
Autoencoders and Restricted Boltzmann Machines

Amir H. Payberah
payberah@kth.se

11/12/2018

The Course Web Page

https://id2223kth.github.io

1 / 57

Where Are We?

2 / 57

Where Are We?

3 / 57

Let’s Start With An Example

4 / 57

I Which of them is easier to memorize?

I Seq1: 40, 27, 25, 36, 81, 57, 10, 73, 19, 68

I Seq2: 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20

5 / 57

Seq1 : 40, 27, 25, 36, 81, 57, 10, 73, 19, 68

Seq2 : 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20

I Seq1 is shorter, so it should be easier.

I But, Seq2 follows two simple rules:
• Even numbers are followed by their half.
• Odd numbers are followed by their triple plus one.

I You don’t need pattern if you could quickly and easily
memorize very long sequences

I But, it is hard to memorize long sequences that makes it useful
to recognize patterns.

6 / 57

I 1970, W. Chase and H. Simon

I They observed that expert chess players were able to memorize the positions of all
the pieces in a game by looking at the board for just 5 seconds.

7 / 57

I This was only the case when the pieces were placed in realistic positions, not when
the pieces were placed randomly.

I Chess experts don’t have a much better memory than you and I.

I They just see chess patterns more easily due to
their experience with the game.

I Patterns helps them store information efficiently.

8 / 57

Autoencoders

9 / 57

Autoencoders (1/5)

I Just like the chess players in this memory experiment.

I An autoencoder looks at the inputs, converts them to an efficient internal represen-
tation, and then spits out something that looks very close to the inputs.

10 / 57

Autoencoders (2/5)

I The same architecture as a Multi-Layer Perceptron (MLP).

I Except that the number of neurons in the output layer must be equal to the number
of inputs.

11 / 57

Autoencoders (3/5)

I An autoencoder is always composed of two parts.

I An encoder (recognition network), h = f(x)
Converts the inputs to an internal representation.

I A decoder (generative network), r = g(h)
Converts the internal representation to the outputs.

I If an autoencoder learns to set g(f(x)) = x everywhere,
it is not especially useful, why?

12 / 57

Autoencoders (4/5)

I Autoencoders are designed to be unable to learn to copy perfectly.

I The models are forced to prioritize which aspects of the input should be copied, they
often learn useful properties of the data.

13 / 57

Autoencoders (5/5)

I Autoencoders are neural networks capable of learning efficient representations of the
input data (called codings) without any supervision.

I Dimension reduction: these codings typically have a much lower dimensionality than
the input data.

14 / 57

Dimension Reduction and PCA

I Principal Component Analysis (PCA) is the most popular dimensionality reduction
algorithm.

I If the decoder is linear and the cost function is the Mean Squared Error (MSE), then
it can be shown that it ends up performing PCA.

I Autoencoders with nonlinear encoder and decoder functions can thus learn a more
powerful nonlinear generalization of PCA.

15 / 57

PCA with an Undercomplete Linear Autoencoder

I A linear autoencoder to perform PCA on a 3D dataset, projecting it to 2D.

n_inputs = 3 # 3D inputs

n_hidden = 2 # 2D codings

n_outputs = n_inputs

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

hidden = tf.layers.dense(X, n_hidden) # the coding layer

outputs = tf.layers.dense(hidden, n_outputs)

cost = tf.reduce_mean(tf.square(outputs - X)) # MSE

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op = optimizer.minimize(cost)

the rest is as before

16 / 57

Different Types of Autoencoders

I Stacked autoencoders

I Denoising autoencoders

I Variational autoencoders

17 / 57

Different Types of Autoencoders

I Stacked autoencoders

I Denoising autoencoders

I Variational autoencoders

18 / 57

Stacked Autoencoders (1/3)

I Stacked autoencoder: autoencoders with multiple hidden layers.

I Adding more layers helps the autoencoder learn more complex codings.

I The architecture is typically symmetrical with regards to the central hidden layer.

19 / 57

Stacked Autoencoders (2/3)

I In a symmetric architecture, we can tie the weights of the decoder layers to the
weights of the encoder layers.

I In a network with N layers, the decoder layer weights can be defined as wN−l+1 = wTl,
with l = 1, 2, · · · , N

2
.

I This halves the number of weights in the model, speeding up training and limiting
the risk of overfitting.

20 / 57

Stacked Autoencoders (3/3)

n_inputs = 28 * 28

n_hidden1 = 300

n_hidden2 = 150 # codings

n_hidden3 = n_hidden1

n_outputs = n_inputs

weights1 = tf.Variable(initializer([n_inputs, n_hidden1]), name="weights1")

weights2 = tf.Variable(initializer([n_hidden1, n_hidden2]), name="weights2")

weights3 = tf.transpose(weights2, name="weights3") # tied weights

weights4 = tf.transpose(weights1, name="weights4") # tied weights

hidden1 = tf.nn.elu(tf.matmul(X, weights1) + biases1)

hidden2 = tf.nn.elu(tf.matmul(hidden1, weights2) + biases2)

hidden3 = tf.nn.elu(tf.matmul(hidden2, weights3) + biases3)

outputs = tf.matmul(hidden3, weights4) + biases4

21 / 57

Different Types of Autoencoders

I Stacked autoencoders

I Denoising autoencoders

I Variational autoencoders

22 / 57

Denoising Autoencoders (1/3)

I One way to force the autoencoder to learn useful features is to add noise to its inputs,
training it to recover the original noise-free inputs.

I This prevents the autoencoder from trivially copying its inputs to its outputs, so it
ends up having to find patterns in the data.

23 / 57

Denoising Autoencoders (2/3)

I The noise can be pure Gaussian noise added to the inputs, or it can be randomly
switched off inputs, just like in dropout.

24 / 57

Denoising Autoencoders (3/3)

n_inputs = 28 * 28

n_hidden1 = 300

n_hidden2 = 150 # codings

n_hidden3 = n_hidden1

n_outputs = n_inputs

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

X_noisy = X + noise_level * tf.random_normal(tf.shape(X))

hidden1 = tf.layers.dense(X_noisy, n_hidden1, activation=tf.nn.relu, name="hidden1")

hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2")

hidden3 = tf.layers.dense(hidden2, n_hidden3, activation=tf.nn.relu, name="hidden3")

outputs = tf.layers.dense(hidden3, n_outputs, name="outputs")

25 / 57

Different Types of Autoencoders

I Stacked autoencoders

I Denoising autoencoders

I Variational autoencoders

26 / 57

Variational Autoencoders (1/3)

I Variational autoencoders are probabilistic autoencoders.

I Their outputs are partly determined by chance, even after training.
• As opposed to denoising autoencoders, which use randomness only during training.

I They are generative autoencoders, meaning that they can generate new instances
that look like they were sampled from the training set.

27 / 57

Variational Autoencoders (2/3)

I Instead of directly producing a coding for a given input, the encoder produces a mean
coding µ and a standard deviation σ.

I The actual coding is then sampled randomly from a Gaussian distribution with mean
µ and standard deviation σ.

I After that the decoder just decodes the
sampled coding normally.

28 / 57

Variational Autoencoders (3/3)

I The cost function is composed of two parts.

I 1. the usual reconstruction loss.
• Pushes the autoencoder to reproduce its inputs.
• Using cross-entropy.

I 2. the latent loss
• Pushes the autoencoder to have codings that look as though they were sampled from

a simple Gaussian distribution.
• Using the KL divergence between the target distribution (the Gaussian distribution) and

the actual distribution of the codings.
• KL divergence measures the divergence between the two probabilities.

29 / 57

30 / 57

Restricted Boltzmann Machines

31 / 57

Restricted Boltzmann Machines

I A Restricted Boltzmann Machine (RBM) is a stochastic neural network.

I Stochastic meaning these activations have a probabilistic element, instead of deter-
ministic functions, e.g., logistic or ReLU.

I The neurons form a bipartite graph:
• One visible layer and one hidden layer.
• A symmetric connection between the two layers.
• There are no connections between neurons within

a layer.

32 / 57

Let’s Start With An Example

33 / 57

RBM Example (1/10)

I We have a set of six movies, and we ask users to tell us which ones they want to
watch.

I We want to learn two latent units underlying movie preferences, e.g., SF/fantasy and
Oscar winners

34 / 57

RBM Example (2/10)

I Our RBM would look like the following.

35 / 57

RBM Example (3/10)

I Assume the given input xi is the 0 or 1 for each visible neuron vi.
• 1: like a movie, and 0: dislike a movie

I Compute the activation energy at hidden neuron hj:

a(hj) =
∑
i

wijvi

36 / 57

RBM Example (4/10)

I For each hidden neuron hj, we compute the probability p(hj).

a(hj) =
∑
i

wijvi

p(hj) = sigmoid(a(hj)) =
1

1 + e−a(hj)

I We turn on the hidden neuron hj with the probability p(hj), and turn it off with
probability 1− p(hj).

37 / 57

RBM Example (5/10)

I Declaring that you like Harry Potter, Avatar, and LOTR, doesn’t guarantee that the
SF/fantasy hidden neuron will turn on.

I But it will turn on with a high probability.
• In reality, if you want to watch all three of those movies makes us highly suspect you

like SF/fantasy in general.
• But there’s a small chance you like them for other reasons.

38 / 57

RBM Example (6/10)

I Conversely, if we know that one person likes SF/fantasy (so that the SF/fantasy
neuron is on)

I We can ask the RBM to generate a set of movie recommendations.

I The hidden neurons send messages to the visible (movie) neurons, telling them to
update their states.

a(vi) =
∑
j

wijhj

p(vi) = sigmoid(a(vi)) =
1

1 + e−a(vi)

I Being on the SF/fantasy neuron doesn’t guarantee that we’ll always recommend all
three of Harry Potter, Avatar, and LOTR.

• For example not everyone who likes science fiction liked Avatar.

39 / 57

RBM Example (7/10)

I How do we learn the connection weights wij in our network?

I Assume, as an input we have a bunch of binary vectors x with six elements corre-
sponding to a user’s movie preferences.

I We do the following steps in each epoch:

I 1. Take a training instance x and set the states of the visible neurons to these
preferences.

40 / 57

RBM Example (8/10)

I 2. Update the states of the hidden neurons.
• Compute a(hj) =

∑
i wijvi for each hidden neuron hj.

• Set hj to 1 with probability p(hj) = sigmoid(a(hj)) = 1

1+e−a(hj)

I 3. For each edge eij, compute positive(eij) = vi × hj
• I.e., for each pair of neurons, measure whether they are both on.

41 / 57

RBM Example (9/10)

I 4. Update the state of the visible neurons in a similar manner.
• We denote the updated visible neurons with v′i.
• Compute a(v′i) =

∑
j wijhj for each visible neuron v′i.

• Set v′i to 1 with probability p(v′i) = sigmoid(a(v′i)) = 1

1+e−a(v′i)

I 5. Update the hidden neurons again similar to step 2. We denote the updated hidden
neurons with h′j.

I 6. For each edge eij, compute negative(eij) = v′i × h′j

42 / 57

RBM Example (10/10)

I 7. Update the weight of each edge eij.

wij = wij + η(positive(eij)− negative(eij))

I 8. Repeat over all training examples.

I 9. Continue until the error between the training examples and their reconstructions
falls below some threshold or we reach some maximum number of epochs.

43 / 57

RBM Training (1/2)

I Step 1, Gibbs sampling: what we have done in steps 1-6.

I Given an input vector v, compute p(h|v).

I Knowing the hidden values h, we use p(v|h) for prediction of new input values v.

I This process is repeated k times.

44 / 57

RBM Training (2/2)

I Step 2, contrastive divergence: what we have done in step 7.
• Just a fancy name for approximate gradient descent.

positive(e) = v0 × p(h0|v0)

negative(e) = vk × p(hk|vk)

w = w + η(positive(e)− negative(e))

I v0 is the original input, and vk is the input after k iterations.

45 / 57

More Details about RBM

46 / 57

Energy-based Model (1/3)

I Energy a quantitative property of physics.
• E.g., gravitational energy describes the potential energy a body with mass has in

relation to another massive object due to gravity.

47 / 57

Energy-based Model (2/3)

I One purpose of deep learning models is to encode dependencies between variables.

I The capturing of dependencies happen through associating of a scalar energy to each
state of the variables.

• Serves as a measure of compatibility.

I A high energy means a bad compatibility.

I An energy based model tries always to minimize a predefined energy function.

48 / 57

Energy-based Model (3/3)

I The energy function for the RBMs is defined as:

E(v,h) = −(
∑
ij

wijvihj +
∑
i

bivi +
∑
j

cjhj)

I v and h represent the visible and hidden units, respectively.

I w represents the weights connecting visible and hidden units.

I b and c are the biases of the visible and hidden layers, respectively.

49 / 57

RBM is a Probabilistic Model

I At each point in time the RBM is in a certain state.
• The state refers to the values of neurons in the visible and hidden layers v and h.

I The probability of a certain state of v and h:

p(v,h) =
e−E(v,h)∑
v,h e

−E(v,h)

I The probability that the network assigns to a visible vector v, is given by summing
over all possible hidden vectors h.

p(v) =

∑
h e
−E(v,h)∑

v,h e
−E(v,h)

50 / 57

Learning in Boltzmann Machines (1/2)

I RBMs try to learn a probability distribution from the data they are given.

I Given a training set of state vectors v, learning consists of finding parameters w of
p(v,h), in a way that the training vectors have high probability p(v).

p(v|w) =

∑
h e
−E(v,h)∑

v,h e
−E(v,h)

I Use the maximum-likelihood estimation.

I For a model of the form p(v) with parameters w, the log-likelihood given a single
training example v is:

log p(v|w) = log

∑
h e
−E(v,h)∑

v,h e
−E(v,h) = log

∑
h

e−E(v,h) − log
∑
v,h

e−E(v,h)

51 / 57

Learning in Boltzmann Machines (1/2)

I The log-likelihood gradients for an RBM with binary units:

∂ log p(v|wij)

∂wij
= positive(eij)− negative(eij)

I Then, we can update the weight w as follows:

w
(next)
ij = wij + η(positive(eij)− negative(eij))

52 / 57

53 / 57

Summary

54 / 57

Summary

I Autoencoders
• Stacked autoencoders
• Denoising autoencoders
• Variational autoencoders

I Restricted Boltzmann Machine
• Gibbs sampling
• Contrastive divergence

55 / 57

Reference

I Ian Goodfellow et al., Deep Learning (Ch. 14, 20)

I Aurélien Géron, Hands-On Machine Learning (Ch. 15)

56 / 57

Questions?

57 / 57

