- It shows how much would be gained by branching on A.
- The feature A with the highest $\operatorname{Gain}(A, D)$ is chosen as the splitting feature at node N.
- Now, we can compute the information gain Gain(A) for the feature $A=$ age.

$$
\operatorname{Gain}(\text { age }, D)=\operatorname{entropy}(D)-\operatorname{entropy}(\text { age }, D)=0.940-0.694=0.246
$$

- Now, we can compute the information gain $\operatorname{Gain}(A)$ for the feature $A=$ age.

$$
\text { Gain }(\text { age }, D)=\operatorname{entropy}(D)-\operatorname{entropy}(\text { age }, D)=0.940-0.694=0.246
$$

- Similarly we have:
- Gain(income, D) $=0.029$
- Gain(student, D) $=0.151$
- Gain(credit_rating, D) $=0.048$
- Now, we can compute the information gain $\operatorname{Gain}(\mathrm{A})$ for the feature $\mathrm{A}=$ age.

$$
\text { Gain }(\text { age }, D)=\operatorname{entropy}(D)-\operatorname{entropy}(\text { age }, D)=0.940-0.694=0.246
$$

- Similarly we have:
- Gain(income, D) $=0.029$
- Gain(student, D) $=0.151$
- Gain(credit_rating, D) $=0.048$
- The age has the highest information gain among the attributes, it is selected as the splitting feature.
- The bias problem: information gain prefers to select features having a large number of values.

ID3 (8/8)

- The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- For example, a split on RID would result in a large number of partitions.
- Each partition is pure.
- Info product entropy (RID, $D)=0$, thus, the information gained by partitioning on this feature is maximal.

ID3 (8/8)

- The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- For example, a split on RID would result in a large number of partitions.
- Each partition is pure.
- Info product entropy(RID, D) $=0$, thus, the information gained by partitioning on this feature is maximal.
- Clearly, such a partitioning is useless for classification.
- C4.5 is a successor of ID3 that overcomes its bias problem.
- It normalizes the information gain using a split information value:

$$
\begin{aligned}
\text { SplitInfo(A, D }) & =-\sum_{j=1}^{\mathrm{v}} \frac{\left|D_{\mathrm{j}}\right|}{|\mathrm{D}|} \log _{2}\left(\frac{\left|\mathrm{D}_{\mathrm{j}}\right|}{|\mathrm{D}|}\right) \\
\text { GainRatio(A, D) } & =\frac{\operatorname{Gain}(\mathrm{A}, \mathrm{D})}{\operatorname{SplitInfo(A,D)}}
\end{aligned}
$$

C4. 5 (2/2)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

SplitInfo(A, D) $=-\sum_{j=1}^{\mathrm{v}} \frac{\left|D_{j}\right|}{|D|} \log _{2}\left(\frac{\left|D_{j}\right|}{|D|}\right)$
SplitInfo(income, D) $=-\frac{4}{14} \log _{2}\left(\frac{4}{14}\right)-\frac{6}{14} \log _{2}\left(\frac{6}{14}\right)-\frac{4}{14} \log _{2}\left(\frac{4}{14}\right)=1.557$

- Gain(income, $D)=0.029$, therefore GainRatio $($ income,$D)=\frac{0.029}{1.557}=0.019$.

Gini Impurity

- CART (Classification And Regression Tree) considers a binary split for each feature.

CART (1/8)

- CART (Classification And Regression Tree) considers a binary split for each feature.
- It uses the Gini index to measure the misclassification (impurity of D).

$$
\operatorname{Gini}(\mathrm{D})=1-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}}^{2}
$$

CART (1/8)

- CART (Classification And Regression Tree) considers a binary split for each feature.
- It uses the Gini index to measure the misclassification (impurity of D).

$$
\operatorname{Gini}(\mathrm{D})=1-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}}^{2}
$$

- p_{i} is the probability that an instance in D belongs to class i , with m distinct classes.

CART (1/8)

- CART (Classification And Regression Tree) considers a binary split for each feature.
- It uses the Gini index to measure the misclassification (impurity of D).

$$
\operatorname{Gini}(\mathrm{D})=1-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}}^{2}
$$

- p_{i} is the probability that an instance in D belongs to class i , with m distinct classes.
- It will be zero if all partitions are pure. Why?

CART (1/8)

- CART (Classification And Regression Tree) considers a binary split for each feature.
- It uses the Gini index to measure the misclassification (impurity of D).

$$
\operatorname{Gini}(\mathrm{D})=1-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}}^{2}
$$

- p_{i} is the probability that an instance in D belongs to class i , with m distinct classes.
- It will be zero if all partitions are pure. Why?
- We need to determine the splitting criterion: splitting feature + splitting subset.
- Assume A is a discrete-valued feature with v distinct values, $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$, occurring in D .
- Assume A is a discrete-valued feature with v distinct values, $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$, occurring in D .
- S_{A} will be all possible subsets of A .

CART (2/8)

- Assume A is a discrete-valued feature with v distinct values, $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$, occurring in D .
- S_{A} will be all possible subsets of A .
- E.g., $\mathrm{A}=$ income $=\{$ low, medium, high $\}$
- $\mathrm{S}_{\mathrm{A}}=\{\{$ low, medium, high $\},\{$ low, medium $\},\{$ medium, high $\},\{$ low, high $\}$, \{low\}, \{medium\}, \{high\}, \{\}\}

CART (2/8)

- Assume A is a discrete-valued feature with v distinct values, $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{v}}\right\}$, occurring in D .
- S_{A} will be all possible subsets of A .
- E.g., $\mathrm{A}=$ income $=\{$ low, medium, high $\}$
- $\mathrm{S}_{\mathrm{A}}=\{\{$ low, medium, high $\},\{$ low, medium $\},\{$ medium, high $\},\{$ low, high $\}$, \{low\}, \{medium\}, \{high\}, \{\}\}
- The test is of the form $D_{1} \in s_{A}$?, where s_{A} is a subset of S_{A}, e.g., $s_{A}=\{$ low, high $\}$.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$
\operatorname{Gini}(D)=1-\sum_{i=1}^{m} p_{i}^{2}
$$

CART (3/8)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$
\operatorname{Gini}(\mathrm{D})=1-\sum_{i=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}}^{2}
$$

$$
\text { label }=\text { buys_computer } \Rightarrow m=2
$$

$$
\operatorname{Gini}(D)=1-\left(\frac{9}{14}\right)^{2}-\left(\frac{5}{14}\right)^{2}=0.459
$$

CART (4/8)

- If a binary split on A partitions D into D_{1} and D_{2}, the Gini index of D given that partitioning is:

$$
\operatorname{Gini}(\mathrm{A}, \mathrm{D})=\frac{\left|\mathrm{D}_{1}\right|}{\mathrm{D}} \operatorname{Gini}\left(\mathrm{D}_{1}\right)+\frac{\left|\mathrm{D}_{2}\right|}{\mathrm{D}} \operatorname{Gini}\left(\mathrm{D}_{2}\right)
$$

CART (4/8)

- If a binary split on A partitions D into D_{1} and D_{2}, the Gini index of D given that partitioning is:

$$
\operatorname{Gini}(A, D)=\frac{\left|D_{1}\right|}{D} \operatorname{Gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{D} \operatorname{Gini}\left(D_{2}\right)
$$

- The subset that gives the minimum Gini index is selected as its splitting subset.

CART (5/8)

- For a feature $\mathrm{A}=$ income, we consider each of the possible splitting subsets.
- For a feature $\mathrm{A}=$ income, we consider each of the possible splitting subsets.
- $\mathrm{S}_{\mathrm{A}}=\{\{$ low, medium, high $\},\{$ low, medium $\},\{$ medium, high $\},\{$ low, high $\}$, \{low\}, \{medium $\},\{$ high $\},\{ \}\}$

CART (5/8)

- For a feature $\mathrm{A}=$ income, we consider each of the possible splitting subsets.
- $\mathrm{S}_{\mathrm{A}}=\{\{$ low, medium, high $\},\{$ low, medium $\},\{$ medium, high $\},\{$ low, high $\}$, \{low\}, \{medium\}, \{high\}, \{\}\}
- Assume, we choose the splitting subset $\mathrm{s}_{\mathrm{A}}=\{$ low, medium $\}$.

CART (5/8)

- For a feature $\mathrm{A}=$ income, we consider each of the possible splitting subsets.
- $\mathrm{S}_{\mathrm{A}}=\{\{$ low, medium, high $\},\{$ low, medium $\},\{$ medium, high $\},\{$ low, high $\}$, \{low\}, \{medium $\},\{$ high $\},\{ \}\}$
- Assume, we choose the splitting subset $\mathrm{s}_{\mathrm{A}}=\{$ low, medium $\}$.
- Consider partition D_{1} satisfies the condition $D_{1} \in s_{A}$, and D_{2} does not.

$$
\begin{aligned}
& \operatorname{Gini}_{\text {income } \in\{\text { low,medium }\}}(A, D)=\frac{10}{14} \operatorname{Gini}\left(D_{1}\right)+\frac{4}{14} \operatorname{Gini}\left(D_{2}\right) \\
= & \frac{10}{14} \operatorname{Gini}\left(1-\left(\frac{7}{10}\right)^{2}-\left(\frac{3}{10}\right)^{2}\right)+\frac{4}{14}\left(1-\left(\frac{2}{4}\right)^{2}-\left(\frac{2}{4}\right)^{2}\right)=0.443
\end{aligned}
$$

CART (6/8)

- Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$
\begin{aligned}
& \operatorname{Gini}_{\text {income } \in\{\text { low, medium }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { high }\}}(\mathrm{A}, \mathrm{D})=0.443 \\
& \operatorname{Gini}_{\text {income } \in\{1 \text { low,high }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { medium }\}}(\mathrm{A}, \mathrm{D})=0.458 \\
& \mathrm{Gini}_{\text {income } \in\{\text { medium, high }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { low }\}}(\mathrm{A}, \mathrm{D})=0.450
\end{aligned}
$$

CART (6/8)

- Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$
\begin{aligned}
& \operatorname{Gini}_{\text {income } \in\{\text { low,medium }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { high }\}}(\mathrm{A}, \mathrm{D})=0.443 \\
& \operatorname{Gini}_{\text {income } \in\{\text { low,high }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { medium }\}}(\mathrm{A}, \mathrm{D})=0.458 \\
& \operatorname{Gini}_{\text {income } \in\{\text { medium }, \text { high }\}}(\mathrm{A}, \mathrm{D})=\operatorname{Gini}_{\text {income } \in\{\text { low }\}}(\mathrm{A}, \mathrm{D})=0.450
\end{aligned}
$$

- The best binary split for attribute $\mathrm{A}=$ income is on $\mathrm{s}_{\mathrm{A}}=$ \{low, medium $\}$ because it minimizes the Gini index.
- But, which feature?

CART (7/8)

- But, which feature?
- The reduction in impurity that would be incurred by a binary split on feature A is:

$$
\Delta \operatorname{Gini}(A)=\operatorname{Gini}(D)-\operatorname{Gini}(A, D)
$$

CART (7/8)

- But, which feature?
- The reduction in impurity that would be incurred by a binary split on feature A is:

$$
\Delta \operatorname{Gini}(\mathrm{A})=\operatorname{Gini}(\mathrm{D})-\operatorname{Gini}(\mathrm{A}, \mathrm{D})
$$

- The feature that maximizes the reduction in impurity (has the minimum Gini index) is selected as the splitting feature.

CART (8/8)

- Now, we can compute the information gain Gain(A) for different features.
- Δ Gini(income) $=0.459-0.443=0.016$
- Δ Gini(age) $=0.459-0.357=0.102$
- Δ Gini(student $)=0.459-0.367=0.092$
- Δ Gini(credit_rating) $=0.459-0.429=0.03$

CART (8/8)

- Now, we can compute the information gain Gain(A) for different features.
- Δ Gini(income) $=0.459-0.443=0.016$
- Δ Gini(age) $=0.459-0.357=0.102$
- Δ Gini(student) $=0.459-0.367=0.092$
- Δ Gini(credit_rating $)=0.459-0.429=0.03$
- The feature $\mathrm{A}=$ age and splitting subset $\mathrm{s}_{\mathrm{A}}=\{$ youth, senior $\}$ gives the minimum Gini index overall.

Decision Tree in Spark (1/4)

- Two classes in spark.ml.
- Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```


Decision Tree in Spark (1/4)

- Two classes in spark.ml.
- Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

- Classifier: DecisionTreeClassifier

```
val dt_classifier = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features")
val model = dt_classifier.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

- Input and output columns
- Input and output columns
- labelCol and featuresCol identify label and features column's names.

Decision Tree in Spark (2/4)

- Input and output columns
- labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.

Decision Tree in Spark (2/4)

- Input and output columns
- labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.

Decision Tree in Spark (2/4)

- Input and output columns
- labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.
- probabilityCol is a vector of length of number of classes equal to rawPrediction normalized to a multinomial distribution.
- Tunable parameters
- Tunable parameters
- maxBins: number of bins used when discretizing continuous features.

Decision Tree in Spark (3/4)

- Tunable parameters
- maxBins: number of bins used when discretizing continuous features.
- impurity: impurity measure used to choose between candidate splits, e.g., entropy and gini.

```
val maxBins = ...
val dt_classifier = new DecisionTreeClassifier().setMaxBins(maxBins).setImpurity("gini")
```

- Stopping criteria that determines when the tree stops building.

Decision Tree in Spark (4/4)

- Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.

Decision Tree in Spark (4/4)

- Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.
- minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.

Decision Tree in Spark (4/4)

- Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.
- minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.
- minInfoGain: for a node to be split further, the split must improve at least this much (in terms of information gain).

```
val maxDepth = ...
val minInstancesPerNode = ...
val minInfoGain = ...
val dt_classifier = new DecisionTreeClassifier()
    .setMaxDepth(maxDepth)
    .setMinInstancesPerNode(minInstancesPerNode)
    .setMinInfoGain(minInfoGain)
```


Ensemble Methods

Wisdom of the Crowd

- Ask a complex question to thousands of random people, then aggregate their answers.
- In many cases, this aggregated answer is better than an expert's answer.

Wisdom of the Crowd

- Ask a complex question to thousands of random people, then aggregate their answers.
- In many cases, this aggregated answer is better than an expert's answer.
- This is called the wisdom of the crowd.

Wisdom of the Crowd

- Ask a complex question to thousands of random people, then aggregate their answers.
- In many cases, this aggregated answer is better than an expert's answer.
- This is called the wisdom of the crowd.
- Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or regressors), often gets better estimations than with the best individual estimator.
- A group of estimators is an ensemble, and this technique is called Ensemble Learning.

Ensemble Learning

- Two main categories of ensemble learning algorithms.

Ensemble Learning

- Two main categories of ensemble learning algorithms.
- Bagging
- Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
- E.g., random forest

Ensemble Learning

- Two main categories of ensemble learning algorithms.
- Bagging
- Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
- E.g., random forest
- Boosting
- Train estimators sequentially, each trying to correct its predecessor.
- E.g., adaboost and gradient boosting

Random Forest

- Random forest builds multiple decision trees that are most of the time trained with the bagging method.
- It, then, merges the trees together to get a more accurate and stable prediction.

Random Forest in Spark (1/2)

- Two classes in spark.ml.
- Regression: RandomForestRegressor

```
val rf_regressor = new RandomForestRegressor().setLabelCol("label")
    .setFeaturesCol("features").setNumTrees(10)
val model = rf_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)
```


Random Forest in Spark (1/2)

- Two classes in spark.ml.
- Regression: RandomForestRegressor

```
val rf_regressor = new RandomForestRegressor().setLabelCol("label")
                                    .setFeaturesCol("features").setNumTrees(10)
val model = rf_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)
```

- Classifier: RandomForestClassifier

```
val rf_classifier = new RandomForestClassifier().setLabelCol("label")
    .setFeaturesCol("features").setNumTrees(10)
val model = rf_classifier.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)
```


atb
 KTH
 C vetenskn \&
 Random Forest in Spark (2/2)

- numTrees: number of trees in the forest.

Random Forest in Spark (2/2)

- numTrees: number of trees in the forest.
- subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
- Default is 1.0 and decreasing it can speed up training.

Random Forest in Spark (2/2)

- numTrees: number of trees in the forest.
- subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
- Default is 1.0 and decreasing it can speed up training.
- featureSubsetStrategy: number of features to use as candidates for splitting at each tree node, as a fraction of the total number of features.
- Possible values: auto, all, onethird, sqrt, log2, n

AdaBoost (1/3)

- AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.

AdaBoost (1/3)

- AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- Each estimator is trained on a random subset of the total training set.

AdaBoost (1/3)

- AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- Each estimator is trained on a random subset of the total training set.
- AdaBoost assigns a weight to each training instance, which determines the probability that each instance should appear in the training set.

- Each instance weight $\mathrm{h}^{(\mathrm{i})}$ is initially set to $\frac{1}{\mathrm{~m}}$ for m instances.

AdaBoost (2/3)

- Each instance weight $\mathrm{h}^{(\mathrm{i})}$ is initially set to $\frac{1}{\mathrm{~m}}$ for m instances.
- An estimator j is trained and its weighted error rate r_{j} is computed as follows:

$$
r_{j}=\frac{\sum_{i=1, \hat{y}_{j}^{(i)} \neq y_{j}^{(i)}}^{m} h^{(i)}}{\sum_{i=1}^{\mathrm{m}} \mathrm{~h}^{(\mathrm{i})}}
$$

AdaBoost (2/3)

- Each instance weight $\mathrm{h}^{(\mathrm{i})}$ is initially set to $\frac{1}{\mathrm{~m}}$ for m instances.
- An estimator j is trained and its weighted error rate r_{j} is computed as follows:

$$
r_{j}=\frac{\sum_{i=1, \hat{y}_{j}^{(i)} \neq y_{j}^{(i)}}^{m} h^{(i)}}{\sum_{i=1}^{\mathrm{m}} \mathrm{~h}^{(\mathrm{i})}}
$$

- The j th estimator's weight α_{j} is then computed as follows:

$$
\alpha_{\mathrm{j}}=\eta \frac{1-\mathrm{r}_{\mathrm{j}}}{\mathrm{r}_{\mathrm{j}}}
$$

- Next the instance weights are updated:

$$
h^{(i)}=\left\{\begin{array}{lll}
h^{(i)} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(i)}=y_{j}^{(i)} \\
h^{(i)} e^{\alpha_{j}} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(\mathrm{i})} \neq y_{j}^{(i)}
\end{array}\right.
$$

AdaBoost (3/3)

- Next the instance weights are updated:

$$
h^{(i)}=\left\{\begin{array}{lll}
h^{(i)} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(i)}=y_{j}^{(i)} \\
h^{(i)} e^{\alpha_{j}} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(\mathrm{i})} \neq \mathrm{y}_{j}^{(\mathrm{i})}
\end{array}\right.
$$

- Then, a new estimator is trained using the updated weights, and the whole process is repeated.

AdaBoost (3/3)

- Next the instance weights are updated:

$$
h^{(i)}=\left\{\begin{array}{lll}
h^{(i)} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(i)}=y_{j}^{(i)} \\
h^{(i)} e^{\alpha_{j}} & \text { if } \quad \hat{\mathrm{y}}_{j}^{(\mathrm{i})} \neq \mathrm{y}_{j}^{(\mathrm{i})}
\end{array}\right.
$$

- Then, a new estimator is trained using the updated weights, and the whole process is repeated.
- To make predictions, AdaBoost computes the predictions of all the estimators and weighs them using the estimator weights α_{j}.

Gradient Boosting (1/3)

- Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an ensemble, each one correcting its predecessor.
- However, instead of tweaking the instance weights at every iteration, this method tries to fit the new estimator to the residual errors made by the previous estimator.

Gradient Boosting (2/3)

- Let's go through a regression example using Gradient Boosted Regression Trees.
- Fit the first estimator on the training set.

```
tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
```

- Now train the second estimator on the residual errors made by the first estimator.

```
y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg2.fit(X, y2)
```


Gradient Boosting (3/3)

- Then we train the third estimator on the residual errors made by the second estimator.

```
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)
```

- Now we have an ensemble containing three trees.
- It can make predictions on a new instance simply by adding up the predictions of all the trees.

```
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
```


Gradient Boosting in Spark (1/2)

- Two classes in spark.ml.
- Regression: GBTRegressor

```
val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("features")
    .setMaxIter(10).setFeatureSubsetStrategy("auto")
```

val model $=$ gbt.fit(trainingData)
val predictions $=$ model.transform(testData)

Gradient Boosting in Spark (1/2)

- Two classes in spark.ml.
- Regression: GBTRegressor

```
val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("features")
    .setMaxIter(10).setFeatureSubsetStrategy("auto")
```

val model $=$ gbt.fit(trainingData)
val predictions $=$ model.transform(testData)

- Classifier: GBTClassifier

```
val gbt = new GBTClassifier().setLabelCol("label").setFeaturesCol("features")
    .setMaxIter(10).setFeatureSubsetStrategy("auto")
val model = gbt.fit(trainingData)
val predictions = model.transform(testData)
```


Summary

Summary

- Decision tree
- Top-down training algorithm
- Termination condition
- Feature selection: entropy, gini
- Ensemble models
- Bagging: random forest
- Boosting: AdaBoost, Gradient Boosting
- Aurélien Géron, Hands-On Machine Learning (Ch. 5, 6, 7)
- Matei Zaharia et al., Spark - The Definitive Guide (Ch. 27)

Questions?

