Deep Feedforwards Networks

Amir H. Payberah
payberah@kth.se
28/11/2018

https://id2223kth.github.io

Where Are We?

Deep Learning

| RNN | Autoencoder |
| :---: | :---: | :---: |

> Deep Feedforward Network Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification More Supervised Learning
Spark ML

Where Are We?

Deep Learning

Machine Learning	
Regression	Classification
	More Supervised Learning
Spark ML	

Nature ...

- Nature has inspired many of our inventions
- Birds inspired us to fly
- Burdock plants inspired velcro
- Etc.

Biological Neurons (1/2)

- Brain architecture has inspired artificial neural networks.
- A biological neuron is composed of
- Cell body, many dendrites (branching extensions), one axon (long extension), synapses
- Biological neurons receive signals from other neurons via these synapses.
- When a neuron receives a sufficient number of signals within a few milliseconds, it fires its own signals.

Biological Neurons (2/2)

- Biological neurons are organized in a vast network of billions of neurons.
- Each neuron typically is connected to thousands of other neurons.

A Simple Artificial Neural Network

- One or more binary inputs and one binary output
- Activates its output when more than a certain number of its inputs are active.

The Linear Threshold Unit (LTU)

- Inputs of a LTU are numbers (not binary).
- Each input connection is associated with a weight.
- Computes a weighted sum of its inputs and applies a step function to that sum.
- $\mathrm{z}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\cdots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathbf{w}^{\top} \mathbf{x}$
- $\hat{\mathrm{y}}=\operatorname{step}(\mathbf{z})=\operatorname{step}\left(\mathbf{w}^{\top} \mathbf{x}\right)$

The Perceptron

- The perceptron is a single layer of LTUs.
- The input neurons output whatever input they are fed.
- A bias neuron, which just outputs 1 all the time.
- If we use logistic function (sigmoid) instead of a step function, it computes a continuous output.

How is a Perceptron Trained? (1/2)

- The Perceptron training algorithm is inspired by Hebb's rule.
- When a biological neuron often triggers another neuron, the connection between these two neurons grows stronger.

How is a Perceptron Trained? (2/2)

- Feed one training instance \mathbf{x} to each neuron j at a time and make its prediction $\hat{\mathrm{y}}$.
- Update the connection weights.

$$
\begin{aligned}
& \hat{\mathrm{y}}_{\mathrm{j}}=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{x}+\mathrm{b}\right) \\
& \mathrm{J}\left(\mathbf{w}_{\mathrm{j}}\right)=\text { cross_entropy }\left(\mathrm{y}_{\mathrm{j}}, \hat{\mathrm{y}}_{\mathrm{j}}\right) \\
& \mathrm{w}_{\mathrm{i}, \mathrm{j}}^{(\text {net })}=\mathrm{w}_{\mathrm{i}, \mathrm{j}}-\eta \frac{\partial \mathrm{J}\left(\mathbf{w}_{\mathrm{j}}\right)}{\mathbf{w}_{\mathrm{i}}}
\end{aligned}
$$

- $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$: the weight between neurons i and j .

- x_{i} : the ith input value.
- \hat{y}_{j} : the j th predicted output value.
- y_{j} : the j th true output value.
- η : the learning rate.

Perceptron in TensorFlow

Perceptron in TensorFlow - First Implementation (1/3)

- n_neurons: number of neurons in a layer.
- n_features: number of features.

```
n_neurons = 3
n_features = 2
# placeholder
X = tf.placeholder(tf.float32, shape=(None, n_features),
        name="X")
y_true = tf.placeholder(tf.int64, shape=(None),
    name="y")
# variables
W = tf.get_variable("weights", dtype=tf.float32,
    initializer=tf.zeros((n_features, n_neurons)))
b = tf.get_variable("bias", dtype=tf.float32,
    initializer=tf.zeros((n_neurons)))
```


Perceptron in TensorFlow - First Implementation (2/3)

$$
\hat{\mathrm{y}}_{\mathrm{j}}=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{x}+\mathrm{b}\right)
$$

```
# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)
```

$$
J\left(w_{j}\right)=\text { cross_entropy }\left(y_{j}, \hat{y}_{j}\right)=-\sum_{i}^{m} y_{j}^{(i)} \log \left(\hat{y}_{j}^{(i)}\right)
$$

```
# define the cost
cross_entropy = -y_true * tf.log(y_hat)
cost = tf.reduce_mean(cross_entropy)
```

$$
\mathrm{w}_{\mathrm{i}, \mathrm{j}}^{(\text {next })}=\mathrm{w}_{\mathrm{i}, \mathrm{j}}-\eta \frac{\partial \mathrm{J}\left(\mathbf{w}_{\mathrm{j}}\right)}{\mathrm{w}_{\mathrm{i}}}
$$

```
# train the model
# 1. compute the gradient of cost with respect to W and b
# 2. update the weights and bias
learning_rate = 0.1
new_W = W.assign(W - learning_rate * tf.gradients(xs=W, ys=cost))
new_b = b.assign(b - learning_rate * tf.gradients(xs=b, ys=cost))
```


Perceptron in TensorFlow - First Implementation (3/3)

- Execute the network.

```
# execute the model
init = tf.global_variables_initializer()
n_epochs = 100
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        sess.run([new_W, new_b, cost], feed_dict={X: training_X, y_true: training_y})
```


Perceptron in TensorFlow - Second Implementation (1/2)

$$
\hat{\mathbf{y}}_{j}=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{x}+\mathrm{b}\right)
$$

```
# make the network
z = tf.matmul(X, W) + b
y_hat = tf.nn.sigmoid(z)
J(\mp@subsup{w}{j}{})=\mathrm{ cross_entropy (yj},\mp@subsup{\hat{y}}{j}{})=-\mp@subsup{\sum}{i}{m}\mp@subsup{y}{j}{(i)}\operatorname{log}(\mp@subsup{\hat{y}}{j}{(i)})
```

$$
\mathrm{w}_{\mathrm{i}, \mathrm{j}}^{(\mathrm{next})}=\mathrm{w}_{\mathrm{i}, \mathrm{j}}-\eta \frac{\partial \mathrm{J}\left(\mathbf{w}_{\mathrm{j}}\right)}{\mathrm{w}_{\mathrm{i}}}
$$

```
```


define the cost

```
# define the cost
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cost = tf.reduce_mean(cross_entropy)
cost = tf.reduce_mean(cross_entropy)
# train the model
# train the model
# train the model
learning_rate = 0.1
learning_rate = 0.1
learning_rate = 0.1
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training_op = optimizer.minimize(cost)
```

training_op = optimizer.minimize(cost)

```
training_op = optimizer.minimize(cost)
```


Perceptron in TensorFlow - Second Implementation (2/2)

- Execute the network.

```
# execute the model
init = tf.global_variables_initializer()
n_epochs = 100
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        sess.run(training_op, feed_dict={X: training_X, y_true: training_y})
```


Perceptron in Keras

- Build and execute the network.

```
n_neurons = 10
y_hat = tf.keras.Sequential([layers.Dense(n_neurons, activation="sigmoid")])
y_hat.compile(optimizer=tf.train.GradientDescentOptimizer(0.001), loss="binary_crossentropy",
    metrics=["accuracy"])
n_epochs = 100
y_hat.fit(training_X, training_y, epochs=n_epochs)
```


Multi-Layer Perceptron (MLP)

Perceptron Weakness (1/2)

- Incapable of solving some trivial problems, e.g., XOR classification problem. Why?

A	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

$$
\mathbf{X}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

Perceptron Weakness (2/2)

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \quad \hat{y}=\operatorname{step}(z), \mathbf{z}=w_{1} x_{1}+w_{2} x_{2}+b \\
J(w)=\frac{1}{4} \sum_{x \in X}(\hat{y}(x)-y(x))^{2}
\end{gathered}
$$

- If we minimize $J(\mathbf{w})$, we obtain $\mathrm{w}_{1}=0, \mathrm{w}_{2}=0$, and $\mathrm{b}=\frac{1}{2}$.
- But, the model outputs 0.5 everywhere.

Multi-Layer Perceptron (MLP)

- The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.
- The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward neural network.

Feedforward Neural Network Architecture

- A feedforward neural network is composed of:
- One input layer
- One or more hidden layers
- One final output layer
- Every layer except the output layer includes a bias neuron and is fully connected to the next layer.

How Does it Work?

- The model is associated with a directed acyclic graph describing how the functions are composed together.
- E.g., assume a network with just a single neuron in each layer.
- Also assume we have three functions $f^{(1)}, f^{(2)}$, and $f^{(3)}$ connected in a chain: $\hat{y}=f(x)=f^{(3)}\left(f^{(2)}\left(f^{(1)}(x)\right)\right)$
- $\mathrm{f}^{(1)}$ is called the first layer of the network.
- $\mathrm{f}^{(2)}$ is called the second layer, and so on.

- The length of the chain gives the depth of the model.

XOR with Feedforward Neural Network (1/3)

$$
\mathbf{X}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \quad \mathbf{W}_{\mathrm{x}}=\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right] \quad \mathbf{b}_{\mathrm{x}}=\left[\begin{array}{l}
-1.5 \\
-0.5
\end{array}\right]
$$

XOR with Feedforward Neural Network (2/3)

$$
\begin{gathered}
\text { out }_{\mathrm{h}}=\mathbf{X W}_{\mathrm{x}}^{\top}+\mathbf{b}_{\mathrm{x}}=\left[\begin{array}{cc}
-1.5 & -0.5 \\
-0.5 & 0.5 \\
-0.5 & 0.5 \\
0.5 & 1.5
\end{array}\right] \quad \mathbf{h}=\operatorname{step}\left(\text { out }_{\mathrm{h}}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right] \\
\mathbf{w}_{\mathrm{h}}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \quad \mathrm{b}_{\mathrm{h}}=-0.5
\end{gathered}
$$

XOR with Feedforward Neural Network (3/3)

$$
\text { out }=\mathbf{w}_{\mathrm{h}}^{\top} \mathbf{h}+\mathrm{b}_{\mathrm{h}}=\left[\begin{array}{c}
-0.5 \\
0.5 \\
0.5 \\
-0.5
\end{array}\right] \quad \text { step }(\text { out })=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

How to Learn Model Parameters W?

Feedforward Neural Network - Cost Function

- We use the cross-entropy (minimizing the negative log-likelihood) between the training data y and the model's predictions $\hat{\mathrm{y}}$ as the cost function.

$$
\operatorname{cost}(\mathrm{y}, \hat{\mathrm{y}})=-\sum_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \log \left(\hat{\mathrm{y}}_{\mathrm{j}}\right)
$$

Gradient-Based Learning (1/2)

- The most significant difference between the linear models we have seen so far and feedforward neural network?
- The non-linearity of a neural network causes its cost functions to become non-convex.
- Linear models, with convex cost function, guarantee to find global minimum.
- Convex optimization converges starting from any initial parameters.

Gradient-Based Learning (2/2)

- Stochastic gradient descent applied to non-convex cost functions has no such convergence guarantee.
- It is sensitive to the values of the initial parameters.
- For feedforward neural networks, it is important to initialize all weights to small random values.
- The biases may be initialized to zero or to small positive values.

Training Feedforward Neural Networks

- How to train a feedforward neural network?
- For each training instance $\mathbf{x}^{(i)}$ the algorithm does the following steps:

1. Forward pass: make a prediction (compute $\hat{\mathrm{y}}^{(\mathrm{i})}=\mathrm{f}\left(\mathbf{x}^{(\mathrm{i})}\right)$).
2. Measure the error (compute cost $\left(\hat{\mathrm{y}}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}\right)$).
3. Backward pass: go through each layer in reverse to measure the error contribution from each connection.
4. Tweak the connection weights to reduce the error (update \mathbf{W} and \mathbf{b}).

- It's called the backpropagation training algorithm

Output Unit (1/3)

- Linear units in neurons of the output layer.
- Given \mathbf{h} as the output of neurons in the layer before the output layer.
- Each neuron j in the output layer produces $\hat{\mathrm{y}}_{\mathrm{j}}=\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{h}+\mathrm{b}_{\mathrm{j}}$.
- Minimizing the cross-entropy is then equivalent to minimizing the mean squared error.

Output Unit (2/3)

- Sigmoid units in neurons of the output layer (binomial classification).
- Given \mathbf{h} as the output of neurons in the layer before the output layer.
- Each neuron j in the output layer produces $\hat{\mathrm{y}}_{\mathrm{j}}=\sigma\left(\mathbf{w}_{\mathrm{j}}^{\top} \mathbf{h}+\mathrm{b}_{\mathrm{j}}\right)$.
- Minimizing the cross-entropy.

Output Unit (3/3)

- Softmax units in neurons of the output layer (multinomial classification).
- Given \mathbf{h} as the output of neurons in the layer before the output layer.
- Each neuron j in the output layer produces $\hat{y}_{j}=\operatorname{sof} \operatorname{tmax}\left(\mathbf{w}_{j}^{\top} \mathbf{h}+\mathrm{b}_{\mathrm{j}}\right)$.
- Minimizing the cross-entropy.

Hidden Units

- In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?
- Alternative activation functions:

1. Logistic function (sigmoid): $\sigma(z)=\frac{1}{1+\mathrm{e}^{-z}}$
2. Hyperbolic tangent function: $\tanh (z)=2 \sigma(2 z)-1$
3. Rectified linear units (ReLUs): $\operatorname{ReLU}(z)=\max (0, z)$

Feedforward Network in TensorFlow

Feedforward in TensorFlow - First Implementation (1/3)

n_neurons_h: number of neurons in the hidden layer.

- n_neurons_out: number of neurons in the output layer.
- n_features: number of features.

```
n_neurons_h = 4
n_neurons_out = 3
n_features = 2
# placeholder
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
y_true = tf.placeholder(tf.int64, shape=(None), name="y")
# variables
W1 = tf.get_variable("weights1", dtype=tf.float32,
    initializer=tf.zeros((n_features, n_neurons_h)))
b1 = tf.get_variable("bias1", dtype=tf.float32, initializer=tf.zero((n_neurons_h)))
W2 = tf.get_variable("weights2", dtype=tf.float32,
    initializer=tf.zeros((n_features, n_neurons_out)))
b2 = tf.get_variable("bias2", dtype=tf.float32, initializer=tf.zero((n_neurons_out)))
```


Feedforward in TensorFlow - First Implementation (2/3)

- Build the network.

```
# make the network
h = tf.nn.sigmoid(tf.matmul(X, W1) + b1)
z = tf.matmul(h, W2) + b2
y_hat = tf.nn.sigmoid(z)
# define the cost
cross_entropy =
    tf.nn.sigmoid_cross_entropy_with_logits(z, y_true)
cost = tf.reduce_mean(cross_entropy)
# train the model
learning_rate = 0.1
```



```
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training_op = optimizer.minimize(cost)
```


Feedforward in TensorFlow - First Implementation (3/3)

- Execute the network.

```
# execute the model
init = tf.global_variables_initializer()
n_epochs = 100
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        sess.run(training_op, feed_dict={X: training_X, y_true: training_y})
```


Feedforward in TensorFlow - Second Implementation

```
n_neurons_h = 4
n_neurons_out = 3
n_features = 2
# placeholder
X = tf.placeholder(tf.float32, shape=(None, n_features),
    name="X")
y_true = tf.placeholder(tf.int64, shape=(None),
    name="y")
# make the network
h = tf.layers.dense(X, n_neurons_h, name="hidden",
    activation=tf.sigmoid)
z = tf.layers.dense(h, n_neurons_out, name="output")
```


\# the rest as before

Feedforward in Keras

```
n_neurons_h = 4
n_neurons_out = 3
n_epochs = 100
learning_rate = 0.1
model = tf.keras.Sequential()
model.add(layers.Dense(n_neurons_h, activation="sigmoid"))
model.add(layers.Dense(n_neurons_out, activation="sigmoid"))
model.compile(optimizer=tf.train.GradientDescentOptimizer(learning_rate.001),
    loss="binary_crossentropy", metrics=["accuracy"])
model.fit(training_X, training_y, epochs=n_epochs)
```


Dive into Backpropagation Algorithm

$80129]$

[https://i.pinimg.com/originals/82/d9/2c/82d92c2c15c580c2b2fce65a83fe0b3f.jpg]

Chain Rule of Calculus (1/2)

- Assume $\mathrm{x} \in \mathbb{R}$, and two functions f and g , and also assume $\mathrm{y}=\mathrm{g}(\mathrm{x})$ and $\mathrm{z}=$ $f(y)=f(g(x))$.
- The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- Then the chain rule states that $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$
- Example:

$$
\begin{gathered}
z=f(y)=5 y^{4} \text { and } y=g(x)=x^{3}+7 \\
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} \\
\frac{d z}{d y}=20 y^{3} \text { and } \frac{d y}{d x}=3 x^{2} \\
\frac{d z}{d x}=20 y^{3} \times 3 x^{2}=20\left(x^{3}+7\right) \times 3 x^{2}
\end{gathered}
$$

Chain Rule of Calculus (2/2)

- Two paths chain rule.

$$
\begin{gathered}
\mathrm{z}=\mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \text { where } \mathrm{y}_{1}=\mathrm{g}(\mathrm{x}) \text { and } \mathrm{y}_{2}=\mathrm{h}(\mathrm{x}) \\
\frac{\partial \mathrm{z}}{\partial \mathrm{x}}=\frac{\partial \mathrm{z}}{\partial \mathrm{y}_{1}} \frac{\partial \mathrm{y}_{1}}{\partial \mathrm{x}}+\frac{\partial \mathrm{z}}{\partial \mathrm{y}_{2}} \frac{\partial \mathrm{y}_{2}}{\partial \mathrm{x}}
\end{gathered}
$$

Backpropagation

- Backpropagation training algorithm for MLPs
- The algorithm repeats the following steps:

1. Forward pass
2. Backward pass

Backpropagation - Forward Pass

- Calculates outputs given input patterns.
- For each training instance
- Feeds it to the network and computes the output of every neuron in each consecutive layer.
- Measures the network's output error (i.e., the difference between the true and the predicted output of the network)
- Computes how much each neuron in the last hidden layer contributed to each output neuron's error.

Backpropagation - Backward Pass

- Updates weights by calculating gradients.
- Measures how much of these error contributions came from each neuron in the previous hidden layer
- Proceeds until the algorithm reaches the input layer.
- The last step is the gradient descent step on all the connection weights in the network, using the error gradients measured earlier.

Backpropagation Example

- Two inputs, two hidden, and two output neurons.
- Bias in hidden and output neurons.
- Logistic activation in all the neurons.
- Squared error function as the cost function.

Backpropagation - Forward Pass (1/3)

- Compute the output of the hidden layer

1
1.35
(1) D 2.60

$$
\begin{gathered}
\text { net }_{\mathrm{h} 1}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{b}_{1}=0.15 \times 0.05+0.2 \times 0.1+0.35=0.3775 \\
\text { out }_{\mathrm{h} 1}=\frac{1}{1+\mathrm{e}^{\text {net }} \mathrm{h} 1}=\frac{1}{1+\mathrm{e}^{0.3775}}=0.59327 \\
\text { out }_{\mathrm{h} 2}
\end{gathered}=0.59688 \mathrm{l}
$$

Backpropagation - Forward Pass (2/3)

- Compute the output of the output layer

1
b1. 35
$1 \quad \mathrm{~b} 2.60$

$$
\begin{aligned}
& \text { net }_{o 1}=w_{5} \text { out }_{h 1}+w_{6} \text { out }_{\mathrm{h} 2}+b_{2}=0.4 \times 0.59327+0.45 \times 0.59688+0.6=1.1059 \\
& \text { out }_{o 1}=\frac{1}{1+\mathrm{e}^{\text {net }_{o 1}}}=\frac{1}{1+\mathrm{e}^{1.1059}}=0.75136 \\
& \text { out }_{\mathrm{o} 2}=0.77292
\end{aligned}
$$

Backpropagation - Forward Pass (3/3)

- Calculate the error for each output

1 D 1.35
1

$$
\begin{gathered}
\mathrm{E}_{01}=\frac{1}{2}\left(\text { target }_{o 1}-\text { output }_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136)^{2}=0.27481 \\
E_{o 2}=0.02356 \\
E_{\text {total }}=\sum \frac{1}{2}(\text { target }- \text { output })^{2}=E_{o 1}+E_{o 2}=0.27481+0.02356=0.29837
\end{gathered}
$$

This class is boring...

can we learn about dragons?

Backpropagation - Backward Pass - Output Layer (1/6)

- Consider w_{5}
- We want to know how much a change in w_{5} affects the total error $\left(\frac{\partial E_{\text {total }}}{\partial w_{5}}\right)$
- Applying the chain rule

Backpropagation - Backward Pass - Output Layer (2/6)

- First, how much does the total error change with respect to the output? ($\left.\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\text {o1 }}}\right)$

$$
\begin{aligned}
& \underbrace{\text { output }}_{\text {h2 }} \\
& \frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{5}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{out}_{\mathrm{o} 1}} \times \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} \times \frac{\partial \text { net }_{o 1}}{\partial \mathrm{w}_{5}} \\
& \mathrm{E}_{\mathrm{total}}=\frac{1}{2}\left(\text { target }_{\circ 1}-\text { out }_{\circ 1}\right)^{2}+\frac{1}{2}\left(\text { target }_{\circ 2}-\text { out }_{o 2}\right)^{2} \\
& \frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{o 1}}=-2 \frac{1}{2}\left(\text { target }_{o 1}-\text { out }_{o 1}\right)=-(0.01-0.75136)=0.74136
\end{aligned}
$$

Backpropagation - Backward Pass - Output Layer (3/6)

- Next, how much does the out ${ }_{01}$ change with respect to its total input net t_{01} ? $\left(\frac{\text { out }_{\text {ol }}}{\partial \text { net }_{\text {o1 }}}\right)$

Backpropagation - Backward Pass - Output Layer (4/6)

- Finally, how much does the total net $_{01}$ change with respect to w_{5} ? $\left(\frac{\partial \mathrm{net}_{01}}{\partial \mathrm{w}_{5}}\right)$

Backpropagation - Backward Pass - Output Layer (5/6)

- Putting it all together:

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{5}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{o 1}} \times \frac{\partial \text { out }_{o 1}}{\partial \mathrm{net}_{o 1}} \times \frac{\partial \text { net }_{o 1}}{\partial \mathrm{w}_{5}} \\
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{5}}=0.74136 \times 0.18681 \times 0.59327=0.08216
\end{gathered}
$$

Backpropagation - Backward Pass - Output Layer (6/6)

- To decrease the error, we subtract this value from the current weight.
- We assume that the learning rate is $\eta=0.5$.

$$
\begin{aligned}
\mathrm{w}_{5}^{(\text {next })}=\mathrm{w}_{5}-\eta \times \frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{5}} & =0.4-0.5 \times 0.08216=0.35891 \\
\mathrm{w}_{6}^{(\text {next })} & =0.40866 \\
\mathrm{w}_{7}^{(\text {next })} & =0.5113 \\
\mathrm{w}_{8}^{(\text {next })} & =0.56137
\end{aligned}
$$

Backpropagation - Backward Pass - Hidden Layer (1/8)

- Continue the backwards pass by calculating new values for $\mathrm{w}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$, and W_{4}.
- For w_{1} we have:

$$
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}} \times \frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \text { net }_{\mathrm{h} 1}} \times \frac{\partial \mathrm{net}_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}}
$$

[^0]
Backpropagation - Backward Pass - Hidden Layer (2/8)

- Here, the output of each hidden layer neuron contributes to the output of multiple output neurons.
- E.g., out ${ }_{h 1}$ affects both out ${ }_{o 1}$ and out ${ }_{o 2}$, so $\frac{\partial E_{\text {total }}}{\partial \text { out }_{\text {th }}}$ needs to take into consideration its effect on the both output neurons.

$E_{\text {tota }}=E_{01}+E_{02}$

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}} \times \frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \mathrm{net}_{\mathrm{h} 1}} \times \frac{\partial \mathrm{net}_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}} \\
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}}=\frac{\partial \mathrm{E}_{\mathrm{o} 1}}{\partial \text { out }_{\mathrm{h} 1}}+\frac{\partial \mathrm{E}_{\mathrm{o} 2}}{\partial \text { out }_{\mathrm{h} 1}}
\end{gathered}
$$

Backpropagation - Backward Pass - Hidden Layer (3/8)

- Starting with $\frac{\partial \mathrm{E}_{\mathrm{ol}}}{\partial \text { outh }_{\mathrm{h} 1}}$

$$
E_{\text {total }}=E_{01}+E_{02}
$$

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}}=\frac{\partial \mathrm{E}_{\mathrm{o} 1}}{\partial \text { out }_{\mathrm{h} 1}}+\frac{\partial \mathrm{E}_{\mathrm{o} 2}}{\partial \text { out }_{\mathrm{h} 1}} \\
\frac{\partial \mathrm{E}_{\mathrm{o} 1}}{\partial \text { out }_{\mathrm{h} 1}}=\frac{\partial \mathrm{E}_{\mathrm{o} 1}}{\partial \text { out }_{o 1}} \times \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} \times \frac{\partial \text { net }_{o 1}}{\partial \text { out }_{\mathrm{h} 1}} \\
\frac{\partial \mathrm{E}_{\mathrm{o} 1}}{\partial \text { out }_{o 1}}=0.74136, \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}}=0.18681 \\
\text { net }_{o 1}= \\
\mathrm{w}_{5} \times \text { out }_{\mathrm{h} 1}+\mathrm{w}_{6} \times \mathrm{out}_{\mathrm{h} 2}+\mathrm{b}_{2} \\
\frac{\partial \text { net }_{o 1}}{\partial o u t_{\mathrm{h} 1}}=\mathrm{w}_{5}=0.40
\end{gathered}
$$

Backpropagation - Backward Pass - Hidden Layer (4/8)

- Plugging them together.

$\mathrm{E}_{\text {total }}=\mathrm{E}_{01}+\mathrm{E}_{\mathrm{o2}}$

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{o 1}}{\partial o u t_{\mathrm{h} 1}}=\frac{\partial \mathrm{E}_{01}}{\partial o u t_{o 1}} \times \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} \times \frac{\partial \text { net }_{o 1}}{\partial o u t_{h 1}}=0.74136 \times 0.18681 \times 0.40=0.0554 \\
\frac{\partial \mathrm{E}_{02}}{\partial o u t_{\mathrm{h} 1}}=-0.01905 \\
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}}=\frac{\partial \mathrm{E}_{o 1}}{\partial o u t_{\mathrm{h} 1}}+\frac{\partial \mathrm{E}_{o 2}}{\partial o u t_{\mathrm{h} 1}}=0.0554+-0.01905=0.03635
\end{gathered}
$$

Backpropagation - Backward Pass - Hidden Layer (5/8)

- Now we need to figure out $\frac{\partial^{o u t h_{h 1}}}{\partial \text { net }_{h 1}}$.

$$
E_{\text {total }}=E_{01}+E_{02}
$$

$$
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}} \times \frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \text { net }_{\mathrm{h} 1}} \times \frac{\partial \text { net }_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}}
$$

$$
\text { out }_{\mathrm{h} 1}=\frac{1}{1+\mathrm{e}^{- \text {net }_{\mathrm{h} 1}}}
$$

$$
\frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \text { net }_{\mathrm{h} 1}}=\text { out }_{\mathrm{h} 1}\left(1-\text { out }_{\mathrm{h} 1}\right)=0.59327(1-0.59327)=0.2413
$$

Backpropagation - Backward Pass - Hidden Layer (6/8)

- And then $\frac{\partial \text { net }_{\mathrm{h}_{1}}}{\partial \mathrm{w}_{1}}$.

$$
E_{\text {total }}=E_{01}+E_{02}
$$

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}} \times \frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \text { net }_{\mathrm{h} 1}} \times \frac{\partial \text { net }_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}} \\
\text { net }_{\mathrm{h} 1}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{b}_{1} \\
\frac{\partial \mathrm{net}_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}}=\mathrm{x}_{1}=0.05
\end{gathered}
$$

Backpropagation - Backward Pass - Hidden Layer (7/8)

- Putting it all together.

$E_{\text {total }}=E_{01}+E_{02}$
$(1)^{\mathrm{b} 1} \quad 1{ }^{\mathrm{b} 2}$

$$
\begin{gathered}
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=\frac{\partial \mathrm{E}_{\text {total }}}{\partial \text { out }_{\mathrm{h} 1}} \times \frac{\partial \text { out }_{\mathrm{h} 1}}{\partial \text { net }_{\mathrm{h} 1}} \times \frac{\partial \text { net }_{\mathrm{h} 1}}{\partial \mathrm{w}_{1}} \\
\frac{\partial \mathrm{E}_{\text {total }}}{\partial \mathrm{w}_{1}}=0.03635 \times 0.2413 \times 0.05=0.00043
\end{gathered}
$$

Backpropagation - Backward Pass - Hidden Layer (8/8)

- We can now update w_{1}.
- Repeating this for $\mathrm{w}_{2}, \mathrm{w}_{3}$, and w_{4}.

Summary

Summary

- LTU
- Perceptron
- Perceptron weakness
- MLP and feedforward neural network
- Gradient-based learning
- Backpropagation: forward pass and backward pass
- Output unit: linear, sigmoid, softmax
- Hidden units: sigmoid, tanh, relu
- lan Goodfellow et al., Deep Learning (Ch. 6)
- Aurélien Géron, Hands-On Machine Learning (Ch. 10)

Questions?

[^0]: 1
 +

