

Deep Learning for Life Science

Hossein Azizpour Assistant Professor in Machine Learning Robotics, Perception, and Learning (RPL) KTH

The time is right! necessary technological developments come together

A New Era of large publicly available data and benchmarks

powered by Sage Bionetworks

Grand Challenges in Biomedical Image Analysis

Year(s)	Challenge	Task
2009-2010	DIADEM	Neuron morphology
2012	PTC	Particle detection in time-lapse microscopy
2012	SNEMI23	Neurite segmentation in 2D
2012,2014	MITOS	Cell mitosis detection in histopathology
2012,2014	DM3D	3D deconvolution microscopy
2013-2015	CTC	Cell segmentation and tracking
2013	SMLM	Single-molecule localization
2013	SNEMI3D	Neurite segmentation in 3D
2013	AMIDA	Cell mitosis detection in histopathology
2014,2015	OCCIS	Overlapping cell segmentation in cancer
2014	MITOS-ATYPIA	Mitosis detection and cancer scoring
2015	GLAS	Gland segmentation in histopathology
2015	NCC	Nucleus counting in multichannel micro.
2015-2016	BigNeuron	Large-scale 3D neuron reconstruction
2016-2017	CAMELYON	Cancer metastasis detection
2017	DREAM	Breast cancer detection
2017	CYTO	Cell atlas protein localization

EDITORIAL REVIEW Editorial Bioimage informatics: a new category in Bioinformatics PLOS COMPUTATIONAL OPEN CACCESS Freely evailable online Education Chapter 17: Bioimage Informatics for Systems Pharmacology hai Li, Zheng Yin, Guangxu Jin, Hong Zhao, Stephen T. C. Wong* Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of and super-cellular (organ, organ enity, Houston, Texas, United States of America This category also encourages la nethods/applications/softwa es on extracting and analyzing qua bstract: Recent advances in auto-1. Introduction cyber-infrastructures complitatives tive phenotypic data automatically from large amounts of cell images with apnated high-resolution fluorescence recognition, etc.) for such large-sca The old adage that a picture is worth a nicroscopy and robotic handling of multiple heterogeneous dataset thousand words certainly applies to the proaches in image analysis. ave made the systematic effective study of diver ogical changes within a lation of cells possibl ariety of perturbations mpounds, metal cat PERSPECTIVE terference (RNAi). Cell ased studies deviate f nature microscopy stud ells, and could provi biotechn tatistical power for dra mental observations ons, However, it is o hanually extract and g otypic changes fro mounts of complex merated. Thus, bioi s approaches are need nd objectively quantify he image data. This pa Imagining the future of bioimage analysis overview of the bio tics challenges and a hade-based studies for arget discovery. The c Erik Meijering¹, Anne E Carpenter², Hanchuan Peng³, Fred A Hamprecht⁴ & Jean-Christophe Olivo-Mar abilities of image b 10 kilobytes size. Today's three spatial d s, multiple w Leading Edge resulting for powerfu e data, a new age informati , image analy forces in creat **Computer Vision in Cell Biology** dly software to on. The ultima th computer Gaudenz Danuser¹ ting high-level 'Harvard Medical School, 240 Longwood Avenue, Boston, MA 02140, USA periments, wl Correspondence: gaudenz_danuser@hms.harvard.edu DOI 10.1016/j.cell.2011.11.001 se experit from basic bio Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists to make o for visualization and measurement, interpretation of image content, i.e., the selection of events

Vol. 28 no. 8 2012, doi:10.1093/bioinfor FOCUS ON BIOIMAGE INFORMATICS COMMENTARY Advance Access publication Ma ncia³ and Jonathan D. Wren⁴ stitute, VA 20147, USA, ²Wellcome Trust Sand ogy and BioComputing Programme, Spanish orna Medical Research Foundation, Oklahoma Why bioimage informatics matters informatics now includes a new paper submission Gene Myers e scope described by the journal at its website as follo Informatics methods for the acquisition, anal Driven by the importance of spatial and physical factors in cellular processes and the size and complexity and visualization of images produced by modern a with an emphasis on the application of novel of modern image data, computational analysis of biological imagery has become a vital emerging techniques to solve challenging and sig sub-discipline of bioinformatics and computer vision and medical problems at the molecular, IIIre THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE Artificial intelligence powers detection of skin cancer from images PAGES 36 & 115

A New Era

FOCUS ON BIOIMAGE INFORMATICS

Excitement surrounding bioimage informatics

21 Board Certified Stanford Dermatologists 129,450 images of 2,032 diseases 1.41 million AI training images

Accuracy

21 Board Certified Stanford Dermatologists 129,450 images of 2,032 diseases 1.41 million AI training images

Accuracy

Lack of specialists

21 Board Certified Stanford Dermatologists 129,450 images of 2,032 diseases 1.41 million AI training images

Accuracy

Lack of specialists

Efficiency

21 Board Certified Stanford Dermatologists 129,450 images of 2,032 diseases 1.41 million Al training images

Professional contegens in White Caucardien Professional contegens in 1st Teremand gui

Lack of specialists

Cheaper

A New Era General Life Science

SciLifeLab

A Tissue-Based Map of the Human Proteome

human proteome mainly achieved through antibody-based methods combined with transcriptomics analysis across all major tissues and organs of the human body. A large number of lists cone be accessed with direct links to gene-specific images of the corresponding proteins in the different tissues and organs.

Read more

verily

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Deep Learning for Medical Science

OCH KONS

Deep Learning for Medical Science

Discriminative Models

Generative Models

Deep Learning for Medical Science

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Opportunities

- Large amount of data is available (stored somewhere, hopefully digitized)
 - High-content screening
 - Digital pathology
 - Radiology
 - Drug discovery
 - Genomics
 - Clinical data
 - ...
- Repetitive routine tasks
- Shortage of specialists, outsourcing diagnosis/prognosis to different countries
- Training procedure for new specialists
- Improved and/or consistent accuracy
- Efficient diagnosis process
- Interesting scientific challenges
- Private and public Investments
- Last but not least, direct impact on human lives

Challenges

- Reliability
 - Interpretability
 - Uncertainty
- Recall is extremely important, precision also very important
- Public scrutiny for automated systems and AI in general
- Data standardization
- Different imaging equipment with different internal parameters and operator settings
- Multi-modal data
- Non-Euclidean data
- Bias (regional, temporal, etc.). Fair machine learning.
- Annotation cost (specialists' time are precious/expensive)
- Ambiguous definitions → Disagreement among specialists
- Privacy Issues with data collection
- Reverse engineering networks
- Inherently noisy labels
- Deep learning is data-hungry

Challenges

- Reliability
 - Interpretability
 - Uncertainty
- Recall is extremely important, precision also very important
- Public scrutiny for automated systems and AI in general
- Data standardization
- Different imaging equipment with different internal parameters and operator settings
- Multi-modal data
- Non-euclidean data
- Bias (regional, temporal, etc.). Fair machine learning.
- Annotation cost (specialists' time are precious/expensive)
- Ambiguous definitions → Disagreement among specialists
- Privacy Issues with data collection
- Reverse engineering networks
- Inherently noisy labels
- Deep learning is data-hungry

Contents

KTH VETENSKAP OCH KONST

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Medical Projects

- Histopathology
- Radiology
- Standard camera

Medical Projects

- Histopathology
- Radiology 🗸
- Standard camera

*All women in Sweden between 40 and 74 are invited for screening every 18 to 24 months.

Critical shortage of radiologists

Limitations in Computer aided detection (CAD)

Can Computer-aided Detection Be Detrimental to Mammographic Interpretation?¹

Liane E. Philpotts, MD

Radiology

one of the most difficult tasks in likely be made less error prone with the ammographic interpretation is seems obvious that this difficult task could all of radiology. Reading mam- help of computer programs. However, mograms can be more of an art than a how much is art and how much is sciscience. Breast parenchymal patterns are ence? How can a computer be expected not stable between patients, between left to operate in a very imperfect system (ie, and right breasts, and even within the variable mammograms and differing same breast from year to year in the same breast cancer patterns) at a level that patient. Positioning, particularly in the would be clinically relevant (ie, not missmediolateral oblique projection, and ing any or many cancers) without causing the amount of compression applied are more problems (eg, many false-positive variable from examination to examina- results)? It is a lot to ask, even of a comtion. Breast cancer has a varied appear- puter. ance on mammograms, from the obvious

spiculated masses, to very subtle asym metries noted on only one view, to faint calcifications seen only with full digital resolution or a magnifying glass. The large volume of cases requiring interpretation in many practices is also daunting, tant differences in the CAD studies that given the number of women in the population for whom yearly screening mammography is recommended. Task repetition and fatigue combine to make missing sults of some of the early studies, which the subtle signs of breast cancer a very were performed more by using retrospecreal possibility, but one that can have serious consequences. Given these difficulties, it is not sur- task for it was intended-that is, increas-

prising that approximately 20% of caning cancer detection (1-7). Such studies cers are known to be missed at mammography (1-3). Some of this is because of crease, in the cancer detection rates for the reduced sensitivity of mammography radiologists with the use of CAD. There in the detection of lesions in dense breast was initially a great deal of excitement tissues. But even if a lesion is visible on over the concept of CAD and the results the images, the combination of the vari- of these early studies.

rsity School of Medicine, New Haven, Conn. Received April 20, 2009; revision requested April 29; revision red June 11: final version accepted June 11. Address dence to the author, 333 Cedar St. PO Box

Published online

CAD Studies and How They Differ The literature about CAD is somewhat confusing and varies in both modeling and validity of results. There are some imporhave been published. While that does not negate the results, it does throw into

TROVERSIES

question the validity of some studies. Re tive analyses or computer modeling, suggested that CAD can achieve the main showed an increase, or potential in-

However, much of the early literature mammograms, as stated above, as well as was based on retrospective studies. That the interpreting radiologist's threshold for is, CAD was applied to mammograms both detecting and deciding to act on (ie, with known cancers, and the images were recall) such lesions, affects the reading. reviewed to determine if CAD marked Accuracy in mammographic interpreta- the cancers. Such studies were pertion depends on many factors, of which formed in an artificial study environment experience and volume of studies read This is known as the "laboratory effect

Limitations of CAD

Clinical success depends on CAD having a high sensitivity, a reasonable specificity, and the reader taking appropriate action when interpreting the CAD prompts. All of these features work in conjunction, and all need to be optimized for the system to be valuable. Because mammography is an imperfect system, particularly in the detection of many of the more subtle cancers in denser breast tissues, to have reasonable sensitivity, the false-positive rate of CAD prompts must be high; thus, the specificity is low. Thus, the balance is not easy to achieve.

Difficult cases result in unacceptably high FP rate

0.1148/radiol.2531090689 tadiology 2009: 253:17-22 From the Department of Diagnostic Radiology, Yale Uni-

able presentation of breast cancer on

MammoAl

KAROLINSKA UNIVERSITETSSJUKHUSET

Optimized Workflow

Massive dataset:

every mammogram in Stockholms län (2008 – 2015)

INbreast

Total: 410 images Cancer: 360 images

CBIS-DDSM

Total: 4,067 images Cancer: 855 images

Deep Learning for Mammography

Tumor Detection Network (CAD) and Risk Estimation

2011-10-31, 12:28:45 ANONATVNRB12B 1820398 Normal 1/5 C: 4523;5; W: 3505;0 Synkgrupp: 1

R 👓 >

EMLO 82 mm, 0,0094 dGy, 35 kV, 19 mAs Normal 1/5

Right MLO

Left MLO

2014-08-29, 13:28:05 ANONMPVNRB11R 1154848 User 1/5 C: 2227, 2, W: 2304,0 Synkgrupp: 1

Left MLO

IMIO

Tumor detection

Based on state-of-the-art Inception-ResNet¹ architecture

¹ Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." arXiv preprint arXiv:1602.07261 (2016).

Training the network

Modified the pretrained network (ImageNet) so it is fully convolutional

First, trained the network to localize tumors using existing annotated datasets (semi-supervised learning)

Dream Total: 500 images Cancer: 32 images

CBIS-DDSM

Total: 4,067 images Cancer: 855 images

INbreast

Total: 410 images Cancer: 360 images

ing examples from a few thousand

Data augmentation – generated n

random crops

aspect ratio

contrast

brightness

Prediction 0.9 08 0.6 0.5 0.4 0.3 0.2

0

0.1

[Dembrower, Azizpour, Smith, Konuk, Strand "TRAINING A DEEP LEARNING NETWORK TO ASSESS BREAST CANCER RISK". , CARS 2018]

Risk Estimation

- Risk: risk of a woman developing cancer at some point in future
- Positive set: prior and contra-lateral mammograms

Figure 1 Representations of the 4 Breast Imaging Reporting and Data System (BL-RADS) breast density qualitative and quantitat assessments. A) BL-RADS 1: almost entirely fat; B) BL-RADS 2: scattered fibroglandular densities; C) BL-RADS 3: heterogeno dense; and D) BL-RADS 4: extremely dense.
--

Method	AUC	Odds Ratio (95% CI)
Deep Learning Risk	64%	5.32 (2.39-9.69)
Mammographic Density Risk	57%	1.96 (1.23-3.11)

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Knowledge Transfer

SOURCE

TARGET

Transfer Learning

• when $Y_s \neq Y_t$ or $P_s(Y_s|X)$

Human detection

KTH vetenskap och konst

Horse detection

• Fine tuning is the most common way

[source: gluon.mxnet.io]

	Target task											
Factor	Source task ImageNet		Instance retrieval									
Early stopping		I	Don't do it 🗕									
Network depth		As d	eep as possibl	e —								
Network width	Wider — Moderately wide —											
Diversity/Densi	ty <u> </u>	sses better	r than more in	nages per	class							
Fine-tuning	- Yes, more	e improve	ment with mo	re labelle	d data —							
Dim. reduction	– Original din	n ———		- Reduced	d dim 							
Rep. layer	- Later layers	s		Earlier	layers →							

Increasing distance from ImageNet

Image Classification	Attribute Detection	Fine-grained Recognition	Compositional	Instance Retrieval
PASCAL VOC Object [9]	H3D human attributes [6]	Cat&Dog breeds [29]	VOC Human Action [9]	Holiday scenes [17]
MIT 67 Indoor Scenes [33]	Object attributes [10]	Bird subordinate [43]	Stanford 40 Actions [46]	Paris buildings [31]
SUN 397 Scene [45]	SUN scene attributes [30]	102 Flowers [27]	Visual Phrases [34]	Sculptures [4]

Width vs Depth

[Azizpour et al. Factors of Transferability for a Generic ConvNet Representation, PAMI 2016]

Which Layer?

Multiple Representations

	Image	Image Classification			te Detection	Fine-grained Recognition			Fine-grained Recognition			Compositional	Inst	ance Reti	rieval
Source task	VOC07	MIT	SUN	H3D	UIUC	Pet	CUB	Flower	Stanf. Act40	Oxf.	Scul.	UKB			
ImageNet	71.6	64.9	49.6	73.8	90.4	78.4	62.7	90.5	58.9	71.2	52.0	93.0			
Places	68.5	69.3	55.7	68.0	88.8	49.9	42.2	82.4	53.0	70.0	44.2	88.7			
Hybrid	72.7	69.6	56.0	72.6	90.2	72.4	58.3	89.4	58.2	72.3	52.3	92.2			
Concat	73.8	70.8	56.2	74.2	90.4	75.6	60.3	90.2	59.6	72.1	54.0	93.2			

Diversity vs Density

Optimizing Transferability Factors are Important!

	Image Classification		ication	Attribute Detection		Fine-grained Recognition			Co	Compositional			Instance Retrieval				
	VOC07	MIT	SUN	SunAtt	UIUC	H3D	Pet	CUB	Flower	VOCa.	Act40	Phrase	Holid.	UKB	Oxf.	Paris	Scul.
non- ConvNet	[38] 71.1	[25] 68.5	[44] 37.5	[30] 87.5	[42] 90.2	[50] 69.1	[29] 59.2	[12] 62.7	[20] 90.2	[28] 69.6	[46] 45.7	[34] 41.5	[40] 82.2	[51] 89.4	[40] 81.7	[40] 78.2	[4] 45.4
Deep Standard	71.8	64.9	49.6	91.4	90.6	73.8	78.5	62.8	90.5	69.2	58.9	77.3	86.2	93.0	73.0	81.3	53.7
Deep Optimized ⁴	80.7	71.3	56.0	92.5	91.5	74.6	88.1	67.1	91.3	74.3	66.4	82.3	90.0	96.3	79.0	85.1	67.9
Err. Reduction	32%	18%	13%	13%	10%	4%	45%	12%	8%	17%	18%	22%	28%	47%	22%	20%	31%
Source Task	ImgNet	Hybrid	Hybrid	Hybrid	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	Hybrid	ImgNet	ImgNet	ImgNet	ImgNet
Network Width	Medium	Medium	Medium	Medium	Large	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium
Network Depth	16	8	8	8	8	16	16	16	16	16	16	16	8	8	16	16	16
Rep. Layer	last	last	last	last	2nd last	2nd last	2nd last	3rd last	3rd last	3rd last	3rd last	3rd last	4th last	4th last	4th last	4th last	4th last
PCA	×	×	×	×	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pooling	×	×	×	×	X	X	×	×	X	×	×	×	1×1	1×1	2×2	2×2	3 imes 3

• when $P_s(X) \neq P_t(X)$

amazon.com

consumer images

DDSM

INBREAST

DREAM

There is usually the assumption that samples drawn from $P_s(X)$ have a corresponding sample in $P_t(X)$.

- Supervised Domain Adaptation
- Unsupervised Domain Adaptation
- Directly adapting the model parameters [Rozantsev et al. 2017]
- Learning a common embedding space [Ganin et al 2015, 2016]
- Adapting in the input domain [Bousmalis et al. 2016 Liu et al 2017]

[Ganin et al. Domain-adversarial training of neural networks, JMLR 2016]

 $\min_{E_1, E_2, G_1, G_2} L_{VAE_1}(E_1, G_1) + L_{CC_1}(E_1, G_1, E_2, G_2) + V_{LSGAN}(E_1, G_1)$ $L_{VAE_2}(E_2, G_2) + L_{CC_2}(E_2, G_2, E_1, G_1) + V_{LSGAN}(E_2, G_2)$

[Liu et al. Unsupervised Image-to-Image Translation Networks, NIPS 2017]

[Tao Wang, Adapting multiple datasets for better mammography tumor detection, KTH 2018]

Mask Generator 1 \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} Mask_{x1}

+ $L_{seg}(E_2, G_1) + L_{seg}(E_1, G_2)$

[Tao Wang, Adapting multiple datasets for better mammography tumor detection, KTH 2018]

[Tao Wang, Adapting multiple datasets for better mammography tumor detection, KTH 2018] [Ronneberger et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation" MICCAI 2015

[Tao Wang, Adapting multiple datasets for better mammography tumor detection, KTH 2018]

		Pixel Level Metrics					Instance Level Metrics					
Training	Testing	Dico	Procision	Recall	MCC	IoU	P	B	$P_{0.5}$	$R_{0.5}$	AP	AR
dataset	dataset	Dice	1 100151011		IVICC		1 0.25	$n_{0.25}$				
CBIS	INBreast	0.1170	0.1965	0.1648	0.2029	0.1188	0.16	0.32	0.12	0.24	0.1072	0.2145
CBIS	Transferred	0 1/12	0.1544	0 2034	0 2334	0 2108	0 1 / 67	0.44	0 1 2 2	0.4	0 1151	0 3/55
CDIS	INBreast	0.1412	0.1344	0.2934	0.2334	0.2108	0.1407	0.44	0.155	0.4	0.1151	0.3433
Transferred	INBroast	0 102/	0.2521	0 2076	0 2277	0 2002	0.25	0.56	0 2221	0.52	0 1006	0 4 4 7 2
CBIS	Indiedst	0.1934	0.2321	0.3070	0.3377	0.2992	0.25	0.50	0.2321	0.52	0.1990	0.4472

[Tao Wang, Adapting multiple datasets for better mammography tumor detection, KTH 2018]

Synthetic-to-Real Adaptation

method for driving scenarios", NeurIPS MLIT workshop 2018]

Synthetic-to-Real Adaptation

[Bujwid, Marti, Azizpour, Pieropan, "GANtruth – an unpaired image-to-image translation method for driving scenarios", NeurIPS MLIT workshop 2018]

Synthetic-to-Real Adaptation SYNTHIA-Seq

SYNTHIA-RAND-CVPR16

[Bujwid, Marti, Azizpour, Pieropan, "GANtruth – an unpaired image-to-image translation method for driving scenarios", NeurIPS MLIT workshop 2018]

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Why do we care about uncertainty?

And many more...

OCH KONS

What do we mean by modelling uncertainty A regression example

Bayesian Modeling for epistemic uncertainty

$$P(y|x,D) = \int P(y|x,D,\theta) P(\theta|D) d\theta$$

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Uncertainty with Deep Networks

These approaches require redesigning the architecture and training procedure and are usually computationally expensive to train

- Directly output probability distributions [Le et al. 2005, Huang et al. 2016, Kendall&Gal 2017]
- Place distribution over model parameters [Denker&LeCun 1991, Neal 1995]
- Variational Approximation [Hinton&Camp 1993, Graves 2011, Blundell et al. 2015]
- Expectation Propagation [Jylanki et al. 2014, Soudry et al. 2014]
- Probabilistic Backpropagation [Rezenede et al. 2014, Lobato&Adams 2015]

Uncertainty with Deep Networks No change in the training procedure

- Monte Carlo Dropout [Gal&Ghahramani 2016]
- Batch Normalization Dropout [Azizpour, Teye, Smith 2018]
- Frequentist Uncertainty [Lakshminarayanan 2017]
- Other approaches (e.g. entropy of the softmax distribution)

Stochastic Regularization as VI

Stochastic Regularization Techniques (SRT)

> as approximate Bayesian inference

[Gal&Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, JMLR 2016]

DropOut

$$\theta_i = \begin{cases} w_i \text{ with prob } p \\ 0 \text{ with prob } 1 - p \end{cases}$$

[Gal&Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, JMLR 2016]

Batch Normalization

[Teye, Azizpour, Smith, "Bayesian Uncertainty Estimation For Batch Normalized Deep Networks" arXiv 2018]

Toy Dataset

[Teye, Azizpour, Smith, "Bayesian Uncertainty Estimation For Batch Normalized Deep Networks" arXiv 2018]

Quantitative Results Regression - Normalized Measure

 $\sum_{i=1}^{n} \log P(\widehat{y}_i = y_i)$

Lower bound variance: au^{-1}

Upper bound variance: σ^*

	PLL						
Dataset	MCBN	MCDO					
Boston Housing	10.49 ****	5.51 ****					
Concrete	-36.36 **	10.92 ****					
Energy Efficiency	10.89 ****	-14.28 *					
Kinematics 8nm	1.68 ***	-0.26 ns					
Power Plant	0.33 **	3.52 ****					
Protein Tertiary Structure	2.56 ****	6.23 ****					
Wine Quality (Red)	0.19 *	2.91 ****					
Yacht Hydrodynamics	45.58 ****	-41.54 ns					

[Teye, Azizpour, Smith, "Bayesian Uncertainty Estimation For Batch Normalized Deep Networks" arXiv 2018]
Quantitative Results Classification - CIFAR

Baseline (standard network with dataset-average BN): -0.32

	Number of stochastic forward passes							
	1	2	4	8	16	32	64	128
PLL	36	32	30	29	29	28	28	28

Qualitative Results Error plot

Qualitative Results Semantic Segmentation - CamVid

Qualitative Results Semantic Segmentation – Pascal VOC

Qualitative Results Semantic Segmentation – Pascal VOC

Simple Recipe

- Take any pretrained network with batch normalization and/or dropout layers
- Calculate constant observation noise on training/validation set, call it τ⁻¹
- At test time, sample different batches and/or dropout masks, get the predictions set
- > Calculate the mean and standard deviation of the predictions, μ , σ
- > The new point estimate of our prediction is: μ
- > The associated uncertainty to it is: $\tau^{-1} + \sigma^2$

KTH VETENSKAP OCH KONST

Conclusion

- Positive points
 - Standard training
 - Simple algorithm
 - Vast applicability
- Negative points
 - Lots of assumptions
 - Under/over estimating the uncertainty
 - Considerable computation at test time

Contents

- Problem Definition
- Opportunities and challenges
- An example pipeline
- Domain Adaptation
- Uncertainty Estimation
- Future Directions

Future Directions

- Geometric Deep Learning
- Side information (clinical information) as well as privileged information
- In a general scale: Multi-modal learning (unformatted textual description, images, clinical information, sequencing data)
- Probabilistic Uncertainty
- Weakly supervised learning (finding patterns that specialists are not aware of) new biomarkers, would make big leaps in life science
- Causality
- With missing data
- Encrypted networks
- Learning with noisy labels

Questions

