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Let's Start With An Example



MNIST Dataset

» Handwritten digits in the MNIST dataset are 28x28 pixel greyscale images.
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One-Layer Network For Classifying MNIST (1/4)

» Let's make a one-layer neural network for classifying digits.

» Each neuron in a neural network:

e Does a weighted sum of all of its inputs
e Adds a bias
e Feeds the result through some non-linear activation function, e.g., softmax.
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Cookbook

Softmax
Cr'oes—en’rropy
Mini-batch

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]



One-Layer Network For Classifying MNIST (3/4)

» Assume we have a batch of 100 images as the input.

» Using the first column of the weights matrix W, we compute the weighted sum of
all the pixels of the first image.
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One-Layer Network For Classifying MNIST (4/4)

Each neuron must now add its bias.

>
» Apply the softmax activation function for each instance x(1).
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How Good the Predictions Are?

» Define the cost function J(W) as the cross-entropy of what the network tells us (¥;)
and what we know to be the truth (y;), for each instance x(1).

» Compute the partial derivatives of the cross-entropy with respect to all the weights
and all the biases, VwJ(W).
» Update weights and biases by a fraction of the gradient W(®e*t) = W — ¥ \y J(W)
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Adding More Layers

» Add more layers to improve the accuracy.
» On intermediate layers we will use the the sigmoid activation function.

» We keep softmax as the activation function on the last layer.
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[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]




Some Improvement

>

Better activation function, e.g., using ReLU(z) = max(0, z).

v

Overcome Network overfitting, e.g., using dropout.

v

Network initialization. e.g., using He initialization.

v

Better optimizer, e.g., using Adam optimizer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]




Vanilla Deep Neural Networks Challenges (1/2)

» Pixels of each image were flattened into a single vector (really bad idea).
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» Vanilla deep neural networks do not scale.
e In MNIST, images are black-and-white 28x28 pixel images: 28 x 28 = 784 weights.

» Handwritten digits are made of shapes and we discarded the shape information when
we flattened the pixels.




Vanilla Deep Neural Networks Challenges (2/2)

» Difficult to recognize objects.
» Rotation
> Lighting: objects may look different depending on the level of external lighting.

v

Deformation: objects can be deformed in a variety of non-affine ways.

Scale variation: visual classes often exhibit variation in their size.

v

» Viewpoint invariance.

a]




Tackle the Challenges

» Convolutional neural networks (CNN) can tackle the vanilla model challenges.

» CNN is a type of neural network that can take advantage of shape information.

> It applies a series of filters to the raw pixel data of an image to extract and learn
higher-level features, which the model can then use for classification.




Filters and Convolution Operations



Brain Visual Cortex Inspired CNNs

» 1959, David H. Hubel and Torsten Wiesel.
» Many neurons in the visual cortex have a small local receptive field.

» They react only to visual stimuli located in a limited region of the visual field.
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Receptive Fields and Filters

>

Imagine a flashlight that is shining over the top left of the image.

v

The region that it is shining over is called the receptive field.

v

This flashlight is called a filter.

v

A filter is a set of weights.

v

A filter is a feature detector, e.g., straight edges, simple colors, and curves.

input neurons
2 first hidden layer
8
88

around snnput

map
[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]




Filters Example (1/3)

o o |o o o Jo o Originalimage Visualization of the filter on the image

Pixel representation of filter Visualization of a curve detector filter

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]




Filters Example (2/3)

00|00 |0 0 |0 |30 ojojo|o0 0 3|0
0|0|0 |0 |50|50(50 ojojo|o0 30 |0 0
0|0|0 |20|50(0 |0 0|0 |0 |30 |0 0 0
0|0|0 |50|50(0 |0 * 0|0 |0 |30 |0 0 0
00|00 |50|50(0 |0 00 0|30 |0 0 0
00|00 |50]|50|0 |0 0|0 |0 |30 |0 0 0
0|0|0 |50|50(0 |0 o|jofo|o0 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter
receptive field field

Multiplication and Summation = {507 30)+(50730)+(50 30}+{20* 30)+{50* 30) = 6600 (A large number!}

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]




Filters Example (3/3)

0 Jo o Jo jo o o of[ofofo Jo [30]0
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Visualization of the filter on the image  Pixel representation of receptive field Pixel representation of filter

Multiplication and Summation = 0

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]




Convolution Operation

» Convolution takes a filter and multiplying it over the entire area of an input image.
» Imagine this flashlight (filter) sliding across all the areas of the input image.

input neurons
133 first hidden layer
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Visualization of 5 x 5filter convolving around an input volume and producing an activation map

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]




Convolution Operation - More Formal Definition

>

Convolution is a mathematical operation on two functions x and h.
¢ You can think of x as the input image, and h as a filter (kernel) on the input image.

» For a 1D convolution we can define it as below:
N—1
y(k) = > h(n)-x(k —n)
n=0

N is the number of elements in h.

v

v

We are sliding the filter h over the input image x.




Convolution Operation - 1D Example (1/2)

>

Suppose our input 1D image is x, and filter h are as follows:

x =[10]50 6010204030

h =[1/3]1/3]1/3]

v

Let's call the output image y.

v

What is the value of y(3)?




Convolution Operation - 1D Example (2/2)

» To compute y(3), we slide the filter so that it is centered around x(3).

10] 50 | 60 | 10 [20]30]40
01/3[1/3]1/3[0]0]0

(3) = 150+160+110—40
=3 3 37

» We can compute the other values of y as well.
y=[20]40[40[30][20]30]23.333]
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Convolution Operation - 2D Example (2/2)

> Detect vertical and horizontal lines in an image.
> Slide the filters across the entirety of the image.

» The result is our feature map: indicates where we've found the feature we're looking
for in the original image.
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Convolutional Neural Network (CNN)



CNN Components (1/2)

» Convolutional layers: apply a specified number of convolution filters to the image.

» Pooling layers: downsample the image data extracted by the convolutional layers to
reduce the dimensionality of the feature map in order to decrease processing time.

» Dense layers: a fully connected layer that performs classification on the features
extracted by the convolutional layers and downsampled by the pooling layers.

Input Convolution Pooling Convolution Pooling Fully connected




CNN Components (2/2)

» A CNN is composed of a stack of convolutional modules.

v

Each module consists of a convolutional layer followed by a pooling layer.

v

The last module is followed by one or more dense layers that perform classification.

v

The final dense layer contains a single node for each target class in the model, with
a softmax activation function.

Input Convolution Pooling Convolution Pooling Fully connected




Convolutional Layer




Convolutional Layer (1/4)

» Sparse interactions

» Each neuron in the convolutional layers is only connected to pixels in its receptive
field (not every single pixel).

Convolutional
layer 2

Convolutional
layer 1

Input layer




Convolutional Layer (2/4)

» Each neuron applies filters on its receptive field.
e Calculates a weighted sum of the input pixels in the receptive field.

» Adds a bias, and feeds the result through its activation function to the next layer.

» The output of this layer is a feature map (activation map)

Convolutional
layer 2

Convolutional
layer 1

Input layer




Convolutional Layer (3/4)

> Parameter sharing
» All neurons of a convolutional layer reuse the same weights.
» They apply the same filter in different positions.

» Whereas in a fully-connected network, each neuron had its own set of weights.

Convolutional
layer 2

Convolutional
layer 1

Input layer




Convolutional Layer (4/4)

» Assume the filter size (kernel size) is £, X fy.
e f, and £, are the height and width of the receptive field, respectively.

» A neuron in row i and column j of a given layer is connected to the outputs of the
neurons in the previous layer in rows i to i + fy — 1, and columns j to j + £, — 1.

f=3 Zero padding




Padding

» What will happen if you apply a 5x5 filter to a 32x32 input volume?

e The output volume would be 28x28.
e The spatial dimensions decrease.

» Zero padding: in order for a layer to have the same height and width as the previous
layer, it is common to add zeros around the inputs.

» In TensorFlow, padding can be either SAME or VALID to have zero padding or not.

padding="VALID"
1 €., without padding)

Ignored

(LITTTTTITTTXX

padding="SAME"
(i.e., with zero padding)

f,=3 Zero padding HHHIHIHHM




Stride (1/2)

» The distance between two consecutive receptive fields is called the stride.
» The stride controls how the filter convolves around the input volume.

» Assume sy and s, are the vertical and horizontal strides, then, a neuron located in
row i and column j in a layer is connected to the outputs of the neurons in the
previous layer located in rows i X s to i X sy + £, — 1, and columns j X s; to
jXsyg+Iy—1.
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Stride (2/2)

Filter

e
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Stacking Multiple Feature Maps

» Up to now, we represented each convolutional layer with a single feature map.

v

Each convolutional layer can be composed of several feature maps of equal sizes.

v

Input images are also composed of multiple sublayers: one per color channel.

v

A convolutional layer simultaneously applies multiple filters to its inputs.

Convolutional

Feature layer 2

[BT] ‘wap
iy VP2

Filters

Convolutional
layer 1

7 v
7 >

Input layer
Channels
Red
Green
Blue




Activation Function

» After calculating a weighted sum of the input pixels in the receptive fields, and adding

biases, each neuron feeds the result through its ReLU activation function to the next
layer.

» The purpose of this activation function is to add non linearity to the system.
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Pooling Layer (1/2)

» After the activation functions, we can apply a pooling layer.

» Its goal is to subsample (shrink) the input image.
e To reduce the computational load, the memory usage, and the number of parameters.

V) A | /A — - V —A =
A | A D A - V=
W77 77




Pooling Layer (2/2)

» Each neuron in a pooling layer is connected to the outputs of a receptive field in the
previous layer.

» A pooling neuron has no weights.

> It aggregates the inputs using an aggregation function such as the max or mean.

Single depth slice
1 o 2 3

8 _, 6 8
0 '3 a4
4

Y

Example of Maxpool with a 2x2 filter and astride of 2




Fully Connected Layer




Fully Connected Layer

» This layer takes an input from the last convolution module, and outputs an N dimen-
sional vector.

e N is the number of classes that the model has to choose from.

> For example, if you wanted a digit classification model, N would be 10.

» Each number in this N dimensional vector represents the probability of a certain class.




Flattening

» We need to convert the output of the convolutional part of the CNN into a 1D
feature vector.

» This operation is called flattening.

> It gets the output of the convolutional layers, flattens all its structure to create a
single long feature vector to be used by the dense layer for the final classification.




Example




A Toy ConvNet: X's and O'’s

A two-dimensional
array of pixels

— ConvNet — X or O
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ConvNets Match Pieces of the Image




Filters Match Pieces of the Image
1
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Filtering: The Math Behind the Match
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Filtering: The Math Behind the Match
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Convolution Layer

» One image becomes a stack of filtered images.
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Rectified Linear Units (ReLUs)
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Rectified Linear Units (ReLUs)
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Rectified Linear Units (ReLUs)
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Rectified Linear Units (ReLUs

-0.11 | 0.11
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RelLU Layer

» A stack of images becomes a stack of images with no negative values.




Pooling: Shrinking the Image Stack

maximum




Pooling: Shrinking the Image Stack

maximum




Pooling: Shrinking the Image Stack

maximum




Pooling: Shrinking the Image Stack

maximum




Pooling: Shrinking the Image Stack

maximum




max pooling
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Layers Get Stacked

» The output of one becomes the input of the next.

ReLU
Pooling
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Deep Stacking
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Fully Connected Layer
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Fully Connected Layer
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Putting It All Together
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CNN in TensorFlow



CNN in TensorFlow (1/8)

> A CNN for the MNIST dataset with the following network.

» Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
» Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

» Conv. layer 2: computes 64 feature maps using a 5x5 filter.

» Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

> Dense layer: densely connected layer with 1024 neurons.

» Logits layer




CNN in TensorFlow (2/8)

>

Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

v

Input tensor shape: [batch_size, 28,28, 1]

v

Output tensor shape: [batch_size, 28,28, 32|

v

Padding same is added to preserve width and height.

# MNIST images are 28z28 pizels, and have one color channel
X = tf.placeholder(tf.float32, [None, 28, 28, 1])
y_true = tf.placeholder(tf.float32, [None, 10])

convl = tf.layers.conv2d(inputs=X, filters=32, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)




CNN in TensorFlow (3/8)

> Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
» Input tensor shape: [batch_size, 28,28, 32]
» Output tensor shape: [batch_size, 14, 14, 32]

pooll = tf.layers.max_pooling2d(inputs=convl, pool_size=[2, 2], strides=2)




CNN in TensorFlow (4/8)

>

» Input tensor shape: [batch size, 14,14, 32]

>

Conv. layer 2: computes 64 feature maps using a 5x5 filter.

Output tensor shape: [batch size, 14, 14, 64]

>

conv2 = tf.layers.conv2d(inputs=pooll, filters=64, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)

Padding same is added to preserve width and height.




CNN in TensorFlow (5/8)

» Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
» Input tensor shape: [batch_size, 14, 14, 64]
» Output tensor shape: [batch_size,7,7,64]

pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)




CNN in TensorFlow (6/8)

» Flatten tensor into a batch of vectors.

e Input tensor shape: [batch_size,7,7,64]
e Output tensor shape: [batch_size,7 * 7 * 64]

pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

> Dense layer: densely connected layer with 1024 neurons.

e Input tensor shape: [batch_size,7 7 * 64]
e Output tensor shape: [batch_size, 1024]

dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)




CNN in TensorFlow (7/8)

» Add dropout operation; 0.6 probability that element will be kept

dropout = tf.layers.dropout(inputs=dense, rate=0.4)

> Logits layer

e Input tensor shape: [batch_size, 1024]
e Output tensor shape: [batch_size, 10]

logits = tf.layers.dense(inputs=dropout, units=10)




CNN in TensorFlow (8/8)

# define the cost and accuracy functions
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_true)
cross_entropy = tf.reduce_mean(cross_entropy) * 100

# define the optimizer

1r = 0.003

optimizer = tf.train.AdamOptimizer (1r)
train_step = optimizer.minimize(cross_entropy)

# execute the model
init = tf.global_variables_initializer()

n_epochs = 2000
with tf.Session() as sess:
sess.run(init)

for i in range(n_epochs):
batch_X, batch_y = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={X: batch_X, y_true: batch_y})
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Training CNNs



Training CNN (1/4)

> Let's see how to use backpropagation on a single convolutional layer.
> Assume we have an input X of size 3x3 and a single filter W of size 2x2.
» No padding and stride = 1.

> It generates an output H of size 2x2.




hi1 = Wy1X11 + WioXq0 + Wa1Xoq + WooXoo
hig = W11Xq5 + WioXq3 + Wa1Xog + WooXos

hoy = Wy1Xo1 + WioXoo + Wo1X31 + WooX3o

hop = W11Xos + WioXo3 + Wa1X3p + WooXas




Training CNN (3/4)
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Summary




Summary

>

Receptive fields and filters

v

Convolution operation

v

Padding and strides

v

Pooling layer

v

Flattening, dropout, dense




Reference

» Tensorflow and Deep Learning without a PhD
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

» lan Goodfellow et al., Deep Learning (Ch. 9)

» Aurélien Géron, Hands-On Machine Learning (Ch. 13)




Questions?



