b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Convolutional Neural Networks

Amir H. Payberah
payberah@Qkth.se
05/12/2018

The Course Web Page

https://id2223kth.github.io

Where Are We?

Deep Learning

CNN RNN

Autoencoder

Deep Feedforward Network || Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification

More Supervised Learning

Spark ML

Deep Learning

RNN

Autoencoder

Deep Feedforward Network

Training Feedforward Network

TensorFlow

Machine Learning

Regression

Classification

More Supervised Learning

Spark ML

Let's Start With An Example

MNIST Dataset

» Handwritten digits in the MNIST dataset are 28x28 pixel greyscale images.

0o00OAQ000Y
N A A
222223

333323372333
YAUFEds Y 44
F5Y5555~-55
bbbesLtbbb
2777%10777
XN EETER
799929799959

One-Layer Network For Classifying MNIST (1/4)

» Let's make a one-layer neural network for classifying digits.

» Each neuron in a neural network:

e Does a weighted sum of all of its inputs
e Adds a bias
e Feeds the result through some non-linear activation function, e.g., softmax.

784 pmz/s _
28x28 —
=Y N W e

YT

Cookbook

Softmax
Cr'oes—en’rropy
Mini-batch

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

One-Layer Network For Classifying MNIST (3/4)

» Assume we have a batch of 100 images as the input.

» Using the first column of the weights matrix W, we compute the weighted sum of
all the pixels of the first image.

Moy oo Mg
e The first neuron: s Y|
_ (1) (1) (1) 2
Loo = Wo,0Xg =+ Wi,0Xj + -+ Wrs3,0X7g3 ey
. W53+ Wg 9 3
e The 2nd neuron until the 10th: Ve e ey §
1 1 1 7. 1 Wra Yo o W |
L071 = W071Xg) + W1,1X(1) + -4 W783,1X(78)3 —r 5,0 V5.1 5.2 Wa,3 o "‘x,s““
° M \w,ZB-B;B w)i}',’; N?n]_) wn],l‘)
1 1 1 X -
Log = Wo,gxg) + W1,9X(1) + -+ W783,9X$8)3 Loo Lox Lo Loy Lo
::I.B ::l.] tl.? ::l.! - ::1,9
* Repeat the operation for the other 99 images, L
100) Lor L L L o L2

e, x(@ ... x

One-Layer Network For Classifying MNIST (4/4)

Each neuron must now add its bias.

>
» Apply the softmax activation function for each instance x(1).
Lio
) i . Lit
» For each input instance x(1); L; =
Li 9 X 100 imiages,

) one per line, ,/"///
Aotterned [/ [/ /

/)

y; = softmax(L; + b)

How Good the Predictions Are?

» Define the cost function J(W) as the cross-entropy of what the network tells us (¥;)
and what we know to be the truth (y;), for each instance x(1).

» Compute the partial derivatives of the cross-entropy with respect to all the weights
and all the biases, VwJ(W).
» Update weights and biases by a fraction of the gradient W(®e*t) = W — ¥ \y J(W)
4 / PA 3 4 5 6 7 & 9
Loflellel[e e]lo] 2][e][e][]
actuad probobilities, "one-hot' encoded

/

Cross entropy. — ZY; .log()%)

fr/// /5 0

/
computed probabilities

uuuuuuilul

L5454/727

Adding More Layers

» Add more layers to improve the accuracy.
» On intermediate layers we will use the the sigmoid activation function.

» We keep softmax as the activation function on the last layer.

784

| o | H EN H Em EEEE B N
w 0000000000000
w 00000000000\

w 000000000 ;,W““

2 coocoo —

10 O OO ——— softmax
01 2 .9

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement

>

Better activation function, e.g., using ReLU(z) = max(0, z).

v

Overcome Network overfitting, e.g., using dropout.

v

Network initialization. e.g., using He initialization.

v

Better optimizer, e.g., using Adam optimizer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Vanilla Deep Neural Networks Challenges (1/2)

» Pixels of each image were flattened into a single vector (really bad idea).

| 734 p/xe[; _
28x28
pixels
PYY ¢
0 1 2 9

» Vanilla deep neural networks do not scale.
e In MNIST, images are black-and-white 28x28 pixel images: 28 x 28 = 784 weights.

» Handwritten digits are made of shapes and we discarded the shape information when
we flattened the pixels.

Vanilla Deep Neural Networks Challenges (2/2)

» Difficult to recognize objects.
» Rotation
> Lighting: objects may look different depending on the level of external lighting.

v

Deformation: objects can be deformed in a variety of non-affine ways.

Scale variation: visual classes often exhibit variation in their size.

v

» Viewpoint invariance.

a]

Tackle the Challenges

» Convolutional neural networks (CNN) can tackle the vanilla model challenges.

» CNN is a type of neural network that can take advantage of shape information.

> It applies a series of filters to the raw pixel data of an image to extract and learn
higher-level features, which the model can then use for classification.

Filters and Convolution Operations

Brain Visual Cortex Inspired CNNs

» 1959, David H. Hubel and Torsten Wiesel.
» Many neurons in the visual cortex have a small local receptive field.

» They react only to visual stimuli located in a limited region of the visual field.

> A

g

Receptive Fields and Filters

>

Imagine a flashlight that is shining over the top left of the image.

v

The region that it is shining over is called the receptive field.

v

This flashlight is called a filter.

v

A filter is a set of weights.

v

A filter is a feature detector, e.g., straight edges, simple colors, and curves.

input neurons
2 first hidden layer
8
88

around snnput

map
[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

Filters Example (1/3)

o o |o o o Jo o Originalimage Visualization of the filter on the image

Pixel representation of filter Visualization of a curve detector filter

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

Filters Example (2/3)

00|00 |0 0 |0 |30 ojojo|o0 0 3|0
0|0|0 |0 |50|50(50 ojojo|o0 30 |0 0
0|0|0 |20|50(0 |0 0|0 |0 |30 |0 0 0
0|0|0 |50|50(0 |0 * 0|0 |0 |30 |0 0 0
00|00 |50|50(0 |0 00 0|30 |0 0 0
00|00 |50]|50|0 |0 0|0 |0 |30 |0 0 0
0|0|0 |50|50(0 |0 o|jofo|o0 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter
receptive field field

Multiplication and Summation = {507 30)+(50730)+(50 30}+{20* 30)+{50* 30) = 6600 (A large number!}

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

Filters Example (3/3)

0 Jo o Jo jo o o of[ofofo Jo [30]0
0 [40]0 |0 |0 |0 |0 olololo |30 0 |0
20|0 [40]0 |0 |0 |0 olololae]o [0 o
{ 40|20|0 o jo jo [0 * of[ofof30]0 [0 [0
& 0 |50|/0 jo |0 OO ofofof3efo [o o
0 |0 |50f0 o |o (0 ofofol30]o o [o
25(25|0 |50]|0 |0 |0 olololo o |o |o

Visualization of the filter on the image Pixel representation of receptive field Pixel representation of filter

Multiplication and Summation = 0

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

Convolution Operation

» Convolution takes a filter and multiplying it over the entire area of an input image.
» Imagine this flashlight (filter) sliding across all the areas of the input image.

input neurons
133 first hidden layer

0000

Visualization of 5 x 5filter convolving around an input volume and producing an activation map

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

Convolution Operation - More Formal Definition

>

Convolution is a mathematical operation on two functions x and h.
¢ You can think of x as the input image, and h as a filter (kernel) on the input image.

» For a 1D convolution we can define it as below:
N—1
y(k) = > h(n)-x(k —n)
n=0

N is the number of elements in h.

v

v

We are sliding the filter h over the input image x.

Convolution Operation - 1D Example (1/2)

>

Suppose our input 1D image is x, and filter h are as follows:

x =[10]50 6010204030

h =[1/3]1/3]1/3]

v

Let's call the output image y.

v

What is the value of y(3)?

Convolution Operation - 1D Example (2/2)

» To compute y(3), we slide the filter so that it is centered around x(3).

10] 50 | 60 | 10 [20]30]40
01/3[1/3]1/3[0]0]0

(3) = 150+160+110—40
=3 3 37

» We can compute the other values of y as well.
y=[20]40[40[30][20]30]23.333]

Input,

Kernel
a b c
w z
e f g
— y z
i j k L
f Output
aw + bz bw + e + cw dz +
ey + fz fy + gz 9y hz
ew + fz fw + gz + gw hr +
iy o+ gz iy + kz ky lz

Convolution Operation - 2D Example (2/2)

> Detect vertical and horizontal lines in an image.
> Slide the filters across the entirety of the image.

» The result is our feature map: indicates where we've found the feature we're looking
for in the original image.

=

Convolutional Neural Network (CNN)

CNN Components (1/2)

» Convolutional layers: apply a specified number of convolution filters to the image.

» Pooling layers: downsample the image data extracted by the convolutional layers to
reduce the dimensionality of the feature map in order to decrease processing time.

» Dense layers: a fully connected layer that performs classification on the features
extracted by the convolutional layers and downsampled by the pooling layers.

Input Convolution Pooling Convolution Pooling Fully connected

CNN Components (2/2)

» A CNN is composed of a stack of convolutional modules.

v

Each module consists of a convolutional layer followed by a pooling layer.

v

The last module is followed by one or more dense layers that perform classification.

v

The final dense layer contains a single node for each target class in the model, with
a softmax activation function.

Input Convolution Pooling Convolution Pooling Fully connected

Convolutional Layer

Convolutional Layer (1/4)

» Sparse interactions

» Each neuron in the convolutional layers is only connected to pixels in its receptive
field (not every single pixel).

Convolutional
layer 2

Convolutional
layer 1

Input layer

Convolutional Layer (2/4)

» Each neuron applies filters on its receptive field.
e Calculates a weighted sum of the input pixels in the receptive field.

» Adds a bias, and feeds the result through its activation function to the next layer.

» The output of this layer is a feature map (activation map)

Convolutional
layer 2

Convolutional
layer 1

Input layer

Convolutional Layer (3/4)

> Parameter sharing
» All neurons of a convolutional layer reuse the same weights.
» They apply the same filter in different positions.

» Whereas in a fully-connected network, each neuron had its own set of weights.

Convolutional
layer 2

Convolutional
layer 1

Input layer

Convolutional Layer (4/4)

» Assume the filter size (kernel size) is £, X fy.
e f, and £, are the height and width of the receptive field, respectively.

» A neuron in row i and column j of a given layer is connected to the outputs of the
neurons in the previous layer in rows i to i + fy — 1, and columns j to j + £, — 1.

f=3 Zero padding

Padding

» What will happen if you apply a 5x5 filter to a 32x32 input volume?

e The output volume would be 28x28.
e The spatial dimensions decrease.

» Zero padding: in order for a layer to have the same height and width as the previous
layer, it is common to add zeros around the inputs.

» In TensorFlow, padding can be either SAME or VALID to have zero padding or not.

padding="VALID"
1 €., without padding)

Ignored

(LITTTTTITTTXX

padding="SAME"
(i.e., with zero padding)

f,=3 Zero padding HHHIHIHHM

Stride (1/2)

» The distance between two consecutive receptive fields is called the stride.
» The stride controls how the filter convolves around the input volume.

» Assume sy and s, are the vertical and horizontal strides, then, a neuron located in
row i and column j in a layer is connected to the outputs of the neurons in the
previous layer located in rows i X s to i X sy + £, — 1, and columns j X s; to
jXsyg+Iy—1.

by [A ANV A

s, =2 R Vv e

/_7] '..'...

Stride (2/2)

Filter

e
BRI VS

Stacking Multiple Feature Maps

» Up to now, we represented each convolutional layer with a single feature map.

v

Each convolutional layer can be composed of several feature maps of equal sizes.

v

Input images are also composed of multiple sublayers: one per color channel.

v

A convolutional layer simultaneously applies multiple filters to its inputs.

Convolutional

Feature layer 2

[BT] ‘wap
iy VP2

Filters

Convolutional
layer 1

7 v
7 >

Input layer
Channels
Red
Green
Blue

Activation Function

» After calculating a weighted sum of the input pixels in the receptive fields, and adding

biases, each neuron feeds the result through its ReLU activation function to the next
layer.

» The purpose of this activation function is to add non linearity to the system.

ed

t

Pooling Convolution Pooling Fully connec

volution

Con

Pooling Layer

Input

Pooling Layer (1/2)

» After the activation functions, we can apply a pooling layer.

» Its goal is to subsample (shrink) the input image.
e To reduce the computational load, the memory usage, and the number of parameters.

V) A | /A — - V —A =
A | A D A - V=
W77 77

Pooling Layer (2/2)

» Each neuron in a pooling layer is connected to the outputs of a receptive field in the
previous layer.

» A pooling neuron has no weights.

> It aggregates the inputs using an aggregation function such as the max or mean.

Single depth slice
1 o 2 3

8 _, 6 8
0 '3 a4
4

Y

Example of Maxpool with a 2x2 filter and astride of 2

Fully Connected Layer

Fully Connected Layer

» This layer takes an input from the last convolution module, and outputs an N dimen-
sional vector.

e N is the number of classes that the model has to choose from.

> For example, if you wanted a digit classification model, N would be 10.

» Each number in this N dimensional vector represents the probability of a certain class.

Flattening

» We need to convert the output of the convolutional part of the CNN into a 1D
feature vector.

» This operation is called flattening.

> It gets the output of the convolutional layers, flattens all its structure to create a
single long feature vector to be used by the dense layer for the final classification.

Example

A Toy ConvNet: X's and O'’s

A two-dimensional
array of pixels

— ConvNet — X or O

— X
— 0

ConvNet
ConvNet

- ﬁ . q._
B [

9
o
S
Q
X

LL
| .
o

L=

"=- ConvNet —
el n.l 7= L X

translation scaling rotation weight

mE el | —
I::!I ' i ConvNet — O

----l
? ®

d
| -
©

I

2
a0

=

e
O
D

a

©
—
(]
=
—
(D)
—
(g}
wn
—
(D]
=
>
o
£
o
O

ConvNets Match Pieces of the Image

Filters Match Pieces of the Image
1

o -

()
Y]
(qv}
£
(D)
e
)
(.
(@)
0n
(D)
)
Q0
(Al
-
O
)
(g}
wn
—
(D)
=
L

()
Y]
(qv}
£
(D)
e
)
(.
(@)
0n
(D)
)
Q0
(Al
-
O
)
(g}
wn
—
(D)
=
L

Filtering: The Math Behind the Match

1 -
1 1

-1]-1/-1]-1[-1]-1]-1]-1]-1]

-
QO
4+
(g}
()
=
4+
e
=
<
(D)
m
=
4+
(T
(D)
e
T
.U..O
e
=
(D)
=
L

111
1)1

B - BEEEE - &
- il -

=

=R e
R =

— |

|

—

-
QO
4+
(g}
()
=
4+
e
=
<
(D)
m
=
4+
(T
(D)
e
T
.U..O
e
=
(D)
=
L

Filtering: The Math Behind the Match

1+1+1+1+1+1+1+1+1
9

-
QO
4+
(g}
()
=
4+
e
=
<
(D)
m
=
4+
(T
(D)
e
T
.U..O
e
=
(D)
=
L

-
QO
4+
(g}
()
=
4+
e
=
<
(D)
m
=
4+
(T
(D)
e
T
.U..O
e
=
(D)
=
L

1+1-1+1+1+1-1+1+1 4

il —

|
= |

-0.11 {041 -

011 041 -0.11

S

-
O
4+
(T
=
Q9
0
)
7]
O
el
>
-
(D)
>
L
oY)
=
>
o
_I
c
.9
4+
=
o
>
<
(@)
O

P93 Three Filters Here, So Three Images Out
;‘,:.égr

e

Convolution Layer

» One image becomes a stack of filtered images.

EnnEnnEnnE

B ERAE 6

BB " oHE e

nf

EEEn meEe — . B
BN . 0 BEE X B.B
BB A . D6 1 1
H : BERDE 5

EnRERRENE

Rectified Linear Units (ReLUs)

| 0.77 | EEERERES -0.11
-0.11 11 2011 041 -0.11
E 011 0.11

-0.11 (0.1 -0.11

© 11E

\?77\

Rectified Linear Units (ReLUs)

E 011 011

011 011 -0.11

S o

Rectified Linear Units (ReLUs)

0.77 [RUSEREEEE

-0.11 011 2011041 -0.11
011 -0.11 -0.33 |01 -0.11 E
03 E
E SR

011 011 011 —011 0.11
o [EFR ous o [

Rectified Linear Units (ReLUs

-0.11 | 0.11
-0.11 -0.11 0.11 011 -0.11

.11 | 0.11

-0.11 | 0.1 -0.11 [{UEEN -0.11 -0.11
-0.11 011 -0.11

RelLU Layer

» A stack of images becomes a stack of images with no negative values.

Pooling: Shrinking the Image Stack

maximum

Pooling: Shrinking the Image Stack

maximum

Pooling: Shrinking the Image Stack

maximum

Pooling: Shrinking the Image Stack

maximum

Pooling: Shrinking the Image Stack

maximum

max pooling

0.55 M 011

Layers Get Stacked

» The output of one becomes the input of the next.

ReLU
Pooling

X | =

Deep Stacking

ReLU
Convolution
ReLU
Convolution

X comn
{

X
N

0.55

0.55

0.55

055

Fully Connected Layer

09

0.65

0.45

0.87

0.96

Fully Connected Layer

HHHHHHHHHBHB

Putting It All Together

a
JUST'SHOW ME THE CODE!!

imgflip.com -

CNN in TensorFlow

CNN in TensorFlow (1/8)

> A CNN for the MNIST dataset with the following network.

» Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
» Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

» Conv. layer 2: computes 64 feature maps using a 5x5 filter.

» Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

> Dense layer: densely connected layer with 1024 neurons.

» Logits layer

CNN in TensorFlow (2/8)

>

Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

v

Input tensor shape: [batch_size, 28,28, 1]

v

Output tensor shape: [batch_size, 28,28, 32|

v

Padding same is added to preserve width and height.

MNIST images are 28z28 pizels, and have one color channel
X = tf.placeholder(tf.float32, [None, 28, 28, 1])
y_true = tf.placeholder(tf.float32, [None, 10])

convl = tf.layers.conv2d(inputs=X, filters=32, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)

CNN in TensorFlow (3/8)

> Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
» Input tensor shape: [batch_size, 28,28, 32]
» Output tensor shape: [batch_size, 14, 14, 32]

pooll = tf.layers.max_pooling2d(inputs=convl, pool_size=[2, 2], strides=2)

CNN in TensorFlow (4/8)

>

» Input tensor shape: [batch size, 14,14, 32]

>

Conv. layer 2: computes 64 feature maps using a 5x5 filter.

Output tensor shape: [batch size, 14, 14, 64]

>

conv2 = tf.layers.conv2d(inputs=pooll, filters=64, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)

Padding same is added to preserve width and height.

CNN in TensorFlow (5/8)

» Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
» Input tensor shape: [batch_size, 14, 14, 64]
» Output tensor shape: [batch_size,7,7,64]

pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

CNN in TensorFlow (6/8)

» Flatten tensor into a batch of vectors.

e Input tensor shape: [batch_size,7,7,64]
e Output tensor shape: [batch_size,7 * 7 * 64]

pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

> Dense layer: densely connected layer with 1024 neurons.

e Input tensor shape: [batch_size,7 7 * 64]
e Output tensor shape: [batch_size, 1024]

dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

CNN in TensorFlow (7/8)

» Add dropout operation; 0.6 probability that element will be kept

dropout = tf.layers.dropout(inputs=dense, rate=0.4)

> Logits layer

e Input tensor shape: [batch_size, 1024]
e Output tensor shape: [batch_size, 10]

logits = tf.layers.dense(inputs=dropout, units=10)

CNN in TensorFlow (8/8)

define the cost and accuracy functions
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_true)
cross_entropy = tf.reduce_mean(cross_entropy) * 100

define the optimizer

1r = 0.003

optimizer = tf.train.AdamOptimizer (1r)
train_step = optimizer.minimize(cross_entropy)

execute the model
init = tf.global_variables_initializer()

n_epochs = 2000
with tf.Session() as sess:
sess.run(init)

for i in range(n_epochs):
batch_X, batch_y = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={X: batch_X, y_true: batch_y})

&2

VETENSKAP

Training CNNs

Training CNN (1/4)

> Let's see how to use backpropagation on a single convolutional layer.
> Assume we have an input X of size 3x3 and a single filter W of size 2x2.
» No padding and stride = 1.

> It generates an output H of size 2x2.

hi1 = Wy1X11 + WioXq0 + Wa1Xoq + WooXoo
hig = W11Xq5 + WioXq3 + Wa1Xog + WooXos

hoy = Wy1Xo1 + WioXoo + Wo1X31 + WooX3o

hop = W11Xos + WioXo3 + Wa1X3p + WooXas

Training CNN (3/4)

Xli Xiz Xl]

» Backward pass v, h, h,
sz XZZ XL’!

> Eis theerror: E=En;, +Eny, +Eny +Enp, Wb

OE aEhll Ohi1 5Eh12 Ohig (9]5'.}121 Ohay aEh22 Ohog
OWyy Ohyy OWyy Ohip OW1g Ohay OW1g Ohgo OW11

OE aEhll Ohi1 8Eh12 Ohio 0]5‘.1121 Ohoy (BEh22 Ohoo

OW12 Ohyy OWip Ohig OWip Ohpy OWip Ohgp OWia

OE 8Eh11 Ohi1 n 8Eh12 Ohio n 8Eh21 Ohoy 6Eh22 Ohoo
OWoy Ohi1 OWay Ohis OWoy Ohoy OWay Ohoy OWoy

OE 8Eh“ Ohiq 8Eh12 Ohio 8Eh21 Ohoy 6Eh22 Ohoo

OWa2 Ohyy OWao Ohig OWga ~ Ohay OWga Ohaa OWao

u 2 5 " h, h,
XZX XZI xﬂ -
th hIZ
Xax sz x:ﬂ
(next) OE
W =Wy — Ui
11 5W11
(next) OE
Wi 7 = %
W12
OE
wgriext) = Va1 — 7~
OWa1
OE
wgr;ext) =Wy -7

Summary

Summary

>

Receptive fields and filters

v

Convolution operation

v

Padding and strides

v

Pooling layer

v

Flattening, dropout, dense

Reference

» Tensorflow and Deep Learning without a PhD
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

» lan Goodfellow et al., Deep Learning (Ch. 9)

» Aurélien Géron, Hands-On Machine Learning (Ch. 13)

Questions?

