Autoencoders and Restricted Boltzmann Machines

Amir H. Payberah
payberah@Qkth.se
11/12/2018

The Course Web Page

https://id2223kth.github.io

Where Are We?

Deep Learning

CNN RNN

Autoencoder

Deep Feedforward Network || Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification

More Supervised Learning

Spark ML

Where Are We?

Deep Learning

Deep Feedforward Network || Training Feedforward Network

TensorFlow

Machine Learning

Regression Classification || More Supervised Learning

Spark ML

Let's Start With An Example

» Which of them is easier to memorize?

» Seql: 40,27,25,36,81,57,10,73,19,68

» Seq2: 50,25,76,38,19,58,29,88,44,22, 11,34, 17,52,26, 13,40, 20

Seql : 40, 27, 25,36,81,57,10,73,19, 68
Seq2 : 50, 25, 76,38, 19, 58,29, 88, 44,22, 11, 34,17, 52, 26, 13, 40, 20

Seql is shorter, so it should be easier.

But, Seq2 follows two simple rules:

e Even numbers are followed by their half.

e Odd numbers are followed by their triple plus one. \&
You don’t need pattern if you could quickly and easily KEEP

CALM

But, it is hard to memorize long sequences that makes it useful AND

to recognize patterns. NOPE...
LOST IT

memorize very long sequences

» 1970, W. Chase and H. Simon

» They observed that expert chess players were able to memorize the positions of all
the pieces in a game by looking at the board for just 5 seconds.

>

This was only the case when the pieces were placed in realistic positions, not when
the pieces were placed randomly.

v

Chess experts don't have a much better memory than you and .

v

They just see chess patterns more easily due to
their experience with the game.

v

Patterns helps them store information efficiently.

Autoencoders

Autoencoders (1/5)

> Just like the chess players in this memory experiment.

> An autoencoder looks at the inputs, converts them to an efficient internal represen-
tation, and then spits out something that looks very close to the inputs.

Outputs X, X, X5
(= Inputs)
} Decoder
Internal
representation
Encoder

Inputs X X,

2

Autoencoders (2/5)

» The same architecture as a Multi-Layer Perceptron (MLP).

» Except that the number of neurons in the output layer must be equal to the number
of inputs.

Outputs X, X, X5
(= Inputs)
} Decoder
Internal
representation
Encoder

Inputs X X,

2

Autoencoders (3/5)

An autoencoder is always composed of two parts.

An encoder (recognition network), h = £(x) j|Decoder
Converts the inputs to an internal representation.

A decoder (generative network), r = g(h) JEncoder
Converts the internal representation to the outputs.

If an autoencoder learns to set g(£(x)) = x everywhere,
it is not especially useful, why?

X1 X

Autoencoders (4/5)

» Autoencoders are designed to be unable to learn to copy perfectly.

» The models are forced to prioritize which aspects of the input should be copied, they
often learn useful properties of the data.

j| Decoder

Encoder

|

Autoencoders (5/5)

» Autoencoders are neural networks capable of learning efficient representations of the
input data (called codings) without any supervision.

» Dimension reduction: these codings typically have a much lower dimensionality than
the input data.

Xy X2 X3
Original 3D dataset 2D projection with max variance
2
o 15 Decoder
N 10
- 05
?&\'}.‘M [oo 5 2 0.0
} e 05 == 05
-1.0
10 .
10 -15 . + Encoder
~~~~~~~~~ 05 -20f .4
L5 g o 00 _ .
10500 05 T L 2752015100500 05 10 15
@ 15
2
X X, X,




Dimension Reduction and PCA

» Principal Component Analysis (PCA) is the most popular dimensionality reduction
algorithm.

» If the decoder is linear and the cost function is the Mean Squared Error (MSE), then
it can be shown that it ends up performing PCA.

» Autoencoders with nonlinear encoder and decoder functions can thus learn a more
powerful nonlinear generalization of PCA.

Original 3D dataset 2D projection with max variance

fm 15 LR } Decoder
i 10 qee

- 05 W'
oy (e L

Y A

? e 05 =P —?; s

10 - o
10 B oy Encoder
=5 ¥
2 s —200 4.

By .

o500 0s "% ® 22520-151.0-0500 05 10 15

1045

21




PCA with an Undercomplete Linear Autoencoder

> A linear autoencoder to perform PCA on a 3D dataset, projecting it to 2D.

n_inputs = 3 # 3D inputs
n_hidden = 2 # 2D codings
n_outputs = n_inputs

X = tf.placeholder(tf.float32, shape=[None, n_inputs])
hidden = tf.layers.dense(X, n_hidden) # the coding layer
outputs = tf.layers.dense(hidden, n_outputs)

cost = tf.reduce_mean(tf.square(outputs - X)) # MSE

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)

# the rest is as before




Different Types of Autoencoders

» Stacked autoencoders

» Denoising autoencoders

» Variational autoencoders




Different Types of Autoencoders

» Stacked autoencoders

» Denoising autoencoders

» Variational autoencoders




Stacked Autoencoders (1/3)

> Stacked autoencoder: autoencoders with multiple hidden layers.
» Adding more layers helps the autoencoder learn more complex codings.

» The architecture is typically symmetrical with regards to the central hidden layer.

f

784 units [ Outputs ] <—— Reconstructions
(= inputs)

300 units

150 units [FglEEE A <—— Codings

300 units

784 units [ Inputs ]




Stacked Autoencoders (2/3)

» In a symmetric architecture, we can tie the weights of the decoder layers to the
weights of the encoder layers.

» In a network with N layers, the decoder layer weights can be defined as wy_1,1 = w3,
with1=1,2,---,

N[=

» This halves the number of weights in the model, speeding up training and limiting
the risk of overfitting.

~<—— Reconstructions
(= inputs)

784 units

Outputs

300 units

150 units [REIEGERPAY <—— Codings

Hidden 1

300 units

784 units




Stacked Autoencoders (3/3)

n_inputs = 28 * 28
n_hiddenl = 300

n_hidden2 = 150 # codings
n_hidden3 = n_hiddenl
n_outputs = n_inputs

weightsl = tf.Variable(initializer([n_inputs, n_hiddenl]), name="weightsi")
weights2 = tf.Variable(initializer([n_hiddenl, n_hidden2]), name="weights2")

weights3 = tf.transpose(weights2, name="weights3") # tied weights
weights4 = tf.transpose(weightsl, name="weights4") # tied weights
hiddenl = tf.nn.elu(tf.matmul (X, weightsl) + biasesl)

hidden2 = tf.nn.elu(tf.matmul (hiddenl, weights2) + biases2)
hidden3 = tf.nn.elu(tf.matmul (hidden2, weights3) + biases3)

tf.matmul (hidden3, weights4) + biases4

outputs




Different Types of Autoencoders

» Stacked autoencoders

» Denoising autoencoders

» Variational autoencoders




Denoising Autoencoders (1/3)

» One way to force the autoencoder to learn useful features is to add noise to its inputs,
training it to recover the original noise-free inputs.

» This prevents the autoencoder from trivially copying its inputs to its outputs, so it
ends up having to find patterns in the data.

= Inputs

Hidden 2 Hidden 2

Hidden 1

Gaussian Noise ] [ Dropout ]




Denoising Autoencoders (2/3)

» The noise can be pure Gaussian noise added to the inputs, or it can be randomly
switched off inputs, just like in dropout.

= Inputs

= Inputs

Hidden 3

Hidden 2 Hidden 2

Hidden 1

Gaussian Noise ] [ Dropout ]




n_
n_
n_
n_
n_

X

X_

Denoising Autoencoders (3/3)

inputs = 28 * 28

hiddenl = 300

hidden2 = 150 # codings
hidden3 = n_hiddenl
outputs = n_inputs

= tf.placeholder (tf.float32, shape=[None, n_inputs])
noisy = X + noise_level * tf.random_normal (tf.shape(X))

hiddenl = tf.layers.dense(X_noisy, n_hiddenl, activation=tf.nn.relu, name="hiddenl")
hidden2 = tf.layers.dense(hiddenl, n_hidden2, activation=tf.nn.relu, name="hidden2")
hidden3 = tf.layers.dense(hidden2, n_hidden3, activation=tf.nn.relu, name="hidden3")
outputs = tf.layers.dense(hidden3, n_outputs, name="outputs")




Different Types of Autoencoders

» Stacked autoencoders

» Denoising autoencoders

» Variational autoencoders




Variational Autoencoders (1/3)

» Variational autoencoders are probabilistic autoencoders.

» Their outputs are partly determined by chance, even after training.
» As opposed to denoising autoencoders, which use randomness only during training.

» They are generative autoencoders, meaning that they can generate new instances
that look like they were sampled from the training set.




Variational Autoencoders (2/3)

» Instead of directly producing a coding for a given input, the encoder produces a mean
coding 1 and a standard deviation o.

» The actual coding is then sampled randomly from a Gaussian distribution with mean
1 and standard deviation o.

» After that the decoder just decodes the

sampled coding normally. %
Gaussian )
noise : Coding

Hidden 2

Hidden 1




Variational Autoencoders (3/3)

» The cost function is composed of two parts.

» 1. the usual reconstruction loss.
e Pushes the autoencoder to reproduce its inputs.
» Using cross-entropy.

> 2. the latent loss
e Pushes the autoencoder to have codings that look as though they were sampled from
a simple Gaussian distribution.
¢ Using the KL divergence between the target distribution (the Gaussian distribution) and
the actual distribution of the codings.
e KL divergence measures the divergence between the two probabilities.







Restricted Boltzmann Machines



Restricted Boltzmann Machines

» A Restricted Boltzmann Machine (RBM) is a stochastic neural network.

» Stochastic meaning these activations have a probabilistic element, instead of deter-
ministic functions, e.g., logistic or ReLU.

» The neurons form a bipartite graph:
e One visible layer and one hidden layer.
* A symmetric connection between the two layers.
e There are no connections between neurons within
a layer.

Input Output




Let's Start With An Example



RBM Example (1/10)

» We have a set of six movies, and we ask users to tell us which ones they want to
watch.

» We want to learn two latent units underlying movie preferences, e.g., SF/fantasy and
Oscar winners




RBM Example (2/10)

» Our RBM would look like the following.

| ij
ADIATOR
(




RBM Example (3/10)

» Assume the given input x; is the 0 or 1 for each visible neuron v;.
e 1: like a movie, and 0: dislike a movie

» Compute the activation energy at hidden neuron h;:




RBM Example (4/10)

» For each hidden neuron hj, we compute the probability p(h;).
a(hJ) = Zwijvi

p(hy) = signoid(a(h;)) :

T 14 eay)

» We turn on the hidden neuron hj with the probability p(h;), and turn it off with
probability 1 — p(h;).




RBM Example (5/10)

» Declaring that you like Harry Potter, Avatar, and LOTR, doesn't guarantee that the
SF /fantasy hidden neuron will turn on.

» But it will turn on with a high probability.

* In reality, if you want to watch all three of those movies makes us highly suspect you
like SF/fantasy in general.
e But there's a small chance you like them for other reasons.

hidden units




RBM Example (6/10)

Conversely, if we know that one person likes SF/fantasy (so that the SF/fantasy
neuron is on)

We can ask the RBM to generate a set of movie recommendations.

The hidden neurons send messages to the visible (movie) neurons, telling them to
update their states.
a(vi) =) wish;
J

1

p(vs) = sigmoid(a(vi)) = =y

Being on the SF/fantasy neuron doesn’t guarantee that we'll always recommend all
three of Harry Potter, Avatar, and LOTR.

e For example not everyone who likes science fiction liked Avatar.




RBM Example (7/10)

v

How do we learn the connection weights w;; in our network?

v

Assume, as an input we have a bunch of binary vectors x with six elements corre-
sponding to a user's movie preferences.

v

We do the following steps in each epoch:

» 1. Take a training instance x and set the states of the visible neurons to these
preferences.




RBM Example (8/10)

» 2. Update the states of the hidden neurons.
« Compute a(hj) = >, wi;jv; for each hidden neuron hj.
* Set hj to 1 with probability p(h;) = sigmoid(a(h;)) = ﬁ
» 3. For each edge e;j, compute positive(e;j) = vi X h;
 l.e., for each pair of neurons, measure whether they are both on.

hidden units




RBM Example (9/10)

» 4. Update the state of the visible neurons in a similar manner.
» We denote the updated visible neurons with v/.
* Compute a(vi) = 3, wijh; for each visible neuron vi.
 Set v/ to 1 with probability p(v}) = sigmoid(a(v})) = 1+eia(“§>

» 5. Update the hidden neurons again similar to step 2. We denote the updated hidden

neurons with hg .

> 6. For each edge eij, compute negative(eij) = v§ x h




RBM Example (10/10)

» 7. Update the weight of each edge e;;.
wij = wij + n(positive(e;;) — negative(es;))
> 8. Repeat over all training examples.
» 9. Continue until the error between the training examples and their reconstructions

falls below some threshold or we reach some maximum number of epochs.

hidden units




RBM Training (1/2)

v

Step 1, Gibbs sampling: what we have done in steps 1-6.

v

Given an input vector v, compute p(h|v).

v

Knowing the hidden values h, we use p(v|h) for prediction of new input values v.

v

This process is repeated k times.




RBM Training (2/2)

> Step 2, contrastive divergence: what we have done in step 7.
e Just a fancy name for approximate gradient descent.

positive(e) = vo x p(ho|vo)
negative(e) = vy X p(hy|vy)

w = w + 7n(positive(e) — negative(e))

> v, is the original input, and vy is the input after k iterations.

p(hlv) p(vih)




More Details about RBM



Energy-based Model (1/3)

» Energy a quantitative property of physics.
e E.g., gravitational energy describes the potential energy a body with mass has in
relation to another massive object due to gravity.

LIFE ON EARTH

v mSearchiD; hkhii132

NEwTon JuST ABoUT NEVER To DISCOVER GRAVITy




Energy-based Model (2/3)

» One purpose of deep learning models is to encode dependencies between variables.

v

The capturing of dependencies happen through associating of a scalar energy to each
state of the variables.

e Serves as a measure of compatibility.

v

A high energy means a bad compatibility.

v

An energy based model tries always to minimize a predefined energy function.




Energy-based Model (3/3)

v

The energy function for the RBMs is defined as:
E(V, h) = —(Z wijvihj + Zbivi + Z C_]h_])
ij i J

v and h represent the visible and hidden units, respectively.

v

> w represents the weights connecting visible and hidden units.

v

b and c are the biases of the visible and hidden layers, respectively.




RBM is a Probabilistic Model

» At each point in time the RBM is in a certain state.
e The state refers to the values of neurons in the visible and hidden layers v and h.

» The probability of a certain state of v and h:

e—E(v,h)

p(v,h) = Dy hefE("’h)

» The probability that the network assigns to a visible vector v, is given by summing
over all possible hidden vectors h.

Zh e—E(v,h)
p(v) = D . o—E(v,h)




Learning in Boltzmann Machines (1/2)

>

RBMs try to learn a probability distribution from the data they are given.

v

Given a training set of state vectors v, learning consists of finding parameters w of
p(v,h), in a way that the training vectors have high probability p(v).

Eh e—E(v,h)

p(vjw) = W
v,

Use the maximume-likelihood estimation.

v

v

For a model of the form p(v) with parameters w, the log-likelihood given a single
training example v is:

lo — | Zh eiE vh) = (v,h) — —E(v,h)
gp(viw) = log ="y ogze og» e
v,h




Learning in Boltzmann Machines (1/2)

» The log-likelihood gradients for an RBM with binary units:

Ologp(v|wij)

= positive(e;j) — negative(e;j)
aWij

» Then, we can update the weight w as follows:

(next)
ij

=w;; + n(positive(e;;) — negative(esj))




£ KTHY
&§ verensiar

¥ och KoNsT

™

IT;SIOVERE"

IT'S FINALLY OVER

A
makeamemetorg




Summary




Summary

» Autoencoders

e Stacked autoencoders
e Denoising autoencoders
» Variational autoencoders

» Restricted Boltzmann Machine

 Gibbs sampling
 Contrastive divergence




Reference

» lan Goodfellow et al., Deep Learning (Ch. 14, 20)

» Aurélien Géron, Hands-On Machine Learning (Ch. 15)




Questions?



