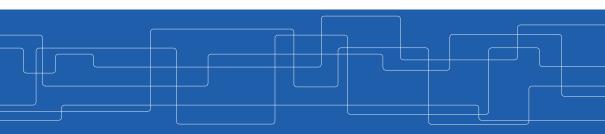


Introduction

Amir H. Payberah payberah@kth.se 29/10/2019



Course Information

Course Objective

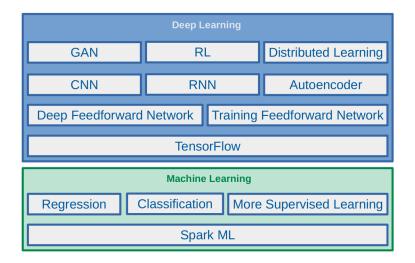
► This course has a system-based focus.

Course Objective

- ► This course has a system-based focus.
- ▶ Learn the theory of machine learning and deep learning.

- ► This course has a system-based focus.
- ▶ Learn the theory of machine learning and deep learning.
- ► Learn the practical aspects of building machine learning and deep learning algorithms using data parallel programming platforms, such as Spark and TensorFlow.

Topics of Study

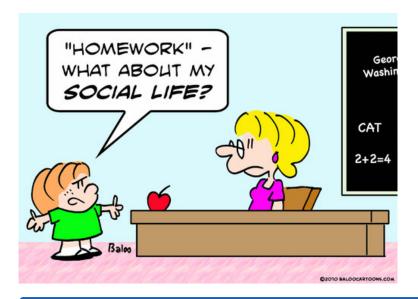


▶ ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.

- ▶ ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ▶ ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.

- ▶ ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ▶ ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.
- ► ILO3: explain the principles of distributed learning.

- ▶ ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ▶ ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.
- ► ILO3: explain the principles of distributed learning.
- ▶ ILO4: implement ML/DL algorithms using Spark and TensorFlow.



► Task1: the review questions (P/F)

- ► Task1: the review questions (P/F)
- ► Task2: the reading assignments (P/F)

- ► Task1: the review questions (P/F)
- ► Task2: the reading assignments (P/F)
- ► Task3: the lab assignments (A-F)

- ► Task1: the review questions (P/F)
- ► Task2: the reading assignments (P/F)
- ► Task3: the lab assignments (A-F)
- ► Task4: the final project (A-F)

- ► Task1: the review questions (P/F)
- ► Task2: the reading assignments (P/F)
- ► Task3: the lab assignments (A-F)
- ► Task4: the final project (A-F)
- ► Task5: the final exam (A-F)

How Each ILO is Assessed?

	Task1	Task2	Task3	Task4	Task5
ILO1	X				Х
ILO2	X				Х
ILO3		X			Х
ILO4			X	×	

Task1: The Review Questions (P/F)

- ► One review question per week.
- ► Questions about the lectures.

► To read and review scientific papers.

- ► To read and review scientific papers.
- ► Choose one paper from the given pool of papers (or propose youself).

- ► To read and review scientific papers.
- ► Choose one paper from the given pool of papers (or propose youself).
- ▶ Review the papers, and write a report for each one.

- ► To read and review scientific papers.
- Choose one paper from the given pool of papers (or propose youself).
- ▶ Review the papers, and write a report for each one.
- Write a two-page report about the motivation, the contribution, and the solution of the paper and also write their strong/weak points.

Task3: The Lab Assignments (A-F)

- ► Two lab assignments.
- ► Lab1: Regression using Spark ML
- ► Lab2: CNN and RNN using Tensorflow

Task4: The Final Project (A-F)

- ▶ One final project.
- ▶ Proposed by students and confirmed by the teacher.
- ▶ Demonstrated as a demo and a short report.

Task5: The Final Exam (A-F)

- ▶ A number of questions from different parts of the course.
- ► Assesses the theoretical knowledge of students about covered platforms in the course.

How to Submit the Assignments?

- ► Through the Canvas site.
- ▶ Students will work in groups of two on all the Tasks 1-4.

The Final Grade

▶ The final grade is the average of the two labs, the project, and the final exam.

The Final Grade

- ▶ The final grade is the average of the two labs, the project, and the final exam.
- ► To compute it, map A-E to 5-1, and take the average.

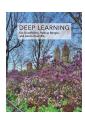
- ▶ The final grade is the average of the two labs, the project, and the final exam.
- ▶ To compute it, map A-E to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.

- ▶ The final grade is the average of the two labs, the project, and the final exam.
- ▶ To compute it, map A-E to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.
- ► The half grades will be rounded up, if you submit the assignments before their deadlines, otherwise they will be rounded down.

- ▶ The final grade is the average of the two labs, the project, and the final exam.
- ▶ To compute it, map A-E to 5-1, and take the average.
- ► The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.
- ► The half grades will be rounded up, if you submit the assignments before their deadlines, otherwise they will be rounded down.
- ▶ To pass the course you should get at least E in all the above tasks.

The Course Material

- ► Hands-on machine learning with Scikit-Learn and TensorFlow, 2nd Edition, A. Geron, O'Reilly Media, 2019
- ▶ Deep learning, I. Goodfellow et al., Cambridge: MIT press, 2016
- ► Spark The Definitive Guide, M. Zaharia et al., O'Reilly Media, 2018.



https://id2223kth.github.io

The Course Overview

Sheepdog or Mop

Chihuahua or Muffin

Barn Owl or Apple

Raw Chicken or Donald Trump

Artificial Intelligence Challenge

► Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.

Artificial Intelligence Challenge

- ► Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.
- ▶ The challenge is to solve the tasks that are hard for people to describe formally.

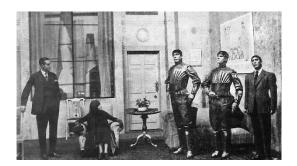
Artificial Intelligence Challenge

- ► Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.
- ► The challenge is to solve the tasks that are hard for people to describe formally.
- Let computers to learn from experience.

History of Al

1920: Rossum's Universal Robots (R.U.R.)

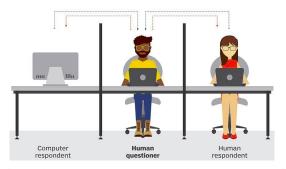
- ► A science fiction play by Karel Čapek, in 1920.
- ► A factory that creates artificial people named robots.



[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]

1950: Turing Test

- ▶ In 1950, Turing introduced the Turing test.
- ▶ An attempt to define machine intelligence.



[https://searchenterpriseai.techtarget.com/definition/Turing-test]

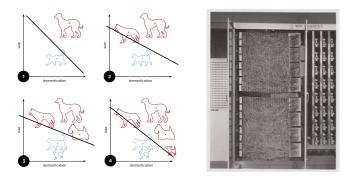
1956: The Dartmouth Workshop

- ▶ Probably the first workshop of Al.
- ▶ Researchers from CMU, MIT, IBM met together and founded the Al research.

[https://twitter.com/lordsaicom/status/898139880441696257]

1958: Perceptron

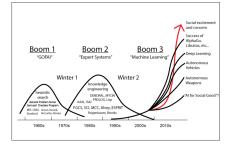
- ► A supervised learning algorithm for binary classifiers.
- ▶ Implemented in custom-built hardware as the Mark 1 perceptron.



[https://en.wikipedia.org/wiki/Perceptron]

1974–1980: The First Al Winter

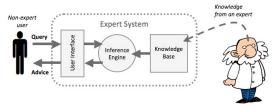
- ▶ The over optimistic settings, which were not occurred
- ► The problems:
 - Limited computer power
 - Lack of data
 - Intractability and the combinatorial explosion



[http://www.technologystories.org/ai-evolution]

1980's: Expert systems

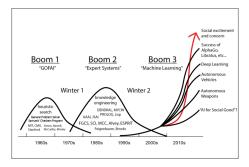
- ▶ The programs that solve problems in a specific domain.
- ► Two engines:
 - Knowledge engine: represents the facts and rules about a specific topic.
 - Inference engine: applies the facts and rules from the knowledge engine to new facts.



[https://www.igcseict.info/theory/7_2/expert]

1987-1993: The Second Al Winter

- After a series of financial setbacks.
- ▶ The fall of expert systems and hardware companies.



[http://www.technologystories.org/ai-evolution]

▶ The first chess computer to beat a world chess champion Garry Kasparov.

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]

2012: AlexNet - Image Recognition

- ► The ImageNet competition in image classification.
- ► The AlexNet Convolutional Neural Network (CNN) won the challenge by a large margin.

2016: DeepMind AlphaGo

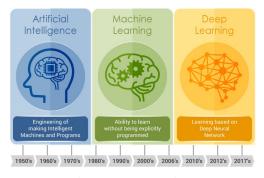
- ▶ DeepMind AlphaGo won Lee Sedol, one of the best players at Go.
- ▶ In 2017, DeepMind published AlphaGo Zero.
 - The next generation of AlphaGo.
 - It learned Go by playing against itself.

[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]

- ▶ An Al system for accomplishing real-world tasks over the phone.
- ► A Recurrent Neural Network (RNN) built using TensorFlow.

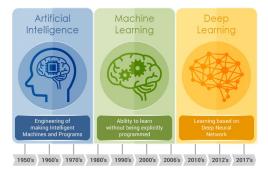
Al Generations

- ► Rule-based AI
- ► Machine learning
- ► Deep learning



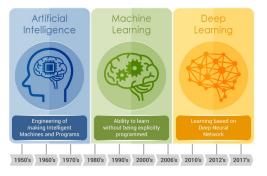
Al Generations - Rule-based Al

- ► Hard-code knowledge
- ► Computers reason using logical inference rules



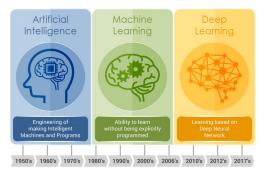
Al Generations - Machine Learning

- ► If AI systems acquire their own knowledge
- ► Learn from data without being explicitly programmed



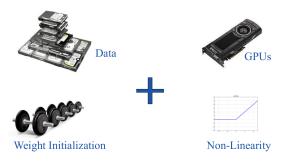
Al Generations - Deep Learning

- ► For many tasks, it is difficult to know what features should be extracted
- ▶ Use machine learning to discover the mapping from representation to output



Why Does Deep Learning Work Now?

- ► Huge quantity of data
- ► Tremendous increase in computing power
- ► Better training algorithms



Machine Learning and Deep Learning

- ▶ A ML algorithm is an algorithm that is able to learn from data.
- ► What is learning?

Learning Algorithms

- ▶ A ML algorithm is an algorithm that is able to learn from data.
- ► What is learning?
- ▶ A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. (Tom M. Mitchell)

► A spam filter that can learn to flag spam given examples of spam emails and examples of regular emails.

[https://bit.ly/2oiplYM]

- ► A spam filter that can learn to flag spam given examples of spam emails and examples of regular emails.
- ► Task T: flag spam for new emails
- ► Experience E: the training data
- ▶ Performance measure P: the ratio of correctly classified emails

[https://bit.ly/2oiplYM]

► Given dataset of prices of 500 houses, how can we learn to predict the prices of other houses, as a function of the size of their living areas?

[https://bit.ly/2MyiJUy]

- ► Given dataset of prices of 500 houses, how can we learn to predict the prices of other houses, as a function of the size of their living areas?
- ► Task T: predict the price
- ► Experience E: the dataset of living areas and prices
- ▶ Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJUy]

Types of Machine Learning Algorithms

► Supervised learning

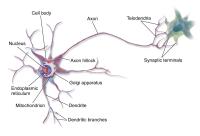
► Unsupervised learning

Types of Machine Learning Algorithms

- Supervised learning
 - Input data is labeled, e.g., spam/not-spam or a stock price at a time.
 - Regression vs. classification
- Unsupervised learning
 - Input data is unlabeled.
 - Find hidden structures in data.

From Machine Learning to Deep Learning

- ▶ Deep Learning (DL) is part of ML methods based on learning data representations.
- ▶ Mimic the neural networks of our brain.



[A. Geron, O'Reilly Media, 2017]

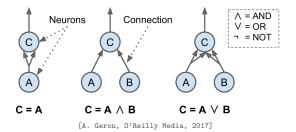
Artificial Neural Networks

► Artificial Neural Network (ANN) is inspired by biological neurons.

- ► Artificial Neural Network (ANN) is inspired by biological neurons.
- ▶ One or more binary inputs and one binary output

Artificial Neural Networks

- ► Artificial Neural Network (ANN) is inspired by biological neurons.
- One or more binary inputs and one binary output
- Activates its output when more than a certain number of its inputs are active.

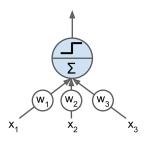


The Linear Threshold Unit (LTU)

▶ Inputs of a LTU are numbers (not binary).

The Linear Threshold Unit (LTU)

- ▶ Inputs of a LTU are numbers (not binary).
- ▶ Each input connection is associated with a weight.
- ► Computes a weighted sum of its inputs and applies a step function to that sum.

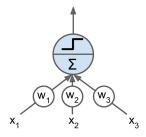


The Linear Threshold Unit (LTU)

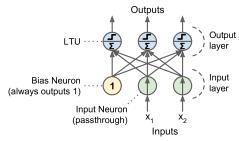
- ▶ Inputs of a LTU are numbers (not binary).
- ▶ Each input connection is associated with a weight.
- ► Computes a weighted sum of its inputs and applies a step function to that sum.

$$ightharpoonup z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = \mathbf{w}^\mathsf{T} \mathbf{x}$$

•
$$\hat{y} = \text{step}(z) = \text{step}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$



- ► The perceptron is a single layer of LTUs.
- ▶ The input neurons output whatever input they are fed.
- ▶ A bias neuron, which just outputs 1 all the time.

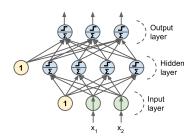


Deep Learning Models

- ► Deep Neural Network (DNN)
- ► Convolutional Neural Network (CNN)
- ► Recurrent Neural Network (RNN)
- Autoencoders
- ► Generative Adversarial Network (GAN)

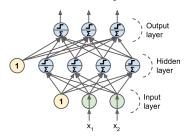
Deep Neural Networks

- ► Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).



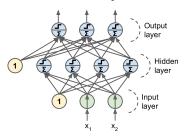
Deep Neural Networks

- ► Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).
- ▶ Deep Neural Network (DNN) is an ANN with two or more hidden layers.



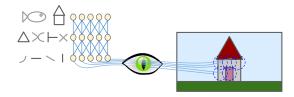
Deep Neural Networks

- ► Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).
- ▶ Deep Neural Network (DNN) is an ANN with two or more hidden layers.
- ► Backpropagation training algorithm.



Convolutional Neural Networks

▶ Many neurons in the visual cortex react only to a limited region of the visual field.



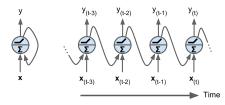
Convolutional Neural Networks

- Many neurons in the visual cortex react only to a limited region of the visual field.
- ► The higher-level neurons are based on the outputs of neighboring lower-level neurons.



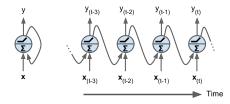
Recurrent Neural Networks

▶ The output depends on the input and the previous computations.



Recurrent Neural Networks

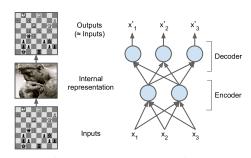
▶ The output depends on the input and the previous computations.



- ▶ Analyze time series data, e.g., stock market, and autonomous driving systems.
- ▶ Work on sequences of arbitrary lengths, rather than on fixed-sized inputs.

Autoencoders and Generative Models

- ▶ Learn efficient representations of the input data, without any supervision.
 - With a lower dimensionality than the input data.
- ▶ Generative model: generate new data that looks very similar to the training data.
- ▶ Preserve as much information as possible.



[A. Geron, O'Reilly Media, 2017]

Linear Algebra Review

- ► A vector is an array of numbers.
- ► Notation:
 - Denoted by **bold** lowercase letters, e.g., **x**.
 - x_i denotes the ith entry.

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

Matrix and Tensor

- ► A matrix is a 2-D array of numbers.
- ▶ A tensor is an array with more than two axes.
- ► Notation:
 - Denoted by **bold** uppercase letters, e.g., **A**.
 - a_{ij} denotes the entry in ith row and jth column.
 - If A is $m \times n$, it has m rows and n columns.

$$\boldsymbol{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,n} \end{bmatrix}$$

Matrix Addition and Subtraction

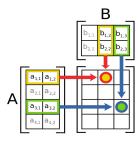
▶ The matrices must have the same dimensions.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} + \begin{bmatrix} \mathbf{e} & \mathbf{f} \\ \mathbf{g} & \mathbf{h} \end{bmatrix} = \begin{bmatrix} \mathbf{a} + \mathbf{e} & \mathbf{b} + \mathbf{f} \\ \mathbf{c} + \mathbf{g} & \mathbf{d} + \mathbf{h} \end{bmatrix}$$

Matrix Product

- ▶ The matrix product of matrices **A** and **B** is a third matrix **C**, where $\mathbf{C} = \mathbf{AB}$.
- ▶ If **A** is of shape $m \times n$ and **B** is of shape $n \times p$, then **C** is of shape $m \times p$.

$$\mathtt{c_{ij}} = \sum_{\mathtt{k}} \mathtt{a_{ik}} \mathtt{b_{kj}}$$



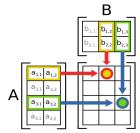
[https://en.wikipedia.org/wiki/Matrix_multiplication]

Matrix Product

- ightharpoonup The matrix product of matrices **A** and **B** is a third matrix **C**, where **C** = **AB**.
- ▶ If **A** is of shape $m \times n$ and **B** is of shape $n \times p$, then **C** is of shape $m \times p$.

$$\mathtt{c_{ij}} = \sum_{\mathtt{k}} \mathtt{a_{ik}} \mathtt{b_{kj}}$$

- Properties
 - Associative: (AB)C = A(BC)
 - Not commutative: AB ≠ BA



[https://en.wikipedia.org/wiki/Matrix_multiplication]

Matrix Transpose

▶ Swap the rows and columns of a matrix.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \\ \mathbf{e} & \mathbf{f} \end{bmatrix} \Rightarrow \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} \mathbf{a} & \mathbf{c} & \mathbf{e} \\ \mathbf{b} & \mathbf{d} & \mathbf{f} \end{bmatrix}$$

Matrix Transpose

▶ Swap the rows and columns of a matrix.

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \\ e & \mathbf{f} \end{bmatrix} \Rightarrow \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a & c & e \\ b & d & \mathbf{f} \end{bmatrix}$$

- Properties
 - $\mathbf{A}_{ij} = \mathbf{A}_{ji}^T$
 - If A is $m \times n$, then A^T is $n \times m$
 - $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$
 - $(AB)^T = B^TA^T$

▶ If **A** is a square matrix, its inverse is called A^{-1} .

$$AA^{-1} = A^{-1}A = I$$

▶ Where I, the identity matrix, is a diagonal matrix with all 1's on the diagonal.

$$\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \quad \mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

L^p Norm for Vectors

- ▶ We can measure the size of vectors using a norm function.
- ▶ Norms are functions mapping vectors to non-negative values.
- ► L¹ norm

$$||\mathbf{x}||_1 = \sum_{\mathtt{i}} |\mathtt{x}_\mathtt{i}|$$

L^p Norm for Vectors

- ▶ We can measure the size of vectors using a norm function.
- ▶ Norms are functions mapping vectors to non-negative values.
- ► L¹ norm

$$||\mathbf{x}||_1 = \sum_{\mathtt{i}} |\mathtt{x}_{\mathtt{i}}|$$

► L² norm

$$||\mathbf{x}||_2 = (\sum_i |x_i|^2)^{\frac{1}{2}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

L^p Norm for Vectors

- ▶ We can measure the size of vectors using a norm function.
- ▶ Norms are functions mapping vectors to non-negative values.
- ▶ L¹ norm

$$||\mathbf{x}||_1 = \sum_{\mathbf{i}} |\mathbf{x}_{\mathbf{i}}|$$

► L² norm

$$||\mathbf{x}||_2 = (\sum_{i} |\mathbf{x}_i|^2)^{\frac{1}{2}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

▶ L^p norm

$$||\mathbf{x}||_p = (\sum_{i} |\mathbf{x}_i|^p)^{\frac{1}{p}}$$

Probability Review

- ▶ Random variable: a variable that can take on different values randomly.
- ▶ Random variables may be discrete or continuous.

Random Variables

- ▶ Random variable: a variable that can take on different values randomly.
- ► Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states

Random Variables

- ▶ Random variable: a variable that can take on different values randomly.
- Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states
 - Continuous random variable: real value

Random Variables

- ▶ Random variable: a variable that can take on different values randomly.
- Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states
 - Continuous random variable: real value
- ► Notation:
 - Denoted by an upper case letter, e.g., X
 - Values of a random variable X are denoted by lower case letters, e.g., x and y.

▶ Probability distribution: how likely a random variable is to take on each of its possible states.

Probability Distributions

- ▶ Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable X denotes the outcome of a coin toss.

Probability Distributions

- ▶ Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable X denotes the outcome of a coin toss.
 - The probability distribution of X would take the value 0.5 for X = head, and 0.5 for Y = tail (assuming the coin is fair).

Probability Distributions

- Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable X denotes the outcome of a coin toss.
 - The probability distribution of X would take the value 0.5 for X = head, and 0.5 for Y = tail (assuming the coin is fair).
- ► The way we describe probability distributions depends on whether the variables are discrete or continuous.

- ► Probability mass function (PMF): the probability distribution of a discrete random variable X.
- ▶ Notation: denoted by a lowercase p.

- ► Probability mass function (PMF): the probability distribution of a discrete random variable X.
- ▶ Notation: denoted by a lowercase p.
 - E.g., p(x) = 1 indicates that X = x is certain
 - E.g., p(x) = 0 indicates that X = x is impossible

Discrete Variables

- ► Probability mass function (PMF): the probability distribution of a discrete random variable X.
- ▶ Notation: denoted by a lowercase p.
 - E.g., p(x) = 1 indicates that X = x is certain
 - E.g., p(x) = 0 indicates that X = x is impossible
- ► Properties:
 - The domain D of p must be the set of all possible states of X
 - $\forall x \in D(X), 0 \le p(x) \le 1$
 - $\sum_{x \in D(X)} p(x) = 1$

► Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

$$\forall \mathtt{x} \in \mathtt{D}(\mathtt{X}), \mathtt{y} \in \mathtt{D}(\mathtt{Y}), \mathtt{p}(\mathtt{X} = \mathtt{x}, \mathtt{Y} = \mathtt{y}) = \mathtt{p}(\mathtt{X} = \mathtt{x})\mathtt{p}(\mathtt{Y} = \mathtt{y})$$

► Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

$$\forall x \in D(X), y \in D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)$$

► E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of landing on the head side of the coin and rolling a 3 on the die is:

► Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

$$\forall x \in D(X), y \in D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)$$

► E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of landing on the head side of the coin and rolling a 3 on the die is:

$$p(X = head, Y = 3) = p(X = head)p(Y = 3) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

Conditional Probability

► Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

Conditional Probability

Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

► E.g., if 60% of the class passed both labs and 80% of the class passed the first labs, then what percent of those who passed the first lab also passed the second lab?

Conditional Probability

Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

- ► E.g., if 60% of the class passed both labs and 80% of the class passed the first labs, then what percent of those who passed the first lab also passed the second lab?
 - E.g., X and Y random variables for the first and the second labs, respectively.

$$p(Y = lab2 \mid X = lab1) = \frac{p(Y = lab2, X = lab1)}{p(X = lab1)} = \frac{0.6}{0.8} = \frac{3}{4}$$

▶ The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathtt{E}_{\mathtt{x} \sim \mathtt{p}}[\mathtt{X}] = \sum_{\mathtt{x}} \mathtt{p}(\mathtt{x})\mathtt{x}$$

▶ The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathtt{E}_{\mathtt{x} \sim \mathtt{p}}[\mathtt{X}] = \sum_{\mathtt{x}} \mathtt{p}(\mathtt{x})\mathtt{x}$$

► E.g., If $X : \{1,2,3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

► The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathbb{E}_{\mathbf{x} \sim p}[\mathbf{X}] = \sum_{\mathbf{x}} p(\mathbf{x})\mathbf{x}$$

► E.g., If
$$X : \{1, 2, 3\}$$
, and $p(X = 1) = 0.3$, $p(X = 2) = 0.5$, $p(X = 3) = 0.2$

•
$$E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$$

▶ The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$\begin{aligned} \text{Var}(\textbf{X}) &= \textbf{E}[(\textbf{X} - \textbf{E}[\textbf{X}])^2] \\ \text{Var}(\textbf{X}) &= \sum_{\textbf{x}} \textbf{p}(\textbf{x})(\textbf{x} - \textbf{E}[\textbf{X}])^2 \end{aligned}$$

▶ The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$\begin{aligned} \text{Var}(\textbf{X}) &= \textbf{E}[(\textbf{X} - \textbf{E}[\textbf{X}])^2] \\ \text{Var}(\textbf{X}) &= \sum_{\textbf{x}} \textbf{p}(\textbf{x})(\textbf{x} - \textbf{E}[\textbf{X}])^2 \end{aligned}$$

► E.g., If $X : \{1,2,3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

▶ The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$\begin{aligned} \text{Var}(\textbf{X}) &= \textbf{E}[(\textbf{X} - \textbf{E}[\textbf{X}])^2] \\ \text{Var}(\textbf{X}) &= \sum_{\textbf{x}} \textbf{p}(\textbf{x})(\textbf{x} - \textbf{E}[\textbf{X}])^2 \end{aligned}$$

- ► E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
 - $E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$
 - $Var(X) = 0.3(1-1.9)^2 + 0.5(2-1.9)^2 + 0.2(3-1.9)^2 = 0.49$

▶ The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$\begin{aligned} \text{Var}(\textbf{X}) &= \textbf{E}[(\textbf{X} - \textbf{E}[\textbf{X}])^2] \\ \text{Var}(\textbf{X}) &= \sum_{\textbf{x}} \textbf{p}(\textbf{x})(\textbf{x} - \textbf{E}[\textbf{X}])^2 \end{aligned}$$

- ► E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
 - $E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$
 - $Var(X) = 0.3(1 1.9)^2 + 0.5(2 1.9)^2 + 0.2(3 1.9)^2 = 0.49$
- \blacktriangleright The standard deviation, shown by σ , is the square root of the variance.

► The covariance gives some sense of how much two values are linearly related to each other.

$$\begin{aligned} \text{Cov}(\textbf{X},\textbf{Y}) &= \textbf{E}[(\textbf{X} - \textbf{E}[\textbf{X}])(\textbf{Y} - \textbf{E}[\textbf{Y}])] \\ \text{Cov}(\textbf{X},\textbf{Y}) &= \sum_{(\textbf{x},\textbf{y})} \textbf{p}(\textbf{x},\textbf{y})(\textbf{x} - \textbf{E}[\textbf{X}])(\textbf{y} - \textbf{E}[\textbf{Y}]) \end{aligned}$$

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
X	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
X	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$\mathtt{E}[\mathtt{X}] = \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2} \qquad \quad \mathtt{E}[\mathtt{Y}] = \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2$$

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
X	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$E[X] = \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2} \qquad E[Y] = \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2$$
$$Cov(X, Y) = \sum_{(x,y)} p(x,y)(x - E[X])(y - E[Y])$$

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
X	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$E[X] = \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2} \qquad E[Y] = \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2$$

$$Cov(X, Y) = \sum_{(x,y)} p(x, y)(x - E[X])(y - E[Y])$$

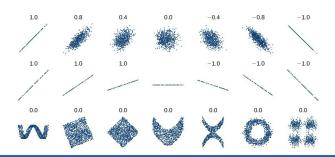
$$= \frac{1}{4} (1 - \frac{3}{2})(1 - 2) + \frac{1}{4} (1 - \frac{3}{2})(2 - 2) + 0(1 - \frac{3}{2})(3 - 2)$$

$$+0(2 - \frac{3}{2})(1 - 2) + \frac{1}{4} (2 - \frac{3}{2})(2 - 2) + \frac{1}{4} (2 - \frac{3}{2})(3 - 2) = \frac{1}{4}$$

Correlation Coefficient

► The Correlation coefficient is a quantity that measures the strength of the association (or dependence) between two random variables, e.g., X and Y.

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$$



Let $X : \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ .

- Let $X : \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ .
 - For six tosses of a coin, X: {h,t,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.

- Let $X : \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ .
 - For six tosses of a coin, X: {h,t,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.
- ▶ $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.

- Let $X : \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ .
 - For six tosses of a coin, X: {h,t,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.
- ▶ $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.
- ▶ $p(X = h \mid \theta)$ is the likelihood of θ given X = h.

- Let $X : \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ .
 - For six tosses of a coin, X: {h,t,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.
- ▶ $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.
- ▶ $p(X = h \mid \theta)$ is the likelihood of θ given X = h.
- Likelihood (L): a function of the parameters (θ) of a probability model, given specific observed data, e.g., X = h.

$$\mathtt{L}(\theta \mid \mathtt{X}) = \mathtt{p}(\mathtt{X} \mid \theta)$$

- ▶ The likelihood differs from that of a probability.
- ▶ A probability $p(X | \theta)$ refers to the occurrence of future events.
- ▶ A likelihood $L(\theta \mid X)$ refers to past events with known outcomes.

Maximum Likelihood Estimator

▶ If samples in X are independent we have:

$$\begin{split} L(\theta \mid X) &= p(X \mid \theta) = p(x^{(1)}, x^{(2)}, \cdots, x^{(m)} \mid \theta) \\ &= p(x^{(1)} \mid \theta) p(x^{(2)} \mid \theta) \cdots p(x^{(m)} \mid \theta) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta) \end{split}$$

Maximum Likelihood Estimator

▶ If samples in X are independent we have:

$$\begin{split} L(\theta \mid X) &= p(X \mid \theta) = p(x^{(1)}, x^{(2)}, \cdots, x^{(m)} \mid \theta) \\ &= p(x^{(1)} \mid \theta) p(x^{(2)} \mid \theta) \cdots p(x^{(m)} \mid \theta) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta) \end{split}$$

▶ The maximum likelihood estimator (MLE): what is the most likely value of θ given the training set?

$$\hat{\theta}_{\texttt{MLE}} = \arg\max_{\theta} \texttt{L}(\theta \mid \texttt{X}) = \arg\max_{\theta} \prod_{\texttt{i}=1}^{\texttt{m}} \texttt{p}(\texttt{x}^{(\texttt{i})} \mid \theta)$$

Maximum Likelihood Estimator - Example

- ► Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- ► Data: X: {h,t,t,t,h,t}

Maximum Likelihood Estimator - Example

- ► Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- ► Data: X : {h,t,t,t,h,t}
- ► The likelihood is

$$\begin{split} \mathsf{L}(\theta \mid \mathsf{X}) &= \mathsf{p}(\mathsf{X} \mid \theta) \\ &= \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \\ &= \theta (1 - \theta) (1 - \theta) (1 - \theta) \theta (1 - \theta) \\ &= \theta^2 (1 - \theta)^4 \end{split}$$

Maximum Likelihood Estimator - Example

- ► Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- ► Data: X: {h,t,t,t,h,t}
- ► The likelihood is

$$\begin{split} \mathtt{L}(\theta \mid \mathtt{X}) &= \mathtt{p}(\mathtt{X} \mid \theta) \\ &= \mathtt{p}(\mathtt{X} = \mathtt{h} \mid \theta) \mathtt{p}(\mathtt{X} = \mathtt{t} \mid \theta) \mathtt{p}(\mathtt{X} = \mathtt{t} \mid \theta) \mathtt{p}(\mathtt{X} = \mathtt{t} \mid \theta) \mathtt{p}(\mathtt{X} = \mathtt{h} \mid \theta) \mathtt{p}(\mathtt{X} = \mathtt{t} \mid \theta) \\ &= \theta (1 - \theta) (1 - \theta) (1 - \theta) \theta (1 - \theta) \\ &= \theta^2 (1 - \theta)^4 \end{split}$$

 \blacktriangleright $\hat{\theta}$ is the value of θ that maximizes the likelihood:

$$\hat{ heta}_{ exttt{MLE}} = rg\max_{ heta} \mathtt{L}(heta \mid \mathtt{X}) = rac{2}{2+4}$$

► The MLE product is prone to numerical underflow.

$$\hat{\theta}_{\texttt{MLE}} = \arg\max_{\theta} \texttt{L}(\theta \mid \texttt{X}) = \arg\max_{\theta} \prod_{\texttt{i}=1}^{m} \texttt{p}(\texttt{x}^{(\texttt{i})} \mid \theta)$$

► The MLE product is prone to numerical underflow.

$$\hat{\theta}_{\texttt{MLE}} = \arg\max_{\theta} \texttt{L}(\theta \mid \texttt{X}) = \arg\max_{\theta} \prod_{\texttt{i}=1}^{\texttt{m}} \texttt{p}(\texttt{x}^{(\texttt{i})} \mid \theta)$$

- ► To overcome this problem we can use the logarithm of the likelihood.
 - It does not change its arg max, but transforms a product into a sum.

$$\hat{\theta}_{\texttt{MLE}} = rg \max_{\theta} \sum_{\mathtt{i}=1}^{\mathtt{m}} \log (\mathtt{x^{(i)}} \mid \theta)$$

▶ Likelihood:
$$L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$$

Negative Log-Likelihood

- ▶ Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ▶ Log-Likelihood: $logL(\theta \mid X) = log \prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$

Negative Log-Likelihood

- ▶ Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ▶ Log-Likelihood: $logL(\theta \mid X) = log \prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$
- ▶ Negative Log-Likelihood: $-\log L(\theta \mid X) = -\sum_{i=1}^{m} \log p(x^{(i)} \mid \theta)$

Negative Log-Likelihood

- ▶ Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ▶ Log-Likelihood: $logL(\theta \mid X) = log \prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$
- ▶ Negative Log-Likelihood: $-\log L(\theta \mid X) = -\sum_{i=1}^{m} \log p(x^{(i)} \mid \theta)$
- Negative log-likelihood is also called the cross-entropy

- ► Coss-entropy: quantify the difference (error) between two probability distributions.
- ▶ How close is the predicted distribution to the true distribution?

$$\texttt{H}(\texttt{p},\texttt{q}) = -\sum_{\texttt{x}} \texttt{p}(\texttt{x}) \texttt{log}(\texttt{q}(\texttt{x}))$$

▶ Where p is the true distribution, and q the predicted distribution.

- ► Six tosses of a coin: X : {h, t, t, t, h, t}
- ▶ The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- ▶ The predicted distribution q: h with probability of θ , and t with probability (1θ) .

- ► Six tosses of a coin: X : {h,t,t,t,h,t}
- ▶ The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- ▶ The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_{x} p(x) \log(q(x))$ = $-p(h) \log(q(h)) - p(t) \log(q(t)) = -\frac{2}{6} \log(\theta) - \frac{4}{6} \log(1-\theta)$

- ▶ Six tosses of a coin: $X : \{h, t, t, t, h, t\}$
- ▶ The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- ▶ The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_{x} p(x) \log(q(x))$ = $-p(h) \log(q(h)) - p(t) \log(q(t)) = -\frac{2}{6} \log(\theta) - \frac{4}{6} \log(1-\theta)$
- ▶ Likelihood: $\theta^2(1-\theta)^4$

- ► Six tosses of a coin: X : {h, t, t, t, h, t}
- ▶ The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- ▶ The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_{x} p(x) \log(q(x))$ = $-p(h) \log(q(h)) - p(t) \log(q(t)) = -\frac{2}{6} \log(\theta) - \frac{4}{6} \log(1-\theta)$
- ▶ Likelihood: $\theta^2(1-\theta)^4$
- ▶ Negative log likelihood: $-\log(\theta^2(1-\theta)^4) = -2\log(\theta) 4\log(1-\theta)$

Summary

Summary

- ► Logic-based AI, Machine Learning, Deep Learning
- ► Deep Learning models
 - Deep Feed Forward
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - Autoencoders
- ► Linear algebra and probability
 - Random variables
 - Probability distribution
 - Likelihood
 - Negative log-likelihood and cross-entropy

References

▶ Ian Goodfellow et al., Deep Learning (Ch. 1, 2, 3)

Questions?

Acknowledgements

Some of the pictures were copied from the book Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurelien Geron, O'Reilly Media, 2017.