
TensorFlow

Amir H. Payberah
payberah@kth.se

23/11/2018

The Course Web Page

https://id2223kth.github.io

1 / 81

Where Are We?

2 / 81

Where Are We?

3 / 81

Introduction

I TensorFlow is an open source software library for numerical computation, particularly
well suited and fine-tuned for large-scale Machine Learning.

I Was developed by the Google Brain team.

4 / 81

Let’s Start with an Example

5 / 81

Hello World

I Implement machine learning algorithms by creating and computing operations that
interact with one another.

e = c + d

c = a× b

d = a + b

6 / 81

Two Phases of Tensorflow

I Working with TensorFlow involves two main phases.

1. Build a graph
2. Execute it

7 / 81

Phase 1: Build a Graph

I import tensorflow as tf: it forms an empty default graph.

I First, add two nodes to output a constant value

I Each of the next three nodes gets two existing variables as inputs, and performs
simple arithmetic operations on them, and generates outputs.

import tensorflow as tf

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

8 / 81

Phase 1: Build a Graph

I import tensorflow as tf: it forms an empty default graph.

I First, add two nodes to output a constant value

I Each of the next three nodes gets two existing variables as inputs, and performs
simple arithmetic operations on them, and generates outputs.

import tensorflow as tf

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

8 / 81

Phase 1: Build a Graph

I import tensorflow as tf: it forms an empty default graph.

I First, add two nodes to output a constant value

I Each of the next three nodes gets two existing variables as inputs, and performs
simple arithmetic operations on them, and generates outputs.

import tensorflow as tf

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

8 / 81

Phase 2: Execute a Graph

I Now, we are ready to run the computations.

I Create and run a session, by calling the run() method of the Session object.

I When sess.run(e) is called, it starts at the requested output e, and then works
backward, computing nodes that must be executed.

I Close the session at the end of the computation, using the sess.close() command.

sess = tf.Session()

print(sess.run(e))

sess.close()

Alternative way

with tf.Session() as sess:

print(sess.run(e))

9 / 81

Phase 2: Execute a Graph

I Now, we are ready to run the computations.

I Create and run a session, by calling the run() method of the Session object.

I When sess.run(e) is called, it starts at the requested output e, and then works
backward, computing nodes that must be executed.

I Close the session at the end of the computation, using the sess.close() command.

sess = tf.Session()

print(sess.run(e))

sess.close()

Alternative way

with tf.Session() as sess:

print(sess.run(e))

9 / 81

Phase 2: Execute a Graph

I Now, we are ready to run the computations.

I Create and run a session, by calling the run() method of the Session object.

I When sess.run(e) is called, it starts at the requested output e, and then works
backward, computing nodes that must be executed.

I Close the session at the end of the computation, using the sess.close() command.

sess = tf.Session()

print(sess.run(e))

sess.close()

Alternative way

with tf.Session() as sess:

print(sess.run(e))

9 / 81

Phase 2: Execute a Graph

I Now, we are ready to run the computations.

I Create and run a session, by calling the run() method of the Session object.

I When sess.run(e) is called, it starts at the requested output e, and then works
backward, computing nodes that must be executed.

I Close the session at the end of the computation, using the sess.close() command.

sess = tf.Session()

print(sess.run(e))

sess.close()

Alternative way

with tf.Session() as sess:

print(sess.run(e))

9 / 81

The Complete Code

import tensorflow as tf

Building the Graph

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

10 / 81

Visualize the Code

import tensorflow as tf

Building the Graph

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006

11 / 81

Visualize the Code

import tensorflow as tf

Building the Graph

a = tf.constant(5)

b = tf.constant(3)

c = tf.multiply(a, b)

d = tf.add(a, b)

e = tf.add(c, d)

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006

11 / 81

Let’s Give Name to Variables

import tensorflow as tf

Building the Graph

a = tf.constant(5, name="a")

b = tf.constant(3, name="b")

c = tf.multiply(a, b, name="c_mul")

d = tf.add(a, b, name="d_add")

e = tf.add(c, d, name="e_add")

writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())

Executing the Graph

with tf.Session() as sess:

print(sess.run(e))

tensorboard --logdir="./graphs" --port 6006

12 / 81

Tensor Objects

13 / 81

What is Tensor?

I The central unit of data in TensorFlow is the tensor.

I An n-dimensional array of primitive values.

14 / 81

Tensor Objects

I The main object you manipulate and pass around is the tf.Tensor.

I TensorFlow programs work by building a graph of tf.Tensor objects, and running
parts of this graph.

I Each Tensor object is specified by:
• Rank
• Shape
• Datatype

15 / 81

Tensor Objects - Rank

I The number of dimensions.
• rank 0: scalar (number), e.g., 5
• rank 1: vector, e.g., [2, 5, 7]
• rank 2: matrix, e.g., [[1, 2], [3, 4], [5, 6]]
• rank 3: 3-Tensor
• rank n: n-Tensor

I The tf.rank method determines the rank of a tf.Tensor object.

c = tf.constant([[4], [9], [16], [25]])

r = tf.rank(c) # rank 2

16 / 81

Tensor Objects - Shape

I The number of elements in each dimension.

I The get shape() returns the shape of the tensor as a tuple of integers.

c = tf.constant([[[1, 2, 3], [4, 5, 6]],

[[1, 1, 1], [2, 2, 2]]])

s = c.get_shape() # (2, 2, 3)

17 / 81

Tensor Objects - Data Types (1/2)

I We can explicitly choose the data type of a Tensor object.

I Make sure the data types match throughout the graph.

I We can use the tf.cast() method to change the data type of a Tensor object.

c = tf.constant(4.0, dtype=tf.float64)

x = tf.constant([1, 2, 3], dtype=tf.float32)

y = tf.cast(x, tf.int64)

18 / 81

Tensor Objects - Data Types (2/2)

19 / 81

Tensor Objects - Name

I Each Tensor object has an identifying name.

I This name is an intrinsic string name, not to be confused with the name of the
variable.

c = tf.constant(4.0, dtype=tf.float64, name="input")

20 / 81

Tensor Objects - Name Scopes

I To deal with large graphs, we can use node grouping to make it easier to manage.

I Hierarchically group nodes by their names, using tf.name scope() together with
the with clause.

I Below, the name of each operation within the scope is prefixed with myprefix/,
e.g., myprefix/input1.

with tf.name_scope("myprefix"):

c1 = tf.constant(4, dtype=tf.int32, name="input1")

c2 = tf.constant(4.0, dtype=tf.float64, name="input2")

21 / 81

Tensor Objects - Name Scopes

I To deal with large graphs, we can use node grouping to make it easier to manage.

I Hierarchically group nodes by their names, using tf.name scope() together with
the with clause.

I Below, the name of each operation within the scope is prefixed with myprefix/,
e.g., myprefix/input1.

with tf.name_scope("myprefix"):

c1 = tf.constant(4, dtype=tf.int32, name="input1")

c2 = tf.constant(4.0, dtype=tf.float64, name="input2")

21 / 81

Tensor Objects - Name Scopes

I To deal with large graphs, we can use node grouping to make it easier to manage.

I Hierarchically group nodes by their names, using tf.name scope() together with
the with clause.

I Below, the name of each operation within the scope is prefixed with myprefix/,
e.g., myprefix/input1.

with tf.name_scope("myprefix"):

c1 = tf.constant(4, dtype=tf.int32, name="input1")

c2 = tf.constant(4.0, dtype=tf.float64, name="input2")

21 / 81

Main Types of Tensors

I Constants tf.constant

I Variables tf.Variable

I Placeholders tf.placeholder

22 / 81

Constants

23 / 81

Constants (1/3)

I The value of a constant Tensor cannot be changed in the future.

tf.constant(<value>, dtype=None, shape=None, name="Const", verify_shape=False)

a = tf.constant([[0, 1], [2, 3]], name="b")

b = tf.constant([[4], [9], [16], [25]], name="c")

24 / 81

Constants (2/3)

I The initialization should be with a value, not with operation.

25 / 81

Constants (3/3)

I What’s wrong with constants?

I Constants are stored in the graph definition.

I This makes loading graphs expensive when constants are big.

I Only use constants for primitive types.

I Use variables for data that requires more memory.

26 / 81

Constants (3/3)

I What’s wrong with constants?

I Constants are stored in the graph definition.

I This makes loading graphs expensive when constants are big.

I Only use constants for primitive types.

I Use variables for data that requires more memory.

26 / 81

Constants (3/3)

I What’s wrong with constants?

I Constants are stored in the graph definition.

I This makes loading graphs expensive when constants are big.

I Only use constants for primitive types.

I Use variables for data that requires more memory.

26 / 81

Variables

27 / 81

Variables

I A variable represents a Tensor whose value can be changed by running ops on it.

I tf.Variable is a class with several ops.

I Create variables with tf.get variable.

I tf.get variable returns an existing variable with the given parameters if it is
available.

not recommended way to make a variable

tf.Variable(<initial-value>, name=<optional-name>)

w = tf.Variable([[0, 1], [2, 3]], name="matrix")

recommended

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,

regularizer=None, trainable=True, collections=None)

w = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))

28 / 81

Variables

I A variable represents a Tensor whose value can be changed by running ops on it.

I tf.Variable is a class with several ops.

I Create variables with tf.get variable.

I tf.get variable returns an existing variable with the given parameters if it is
available.

not recommended way to make a variable

tf.Variable(<initial-value>, name=<optional-name>)

w = tf.Variable([[0, 1], [2, 3]], name="matrix")

recommended

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,

regularizer=None, trainable=True, collections=None)

w = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))

28 / 81

Variables

I A variable represents a Tensor whose value can be changed by running ops on it.

I tf.Variable is a class with several ops.

I Create variables with tf.get variable.

I tf.get variable returns an existing variable with the given parameters if it is
available.

not recommended way to make a variable

tf.Variable(<initial-value>, name=<optional-name>)

w = tf.Variable([[0, 1], [2, 3]], name="matrix")

recommended

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,

regularizer=None, trainable=True, collections=None)

w = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))

28 / 81

Initialize Variables

I Variables should be initialized before being used.

I Initialize all variables at once.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

I Initialize only a subset of variables.

with tf.Session() as sess:

sess.run(tf.variables_initializer([a, b]))

I Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:

sess.run(w.initializer)

29 / 81

Initialize Variables

I Variables should be initialized before being used.

I Initialize all variables at once.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

I Initialize only a subset of variables.

with tf.Session() as sess:

sess.run(tf.variables_initializer([a, b]))

I Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:

sess.run(w.initializer)

29 / 81

Initialize Variables

I Variables should be initialized before being used.

I Initialize all variables at once.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

I Initialize only a subset of variables.

with tf.Session() as sess:

sess.run(tf.variables_initializer([a, b]))

I Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:

sess.run(w.initializer)

29 / 81

Initialize Variables

I Variables should be initialized before being used.

I Initialize all variables at once.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

I Initialize only a subset of variables.

with tf.Session() as sess:

sess.run(tf.variables_initializer([a, b]))

I Initialize a single variable.

w = tf.Variable(tf.zeros([784,10]))

with tf.Session() as sess:

sess.run(w.initializer)

29 / 81

Assign Values to Variables (1/3)

I What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))

w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

print(sess.run(w))

I Prints 2, because w.assign(100) creates an assign op.

I That op needs to be executed in a session to take effect.

w = tf.get_variable("scalar", initializer=tf.constant(2))

assign_op = w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

sess.run(assign_op)

print(sess.run(w))

30 / 81

Assign Values to Variables (1/3)

I What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))

w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

print(sess.run(w))

I Prints 2, because w.assign(100) creates an assign op.

I That op needs to be executed in a session to take effect.

w = tf.get_variable("scalar", initializer=tf.constant(2))

assign_op = w.assign(100)

with tf.Session() as sess:

sess.run(w.initializer)

sess.run(assign_op)

print(sess.run(w))

30 / 81

Assign Values to Variables (2/3)

I What does it print?

w = tf.get_variable("scalar", initializer=tf.constant(2))

w_times_two = w.assign(2 * w)

with tf.Session() as sess:

sess.run(w.initializer)

print(sess.run(w_times_two))

print(sess.run(w_times_two))

print(sess.run(w_times_two))

31 / 81

Assign Values to Variables (3/3)

I assign add() and assign sub()

w = tf.get_variable("scalar", initializer=tf.constant(2))

with tf.Session() as sess:

sess.run(w.initializer)

increment by 10

print(sess.run(w.assign_add(10)))

decrement by 5

print(sess.run(w.assign_sub(5)))

32 / 81

Placeholders

33 / 81

Placeholders

I Placeholders are built-in structures for feeding input values.

I Empty variables that will be filled with data later on.

I shape=None means that a tensor of any shape will be accepted.
• E.g., shape=[None, 10]: a matrix with 10 columns and any number of rows.

tf.placeholder(dtype, shape=None, name=None)

x = tf.placeholder(tf.float32, shape=[None, 10])

34 / 81

Feeding Placeholders (1/2)

I What’s wrong with this code?

a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

c = a + b

with tf.Session() as sess:

print(sess.run(c))

35 / 81

Feeding Placeholders (2/2)

I Supplement the values to placeholders using a dictionary.

a = tf.placeholder(tf.float32, shape=[3])

b = tf.constant([5, 5, 5], tf.float32)

c = a + b

with tf.Session() as sess:

print(sess.run(c, feed_dict={a: [1, 2, 3]}))

36 / 81

Dataflow Graphs

37 / 81

Graph

I A computational graph is a series of TensorFlow operations arranged into a graph.

I The graph is composed of two types of objects:
• Operations: the nodes of the graph that that consume and produce tensors.
• Tensors: the edges in the graph that represent the flowing values through the graph.

38 / 81

Graph

I A computational graph is a series of TensorFlow operations arranged into a graph.

I The graph is composed of two types of objects:
• Operations: the nodes of the graph that that consume and produce tensors.
• Tensors: the edges in the graph that represent the flowing values through the graph.

38 / 81

Common TensorFlow Operations (1/2)

39 / 81

Common TensorFlow Operations (2/2)

I Matrix multiplication of two Tensor objects A and B: tf.matmul(A, B)

I Before using matmul(), we need to make sure both have the same number of di-
mensions and are aligned correctly.

a = tf.constant([[1, 2, 3], [4, 5, 6]])

print(a.get_shape())

Out: (2, 3)

b = tf.constant([1, 0, 1])

print(b.get_shape())

Out: (3,)

In order to multiply them, we need to add a dimension to ‘b‘, transforming it from a

1D vector to a 2D single-column matrix.

b = tf.expand_dims(b, 1)

c = tf.matmul(a, b)

40 / 81

Managing Multiple Graphs (1/2)

I When we call import tensorflow, a default graph is automatically created.

I We can also create additional graphs, by calling tf.Graph().

I tf.get default graph() tells which graph is currently set as the default graph.

import tensorflow as tf

g = tf.Graph()

a = tf.constant(5)

print(a.graph is g)

Out: False

print(a.graph is tf.get_default_graph())

Out: True

41 / 81

Managing Multiple Graphs (1/2)

I When we call import tensorflow, a default graph is automatically created.

I We can also create additional graphs, by calling tf.Graph().

I tf.get default graph() tells which graph is currently set as the default graph.

import tensorflow as tf

g = tf.Graph()

a = tf.constant(5)

print(a.graph is g)

Out: False

print(a.graph is tf.get_default_graph())

Out: True

41 / 81

Managing Multiple Graphs (1/2)

I When we call import tensorflow, a default graph is automatically created.

I We can also create additional graphs, by calling tf.Graph().

I tf.get default graph() tells which graph is currently set as the default graph.

import tensorflow as tf

g = tf.Graph()

a = tf.constant(5)

print(a.graph is g)

Out: False

print(a.graph is tf.get_default_graph())

Out: True

41 / 81

Managing Multiple Graphs (2/2)

I Use with together with as default() to associate your constructed nodes the a
right graph.

import tensorflow as tf

g1 = tf.get_default_graph()

g2 = tf.Graph()

print(g1 is tf.get_default_graph())

Out: True

with g2.as_default():

print(g1 is tf.get_default_graph())

Out: False

print(g2 is tf.get_default_graph())

Out: True

42 / 81

Session

43 / 81

Session

I A Session object encapsulates the environment.

I Operation objects are executed, and Tensor objects are evaluated.

I Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format(outs))

sess.close()

can be written as follows

with tf.Session() as sess:

outs = sess.run(e)

print("outs = {}".format(outs))

44 / 81

Session

I A Session object encapsulates the environment.

I Operation objects are executed, and Tensor objects are evaluated.

I Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format(outs))

sess.close()

can be written as follows

with tf.Session() as sess:

outs = sess.run(e)

print("outs = {}".format(outs))

44 / 81

Session

I A Session object encapsulates the environment.

I Operation objects are executed, and Tensor objects are evaluated.

I Session will also allocate memory to store the current values of variables.

sess = tf.Session()

outs = sess.run(e)

print("outs = {}".format(outs))

sess.close()

can be written as follows

with tf.Session() as sess:

outs = sess.run(e)

print("outs = {}".format(outs))

44 / 81

Feeding

I A graph can be parameterized to accept external inputs via placeholders.

I To feed a placeholder, the input data is passed to the session.run().

I Each key corresponds to a placeholder variable name, and the matching values are
the data values.

x = tf.placeholder(tf.float32)

y = tf.placeholder(tf.float32)

z = x + y

with tf.Session() as sess:

print(sess.run(z, feed_dict={x: 3, y: 4.5}))

print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))

45 / 81

Fetches

I To fetch a list of outputs of nodes.

with tf.Session() as sess:

fetches = [a, b, c, d, e]

outs = sess.run(fetches)

print("outs = {}".format(outs))

46 / 81

Session.run() vs. Tensor.eval()

I Two ways to evaluate part of graph: Session.run and Tensor.eval.

I The most important difference is that you can use sess.run() to fetch the values
of many tensors in the same step.

t = tf.constant(42.0)

u = tf.constant(37.0)

tu = tf.multiply(t, u)

ut = tf.multiply(u, t)

with sess.as_default():

tu.eval() # runs one step

ut.eval() # runs one step

sess.run([tu, ut]) # evaluates both tensors in a single step

47 / 81

Session.run() vs. Tensor.eval()

I Two ways to evaluate part of graph: Session.run and Tensor.eval.

I The most important difference is that you can use sess.run() to fetch the values
of many tensors in the same step.

t = tf.constant(42.0)

u = tf.constant(37.0)

tu = tf.multiply(t, u)

ut = tf.multiply(u, t)

with sess.as_default():

tu.eval() # runs one step

ut.eval() # runs one step

sess.run([tu, ut]) # evaluates both tensors in a single step

47 / 81

Linear Regression in TensorFlow

48 / 81

Linear Regression

I We want to find weights w and a bias term b.

I Assume our target value is a linear combination of some input vector x: ŷ = wTx+b.

I Let’s generate synthetic data.

import numpy as np

import tensorflow as tf

x_data = np.random.randn(2000, 3)

w_real = [0.3, 0.5, 0.1]

b_real = -0.2

y_data = np.matmul(w_real, x_data.T) + b_real

49 / 81

Linear Regression

I We want to find weights w and a bias term b.

I Assume our target value is a linear combination of some input vector x: ŷ = wTx+b.

I Let’s generate synthetic data.

import numpy as np

import tensorflow as tf

x_data = np.random.randn(2000, 3)

w_real = [0.3, 0.5, 0.1]

b_real = -0.2

y_data = np.matmul(w_real, x_data.T) + b_real

49 / 81

Linear Regression - Placeholders and Variables

I Create placeholders for our input and output data.

I Create variables for our weights and intercept.

placeholders

x = tf.placeholder(tf.float32, shape=[None, 3])

y_true = tf.placeholder(tf.float32, shape=None)

variables

w = tf.get_variable("weights", dtype=tf.float32, initializer=tf.constant([[0., 0., 0.]]))

b = tf.get_variable("bias", dtype=tf.float32, initializer=tf.constant(0.))

50 / 81

Linear Regression - Defining a Cost Function

I We need a good measure to evaluate the model’s performance.

I Let’s define MSE (mean squared error).

the cost function

y_hat = tf.matmul(w, tf.transpose(x)) + b

cost = tf.reduce_mean(tf.square(y_true - y_hat))

51 / 81

Linear Regression - The Gradient Descent Optimizer

I Next, we need to minimize the cost function.

I Let’s use the gradient descent.

I First create an optimizer by using the GradientDescentOptimizer() function.

I Then, create a train operation by calling the optimizer.minimize() to update our
variables.

optimizer

learning_rate = 0.5

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

train = optimizer.minimize(cost)

52 / 81

Linear Regression - Execute It

I At the end, we need to initialize the variables and execute the train operation.

num_steps = 10

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

for step in range(num_steps):

sess.run(train, {x: x_data, y_true: y_data})

print(sess.run([w, b, cost], {x: x_data, y_true: y_data}))

53 / 81

Logistic Regression in TensorFlow

54 / 81

Logistic Regression

I We want to find weights w and a bias term b in a logisitc regression model:

ŷ =
1

1 + e−(wTx+b)

I Let’s generate synthetic data.

import numpy as np

import tensorflow as tf

x_data = np.random.randn(2000, 3)

w_real = [0.3, 0.5, 0.1]

b_real = -0.2

y_data = np.matmul(w_real, x_data.T) + b_real

55 / 81

Logistic Regression - Placeholders and Variables

I Create placeholders for our input and output data.

I Create variables for our weights and intercept.

placeholders

x = tf.placeholder(tf.float32, shape=[None, 3])

y_true = tf.placeholder(tf.float32, shape=None)

variables

w = tf.get_variable("weights", dtype=tf.float32, initializer=tf.constant([[0., 0., 0.]]))

b = tf.get_variable("bias", dtype=tf.float32, initializer=tf.constant(0.))

56 / 81

Logistic Regression - Defining a Loss Function

I For the cost function, we use the cross-entropy model.

z = tf.matmul(w, tf.transpose(x)) + b

y_hat = tf.sigmoid(z)

cost = -y_true * tf.log(y_hat) - (1 - y_true) * tf.log(1 - y_hat)

cost = tf.reduce_mean(cost)

I Alternatively, we can use a designated function by TensorFlow.

cost = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_hat)

cost = tf.reduce_mean(cost)

57 / 81

Logistic Regression - Defining a Loss Function

I For the cost function, we use the cross-entropy model.

z = tf.matmul(w, tf.transpose(x)) + b

y_hat = tf.sigmoid(z)

cost = -y_true * tf.log(y_hat) - (1 - y_true) * tf.log(1 - y_hat)

cost = tf.reduce_mean(cost)

I Alternatively, we can use a designated function by TensorFlow.

cost = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_hat)

cost = tf.reduce_mean(cost)

57 / 81

Logistic Regression - The Gradient Descent Optimizer

I Similar to linear regression.

learning_rate = 0.5

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

train = optimizer.minimize(cost)

58 / 81

Logistic Regression - Execute It

I Similar to linear regression.

num_steps = 10

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

for step in range(num_steps):

sess.run(train, {x: x_data, y_true: y_data})

print(sess.run([w, b, cost], {x: x_data, y_true: y_data}))

59 / 81

Saving and Restoring Models

60 / 81

Saving Models

I Save a model’s parameters in disk.

I Create a Saver node at the end of the construction phase.

I Then, in the execution phase, call its save() method whenever you want to save
the model.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")

[...]

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:

sess.run(init)

for step in range(num_steps):

if step % 100 == 0: # checkpoint every 100 epochs

save_path = saver.save(sess, "/tmp/my_model.ckpt")

sess.run(train, {x: x_data, y_true: y_data})

best_w = sess.run(w)

save_path = saver.save(sess, "/tmp/my_model_final.ckpt")

61 / 81

Saving Models

I Save a model’s parameters in disk.

I Create a Saver node at the end of the construction phase.

I Then, in the execution phase, call its save() method whenever you want to save
the model.

w = tf.Variable([[0, 0, 0]], dtype=tf.float32, name="weights")

[...]

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:

sess.run(init)

for step in range(num_steps):

if step % 100 == 0: # checkpoint every 100 epochs

save_path = saver.save(sess, "/tmp/my_model.ckpt")

sess.run(train, {x: x_data, y_true: y_data})

best_w = sess.run(w)

save_path = saver.save(sess, "/tmp/my_model_final.ckpt")

61 / 81

Restoring Models

I Create a Saver node at the end of the construction phase.

I Then, at the beginning of the execution phase call the restore() method of the
Saver node.

• Instead of initializing the variables using the init node.

with tf.Session() as sess:

saver.restore(sess, "/tmp/my_model_final.ckpt")

[...]

62 / 81

TensorBoard

63 / 81

TensorBoard (1/3)

I TensorFlow provides a utility called TensorBoard.

I To visualize your model, you need to write the graph definition and some training
stats to a log directory that TensorBoard will read from.

I Use a different log directory every time you run your program, or else TensorBoard
will merge them.

64 / 81

TensorBoard (2/3)

I Add the following code at the very end of the construction phase.

I The first line writes the cost.

I The second line creates a FileWriter that writes summaries of the graph.

I Start the TensorBoard web server (port 6006): tensorboard --logdir .

logdir = "."

mse_summary = tf.summary.scalar("MSE", cost)

file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

file_writer.close()

65 / 81

TensorBoard (3/3)

cost_summary = tf.summary.scalar("Loss", cost)

file_writer = tf.summary.FileWriter(’.’, tf.get_default_graph())

[...]

for step in range(num_steps):

sess.run(train, {x: x_data, y_true: y_data})

summary_str = cost_summary.eval(feed_dict={x: x_data, y_true: y_data})

file_writer.add_summary(summary_str, step)

66 / 81

Keras

67 / 81

Keras

I Keras is a high-level API to build and train deep learning models.

I To get started, import tf.keras to your program.

import tensorflow as tf

from tensorflow.keras import layers

68 / 81

Keras Layers (1/2)

I In Keras, you assemble layers tf.keras.layers to build models.

I A model is (usually) a graph of layers.

I There are many types of layers, e.g., Dense, Conv2D, RNN, ...

69 / 81

Keras Layers (2/2)

I Common constructor parameters:

• activation: the activation function for the layer.

• kernel initializer and bias initializer: the initialization schemes of the layer’s
weights.

• kernel regularizer and bias regularizer: the regularization schemes of the
layer’s weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.l1(0.01),

bias_initializer=tf.keras.initializers.constant(2.0))

70 / 81

Keras Layers (2/2)

I Common constructor parameters:

• activation: the activation function for the layer.

• kernel initializer and bias initializer: the initialization schemes of the layer’s
weights.

• kernel regularizer and bias regularizer: the regularization schemes of the
layer’s weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.l1(0.01),

bias_initializer=tf.keras.initializers.constant(2.0))

70 / 81

Keras Layers (2/2)

I Common constructor parameters:

• activation: the activation function for the layer.

• kernel initializer and bias initializer: the initialization schemes of the layer’s
weights.

• kernel regularizer and bias regularizer: the regularization schemes of the
layer’s weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.l1(0.01),

bias_initializer=tf.keras.initializers.constant(2.0))

70 / 81

Keras Layers (2/2)

I Common constructor parameters:

• activation: the activation function for the layer.

• kernel initializer and bias initializer: the initialization schemes of the layer’s
weights.

• kernel regularizer and bias regularizer: the regularization schemes of the
layer’s weights, e.g., L1 or L2.

layers.Dense(64, activation=tf.sigmoid, kernel_regularizer=tf.keras.regularizers.l1(0.01),

bias_initializer=tf.keras.initializers.constant(2.0))

70 / 81

Keras Models

I There are two ways to build Keras models: sequential and functional.

I The sequential API allows you to create models layer-by-layer.

I The functional API allows you to create models that have a lot more flexibility.
• You can define models where layers connect to more than just their previous and next

layers.

71 / 81

Keras Models

I There are two ways to build Keras models: sequential and functional.

I The sequential API allows you to create models layer-by-layer.

I The functional API allows you to create models that have a lot more flexibility.
• You can define models where layers connect to more than just their previous and next

layers.

71 / 81

Keras Models

I There are two ways to build Keras models: sequential and functional.

I The sequential API allows you to create models layer-by-layer.

I The functional API allows you to create models that have a lot more flexibility.
• You can define models where layers connect to more than just their previous and next

layers.

71 / 81

Keras Models - Sequential Models

I You can use tf.keras.Sequential to build a sequential model.

from tensorflow.keras import layers

model = tf.keras.Sequential()

model.add(layers.Dense(64, activation="relu"))

model.add(layers.Dense(64, activation="relu"))

model.add(layers.Dense(10, activation="softmax"))

72 / 81

Keras Models - Functional Models

I You can use tf.keras.Model to build a functional model.

from tensorflow.keras import layers

inputs = tf.keras.Input(shape=(32,))

x = layers.Dense(64, activation="relu")(inputs)

x = layers.Dense(64, activation="relu")(x)

predictions = layers.Dense(10, activation="softmax")(x)

model = tf.keras.Model(inputs=inputs, outputs=predictions)

73 / 81

Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

74 / 81

Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

74 / 81

Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

74 / 81

Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

74 / 81

Training Keras Models

I Call the compile method to configure the learning process.

I tf.keras.Model.compile takes three important arguments.

• optimizer: specifies the training procedure.

• loss: the cost function to minimize during optimization, e.g., mean squared error
(mse), categorical crossentropy, and binary crossentropy.

• metrics: used to monitor training.

I Call the fit method to fit the model the training data.

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="mse", metrics=["mae"])

model.fit(training_data, training_labels, epochs=10, batch_size=32)

74 / 81

Evaluate and Predict

I tf.keras.Model.evaluate: evaluate the cost and metrics for the data provided.

I tf.keras.Model.predict: predict the output of the last layer for the data provided.

model.evaluate(test_data, test_labels, batch_size=32)

model.predict(test_data, batch_size=32)

75 / 81

Linear Regression in Keras

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

x_data = np.random.randn(2000, 3)

w_real = [0.3, 0.5, 0.1]

b_real = -0.2

y_data = np.matmul(w_real, x_data.T) + b_real

model = tf.keras.Sequential([layers.Dense(1, activation="linear")])

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001),

loss="mse", metrics=["mae"])

model.fit(x_data, y_data, epochs=100, batch_size=32)

print(model.get_weights())

76 / 81

Logistic Regression in Keras

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

x_data = ...

y_data = ...

model = tf.keras.Sequential([layers.Dense(1, activation="sigmoid")])

model.compile(optimizer=tf.train.GradientDescentOptimizer(0.001),

loss="binary_crossentropy", metrics=["accuracy"])

model.fit(x_data, y_data, epochs=100, batch_size=32)

print(model.get_weights())

77 / 81

Summary

78 / 81

Summary

I Dataflow graph

I Tensors: constants, variables, placeholders

I Session

I Save and restore models

I TensorBoard

I Keras

79 / 81

Reference

I Aurélien Géron, Hands-On Machine Learning (Ch. 9, 12)

I Some slides were derived from Chip Huyen’s slides:
http://web.stanford.edu/class/cs20si

80 / 81

Questions?

81 / 81

