

Machine Learning - Regressions

Amir H. Payberah payberah@kth.se 05/11/2019

The Course Web Page

https://id2223kth.github.io

Where Are We?

Deep Learning				
GAN	RL		Distributed Learning	
CNN	RN	IN	Autoencoder	
Deep Feedforward Network Training Feedforward Network				
TensorFlow				
Machine Learning				
Regression Classification More Supervised Learning				
Spark ML				

Where Are We?

Deep Learning				
GAN	R	L	Distributed Learning	
CNN	RN	IN	Autoencoder	
Deep Feedforward Network Training Feedforward Network				
TensorFlow				
Machine Learning				
Regression Classification More Supervised Learning				
Spark ML				

Let's Start with an Example

• Given the dataset of m houses.

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	:	:
1		1.1

▶ Given the dataset of m houses.

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	:	:
	•	•

Predict the prices of other houses, as a function of the size of living area and number of bedrooms?

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
1	:	1

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
	:	1

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2104 \\ 3 \end{bmatrix} \quad \mathbf{y}^{(1)} = 400 \qquad \mathbf{x}^{(2)} = \begin{bmatrix} 1600 \\ 3 \end{bmatrix} \quad \mathbf{y}^{(2)} = 330 \qquad \mathbf{x}^{(3)} = \begin{bmatrix} 2400 \\ 3 \end{bmatrix} \quad \mathbf{y}^{(3)} = 369$$

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
		1.1

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2104\\ 3 \end{bmatrix} \quad \mathbf{y}^{(1)} = 400 \qquad \mathbf{x}^{(2)} = \begin{bmatrix} 1600\\ 3 \end{bmatrix} \quad \mathbf{y}^{(2)} = 330 \qquad \mathbf{x}^{(3)} = \begin{bmatrix} 2400\\ 3 \end{bmatrix} \quad \mathbf{y}^{(3)} = 369$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)T}\\ \mathbf{x}^{(2)T}\\ \mathbf{x}^{(3)T}\\ \vdots \end{bmatrix} = \begin{bmatrix} 2104 & 3\\ 1600 & 3\\ 2400 & 3\\ \vdots & \vdots \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400\\ 330\\ 369\\ \vdots\\ \vdots \end{bmatrix}$$

Living area	No.	of bedrooms	Price
2104		3	400
1600		3	330
2400		3	369
		1.1	1

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2104\\3 \end{bmatrix} \quad \mathbf{y}^{(1)} = 400 \qquad \mathbf{x}^{(2)} = \begin{bmatrix} 1600\\3 \end{bmatrix} \quad \mathbf{y}^{(2)} = 330 \qquad \mathbf{x}^{(3)} = \begin{bmatrix} 2400\\3 \end{bmatrix} \quad \mathbf{y}^{(3)} = 369$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)T}\\\mathbf{x}^{(2)T}\\\mathbf{x}^{(3)T}\\\vdots \end{bmatrix} = \begin{bmatrix} 2104 & 3\\1600 & 3\\2400 & 3\\\vdots & \vdots \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400\\330\\369\\\vdots \end{bmatrix}$$

▶ $\mathbf{x}^{(i)} \in \mathbb{R}^2$: $\mathbf{x}_1^{(i)}$ is the living area, and $\mathbf{x}_2^{(i)}$ is the number of bedrooms of the ith house in the training set.

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	÷	÷

- ► Predict the prices of other houses ŷ as a function of the size of their living areas x₁, and number of bedrooms x₂, i.e., ŷ = f(x₁, x₂)
- E.g., what is \hat{y} , if $x_1 = 4000$ and $x_2 = 4$?

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	÷	÷

- ► Predict the prices of other houses ŷ as a function of the size of their living areas x₁, and number of bedrooms x₂, i.e., ŷ = f(x₁, x₂)
- E.g., what is \hat{y} , if $x_1 = 4000$ and $x_2 = 4$?
- As an initial choice: $\hat{y} = f_w(x) = w_1 x_1 + w_2 x_2$

[http://www.vias.org/science_cartoons/regression.html]

Linear Regression

• Our goal: to build a system that takes input $\mathbf{x} \in \mathbb{R}^n$ and predicts output $\hat{\mathbf{y}} \in \mathbb{R}$.

Linear Regression (1/2)

- Our goal: to build a system that takes input $\mathbf{x} \in \mathbb{R}^n$ and predicts output $\hat{\mathbf{y}} \in \mathbb{R}$.
- In linear regression, the output \hat{y} is a linear function of the input x.

$$\begin{split} \hat{y} = \mathtt{f}_\mathtt{w}(\mathtt{x}) = \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \cdots + \mathtt{w}_n \mathtt{x}_n \\ \hat{y} = \mathtt{w}^\mathsf{T} \mathtt{x} \end{split}$$

- $\hat{\mathbf{y}}$: the predicted value
- n: the number of features
- x_i: the ith feature value
- w_i : the jth model parameter ($w \in \mathbb{R}^n$)

• Linear regression often has one additional parameter, called intercept b:

 $\hat{y} = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$

Linear regression often has one additional parameter, called intercept b:

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b}$

► Instead of adding the bias parameter b, we can augment **x** with an extra entry that is always set to 1.

$$\hat{y} = f_w(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$
, where $x_0 = 1$

• Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.

- Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.
- **w** are a set of weights that determine how each feature affects the prediction.

- Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.
- **w** are a set of weights that determine how each feature affects the prediction.
 - $w_i > 0:$ increasing the value of the feature $x_i,$ increases the value of our prediction $\boldsymbol{\hat{y}}.$

- Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.
- **w** are a set of weights that determine how each feature affects the prediction.
 - $w_i > 0:$ increasing the value of the feature $x_i,$ increases the value of our prediction $\hat{y}.$
 - $\mathtt{w}_i < 0:$ increasing the value of the feature $x_i,$ decreases the value of our prediction $\hat{y}.$

- Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.
- **w** are a set of weights that determine how each feature affects the prediction.
 - $w_i > 0:$ increasing the value of the feature $x_i,$ increases the value of our prediction $\hat{y}.$
 - $w_i <$ 0: increasing the value of the feature $x_i,$ decreases the value of our prediction $\hat{y}.$
 - $w_i=0:$ the value of the feature $x_i,$ has no effect on the prediction $\hat{y}.$

 $\hat{\mathtt{y}} = \mathtt{f}_\mathtt{w}(\mathtt{x}) = \mathtt{w}_0 \mathtt{x}_0 + \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \dots + \mathtt{w}_n \mathtt{x}_n$

How to Learn Model Parameters w?

Linear Regression - Cost Function (1/2)

• One reasonable model should make \hat{y} close to y, at least for the training dataset.

Linear Regression - Cost Function (1/2)

- One reasonable model should make \hat{y} close to y, at least for the training dataset.
- Residual: the difference between the dependent variable y and the predicted value \hat{y} .

$$r^{(i)} = y^{(i)} - \hat{y}^{(i)}$$

Linear Regression - Cost Function (2/2)

► Cost function J(w)

- For each value of the **w**, it measures how close the $\hat{y}^{(i)}$ is to the corresponding $y^{(i)}$.
- We can define J(w) as the mean squared error (MSE):

$$J(\boldsymbol{w}) = \texttt{MSE}(\boldsymbol{w}) = \frac{1}{m} \sum_{i}^{m} (\hat{\boldsymbol{y}}^{(i)} - \boldsymbol{y}^{(i)})^2$$

Linear Regression - Cost Function (2/2)

► Cost function J(w)

- For each value of the **w**, it measures how close the $\hat{y}^{(i)}$ is to the corresponding $y^{(i)}$.
- We can define J(w) as the mean squared error (MSE):

$$\begin{split} J(\mathbf{w}) &= \text{MSE}(\mathbf{w}) = \frac{1}{m} \sum_{i}^{m} (\hat{y}^{(i)} - y^{(i)})^2 \\ &= \text{E}[(\hat{y} - y)^2] = \frac{1}{m} ||\hat{y} - y||_2^2 \end{split}$$

How to Learn Model Parameters?

- ▶ We want to choose **w** so as to minimize J(**w**).
- ► Two approaches to find w:
 - Normal equation
 - Gradient descent

Normal Equation

Derivatives and Gradient (1/4)

[https://mathequality.wordpress.com/2012/09/26/derivative-dance-gangnam-style/]

Derivatives and Gradient (2/4)

► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.

Derivatives and Gradient (2/4)

► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.

Derivatives and Gradient (2/4)

- ► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.
- ▶ $f(x) = x^2 \Rightarrow f'(x) = 2x$
- If f(x) is increasing, then f'(x) > 0

Derivatives and Gradient (2/4)

- ► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.
- ▶ $f(x) = x^2 \Rightarrow f'(x) = 2x$
- If f(x) is increasing, then f'(x) > 0
- If f(x) is decreasing, then f'(x) < 0

Derivatives and Gradient (2/4)

- ► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.
- ▶ $f(x) = x^2 \Rightarrow f'(x) = 2x$
- If f(x) is increasing, then f'(x) > 0
- If f(x) is decreasing, then f'(x) < 0
- If f(x) is at local minimum/maximum, then f'(x) = 0

Derivatives and Gradient (3/4)

- \blacktriangleright What if a function has multiple arguments, e.g., $f(x_1,x_2,\cdots,x_n)$
- ▶ Partial derivatives: the derivative with respect to a particular argument.
 - $\frac{\partial f}{\partial x_1}$, the derivative with respect to x_1
 - $\frac{\partial f}{\partial x_2}$, the derivative with respect to x_2

Derivatives and Gradient (3/4)

- \blacktriangleright What if a function has multiple arguments, e.g., $f(x_1,x_2,\cdots,x_n)$
- ▶ Partial derivatives: the derivative with respect to a particular argument.
 - $\frac{\partial f}{\partial x_1}$, the derivative with respect to x_1
 - $\frac{\partial \hat{f}}{\partial x_2}$, the derivative with respect to x_2
- $\frac{\partial f}{\partial x_i}$: shows how much the function f will change, if we change x_i .

Derivatives and Gradient (3/4)

- \blacktriangleright What if a function has multiple arguments, e.g., $f(x_1,x_2,\cdots,x_n)$
- ▶ Partial derivatives: the derivative with respect to a particular argument.
 - $\frac{\partial f}{\partial x_1}$, the derivative with respect to x_1
 - $\frac{\partial \hat{f}}{\partial x_2}$, the derivative with respect to x_2
- $\frac{\partial f}{\partial x_i}$: shows how much the function f will change, if we change x_i .
- ► Gradient: the vector of all partial derivatives for a function f.

$$abla_{\mathbf{x}}\mathbf{f}(\mathbf{x}) = egin{bmatrix} rac{\partial f}{\partial \mathbf{x}_1} \ rac{\partial f}{\partial \mathbf{x}_2} \ dots \ rac{\partial f}{\partial \mathbf{x}_n} \end{bmatrix}$$

Derivatives and Gradient (4/4)

• What is the gradient of $f(x_1, x_2, x_3) = x_1 - x_1x_2 + x_3^2$?

Derivatives and Gradient (4/4)

• What is the gradient of $f(x_1, x_2, x_3) = x_1 - x_1x_2 + x_3^2$?

$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}_1} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \\ \frac{\partial}{\partial \mathbf{x}_2} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \\ \frac{\partial}{\partial \mathbf{x}_3} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \end{bmatrix} = \begin{bmatrix} 1 - \mathbf{x}_2 \\ -\mathbf{x}_1 \\ 2\mathbf{x}_3 \end{bmatrix}$$

▶ To minimize $J(\mathbf{w})$, we can simply solve for where its gradient is 0: $\nabla_{\mathbf{w}}J(\mathbf{w}) = 0$

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

► To minimize $J(\mathbf{w})$, we can simply solve for where its gradient is 0: $\nabla_{\mathbf{w}}J(\mathbf{w}) = 0$

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

► To minimize $J(\mathbf{w})$, we can simply solve for where its gradient is 0: $\nabla_{\mathbf{w}}J(\mathbf{w}) = 0$

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}$ or $\hat{\mathbf{y}} = \mathbf{X} \mathbf{w}$

► To minimize $J(\mathbf{w})$, we can simply solve for where its gradient is 0: $\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$ $J(\mathbf{w}) = \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} J(\mathbf{w}) = 0$

$$\begin{split} \mathbf{J}(\mathbf{w}) &= \frac{1}{m} ||\mathbf{\hat{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}) = \mathbf{0} \\ &\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{\hat{y}} - \mathbf{y}||_2^2 = \mathbf{0} \end{split}$$

$$J(\mathbf{w}) = \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} J(\mathbf{w}) = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2 = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = 0$$

$$J(\mathbf{w}) = \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} J(\mathbf{w}) = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2 = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}) = 0$$

$$\begin{split} \mathbf{J}(\mathbf{w}) &= \frac{1}{m} ||\mathbf{\hat{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}) = \mathbf{0} \\ &\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{\hat{y}} - \mathbf{y}||_2^2 = \mathbf{0} \\ &\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \mathbf{0} \\ &\Rightarrow \nabla_{\mathbf{w}} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{0} \\ &\Rightarrow \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) = \mathbf{0} \end{split}$$

$$J(\mathbf{w}) = \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} J(\mathbf{w}) = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2 = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}) = 0$$

$$\Rightarrow \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) = 0$$

$$\Rightarrow 2\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y} = 0$$

$$\begin{split} J(\mathbf{w}) &= \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2, \nabla_{\mathbf{w}} J(\mathbf{w}) = 0 \\ &\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\hat{\mathbf{y}} - \mathbf{y}||_2^2 = 0 \\ &\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = 0 \\ &\Rightarrow \nabla_{\mathbf{w}} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}) = 0 \\ &\Rightarrow \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) = 0 \\ &\Rightarrow 2\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y} = 0 \\ &\Rightarrow \mathbf{w} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} \end{split}$$

Normal Equation - Example (1/7)

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540

• Predict the value of \hat{y} , when $x_1 = 4000$ and $x_2 = 4$.

Normal Equation - Example (1/7)

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540

- Predict the value of \hat{y} , when $x_1 = 4000$ and $x_2 = 4$.
- We should find w_0 , w_1 , and w_2 in $\hat{y} = w_0 + w_1 x_1 + w_2 x_2$.
- $\blacktriangleright \mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Normal Equation - Example (2/7)

Livi	ng a	rea	No.	of b	edrooms	Price
2104			3			400
1600			3			330
2400		3			369	
	1416			2		232
;	3000			4		540
	Γ1	210	4 3	1		ך 400 T
	1	160	0 3			330
X =	1	240	0 3		у =	369
	1	141	6 2			232
	L 1	300	0 4]		540

Normal Equation - Example (3/7)

Normal Equation - Example (4/7)

	4.90366455e + 00	7.48766737e - 04	-2.09302326e + 00]
$({\bf X}^{\intercal}{\bf X})^{-1} =$	7.48766737e - 04	2.75281889e - 06	-2.18023256e - 03
	-2.09302326e + 00	-2.18023256e - 03	2.22674419e + 00

Normal Equation - Example (5/7)

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2104 & 1600 & 2400 & 1416 & 3000 \\ 3 & 3 & 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix} = \begin{bmatrix} 1871 \\ 4203712 \\ 5921 \end{bmatrix}$$

Normal Equation - Example (6/7)

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 4.90366455e + 00 & 7.48766737e - 04 & -2.09302326e + 00 \\ 7.48766737e - 04 & 2.75281889e - 06 & -2.18023256e - 03 \\ -2.09302326e + 00 & -2.18023256e - 03 & 2.22674419e + 00 \end{bmatrix} \begin{bmatrix} 1871 \\ 4203712 \\ 5921 \end{bmatrix}$$
$$= \begin{bmatrix} -7.04346018e + 01 \\ 6.38433756e - 02 \\ 1.03436047e + 02 \end{bmatrix}$$

Normal Equation - Example (7/7)

• Predict the value of y, when $x_1 = 4000$ and $x_2 = 4$.

 $\hat{y} = -7.04346018e + 01 + 6.38433756e - 02 \times 4000 + 1.03436047e + 02 \times 4 \approx 599$

Normal Equation in Spark

val testData = Seq(house(4000, 4, 0)).toDF

Normal Equation in Spark

```
val testData = Seq(house(4000, 4, 0)).toDF
```

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1", "x2")).setOutputCol("features")

val train = va.transform(trainData)
val test = va.transform(testData)

Normal Equation in Spark

```
val testData = Seq(house(4000, 4, 0)).toDF
```

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1", "x2")).setOutputCol("features")

val train = va.transform(trainData)
val test = va.transform(testData)

import org.apache.spark.ml.regression.LinearRegression

```
val lr = new LinearRegression().setFeaturesCol("features").setLabelCol("y").setSolver("normal")
val lrModel = lr.fit(train)
lrModel.transform(test).show
```


Normal Equation - Computational Complexity

- The computational complexity of inverting X^TX is $O(n^3)$.
 - For an $m \times n$ matrix (where n is the number of features).

Normal Equation - Computational Complexity

- The computational complexity of inverting $X^T X$ is $O(n^3)$.
 - For an $m \times n$ matrix (where n is the number of features).
- ▶ But, this equation is linear with regards to the number of instances in the training set (it is O(m)).
 - It handles large training sets efficiently, provided they can fit in memory.

[https://dailyfintech.com/2017/03/13/now-all-we-need-is-for-blockchain-to-become-technologically-boring]

Gradient Descent

Gradient Descent (1/2)

- Gradient descent is a generic optimization algorithm capable of finding optimal solutions to a wide range of problems.
- ▶ The idea: to tweak parameters iteratively in order to minimize a cost function.

Gradient Descent (2/2)

- Suppose you are lost in the mountains in a dense fog.
- ► You can only feel the slope of the ground below your feet.
- A strategy to get to the bottom of the valley is to go downhill in the direction of the steepest slope.

► Choose a starting point, e.g., filling **w** with random values.

- ► Choose a starting point, e.g., filling **w** with random values.
- ▶ If the stopping criterion is true return the current solution, otherwise continue.

- ► Choose a starting point, e.g., filling **w** with random values.
- ▶ If the stopping criterion is true return the current solution, otherwise continue.
- ► Find a descent direction, a direction in which the function value decreases near the current point.

- ► Choose a starting point, e.g., filling **w** with random values.
- ▶ If the stopping criterion is true return the current solution, otherwise continue.
- Find a descent direction, a direction in which the function value decreases near the current point.
- Determine the step size, the length of a step in the given direction.

Gradient Descent - Key Points

- Stopping criterion
- Descent direction
- Step size (learning rate)

Gradient Descent - Stopping Criterion

▶ The cost function minimum property: the gradient has to be zero.

 $\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$

Gradient Descent - Descent Direction (1/2)

- ▶ Direction in which the function value decreases near the current point.
- Find the direction of descent (slope).

Gradient Descent - Descent Direction (1/2)

- Direction in which the function value decreases near the current point.
- ► Find the direction of descent (slope).
- Example:

Gradient Descent - Descent Direction (2/2)

• Follow the opposite direction of the slope.

Gradient Descent - Learning Rate

• Learning rate: the length of steps.

Gradient Descent - Learning Rate

- Learning rate: the length of steps.
- ▶ If it is too small: many iterations to converge.

Gradient Descent - Learning Rate

- Learning rate: the length of steps.
- ▶ If it is too small: many iterations to converge.

• If it is too high: the algorithm might diverge.

• Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} - y^{(i)})^2$.

- Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} y^{(i)})^2$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:

- Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} y^{(i)})^2$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$

- Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} y^{(i)})^2$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$
 - 2. Choose a step size η

- Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} y^{(i)})^2$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$
 - 2. Choose a step size η
 - 3. Update the parameters: $w^{(next)} = w \eta \frac{\partial J(w)}{\partial w}$ (should be done for all parameters simultanously)

Gradient Descent - Different Algorithms

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

[https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3]

Batch Gradient Descent

Batch Gradient Descent (1/2)

- ▶ Repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$ for all parameters w.

$$J(\boldsymbol{w}) = \sum_{i=1}^{m} (\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^2$$

Batch Gradient Descent (1/2)

- ▶ Repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$ for all parameters w.

$$J(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

$$\frac{\partial J(\mathbf{w})}{\partial w_{j}} = \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}_{j}^{(i)} \qquad \nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_{0}} \\ \frac{\partial J(\mathbf{w})}{\partial w_{1}} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_{n}} \end{bmatrix} = \frac{2}{m} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

2. Choose a step size η

Batch Gradient Descent (1/2)

- ▶ Repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$ for all parameters w.

$$J(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

$$\frac{\partial J(\mathbf{w})}{\partial w_{j}} = \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}_{j}^{(i)} \qquad \nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_{1}} \\ \frac{\partial J(\mathbf{w})}{\partial w_{1}} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_{n}} \end{bmatrix} = \frac{2}{m} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

- 2. Choose a step size η
- 3. Update the parameters: $\mathbf{w}^{(\text{next})} = \mathbf{w} \eta \nabla_{\mathbf{w}} J(\mathbf{w})$

Batch Gradient Descent (2/2)

- ► The algorithm is called Batch Gradient Descent, because at each step, calculations are over the full training set X.
- ▶ As a result it is slow on very large training sets, i.e., large m.
- ▶ But, it scales well with the number of features n.

Batch Gradient Descent - Example (1/5)

No. of bedrooms	Price
3	400
3	330
3	369
2	232
4	540
	No. of bedrooms 3 3 3 2 4

 $\hat{y} = w_0 + w_1 x_1 + w_2 x_2$

	1	2104	3 -		[400]
	1	1600	3		330
X =	1	2400	3	y =	369
	1	1416	2		232
	_ 1	3000	4		540

Batch Gradient Descent - Example (2/5)

$$\mathbf{X} = \begin{bmatrix} 1 & 2104 & 3 \\ 1 & 1600 & 3 \\ 1 & 2400 & 3 \\ 1 & 1416 & 2 \\ 1 & 3000 & 4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix}$$

$$\begin{aligned} \frac{\partial J(\mathbf{w})}{\partial w_0} &= \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}_0^{(i)} \\ &= \frac{2}{5} [(w_0 + 2104w_1 + 3w_2 - 400) + (w_0 + 1600w_1 + 3w_2 - 330) + (w_0 + 2400w_1 + 3w_2 - 369) + (w_0 + 1416w_1 + 2w_2 - 232) + (w_0 + 3000w_1 + 4w_2 - 540)] \end{aligned}$$

Batch Gradient Descent - Example (3/5)

$$\mathbf{X} = \begin{bmatrix} 1 & 2104 & 3 \\ 1 & 1600 & 3 \\ 1 & 2400 & 3 \\ 1 & 1416 & 2 \\ 1 & 3000 & 4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix}$$

$$\begin{aligned} \frac{\partial J(\mathbf{w})}{\partial w_1} &= \frac{2}{m} \sum_{i=1}^m (\mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}_1^{(i)} \\ &= \frac{2}{5} [2104(w_0 + 2104w_1 + 3w_2 - 400) + 1600(w_0 + 1600w_1 + 3w_2 - 330) + \\ &\quad 2400(w_0 + 2400w_1 + 3w_2 - 369) + 1416(w_0 + 1416w_1 + 2w_2 - 232) + 3000(w_0 + 3000w_1 + 4w_2 - 540)] \end{aligned}$$

Batch Gradient Descent - Example (4/5)

$$\mathbf{X} = \begin{bmatrix} 1 & 2104 & 3 \\ 1 & 1600 & 3 \\ 1 & 2400 & 3 \\ 1 & 1416 & 2 \\ 1 & 3000 & 4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix}$$

$$\begin{aligned} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_2} &= \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}_2^{(i)} \\ &= \frac{2}{5} [3(\mathbf{w}_0 + 2104\mathbf{w}_1 + 3\mathbf{w}_2 - 400) + 3(\mathbf{w}_0 + 1600\mathbf{w}_1 + 3\mathbf{w}_2 - 330) + \\ &\quad 3(\mathbf{w}_0 + 2400\mathbf{w}_1 + 3\mathbf{w}_2 - 369) + 2(\mathbf{w}_0 + 1416\mathbf{w}_1 + 2\mathbf{w}_2 - 232) + 4(\mathbf{w}_0 + 3000\mathbf{w}_1 + 4\mathbf{w}_2 - 540)] \end{aligned}$$

Batch Gradient Descent - Example (5/5)

$$\begin{split} \mathbf{w}_{0}^{(\text{next})} &= \mathbf{w}_{0} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{0}} \\ \mathbf{w}_{1}^{(\text{next})} &= \mathbf{w}_{1} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{1}} \\ \mathbf{w}_{2}^{(\text{next})} &= \mathbf{w}_{2} - \eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{2}} \end{split}$$

Stochastic Gradient Descent

Stochastic Gradient Descent (1/3)

Batch gradient descent problem: it's slow, because it uses the whole training set to compute the gradients at every step.

Stochastic Gradient Descent (1/3)

- Batch gradient descent problem: it's slow, because it uses the whole training set to compute the gradients at every step.
- ► Stochastic gradient descent computes the gradients based on only a single instance.
 - It picks a random instance in the training set at every step.

Stochastic Gradient Descent (2/3)

▶ The algorithm is much faster, but less regular than batch gradient descent.

Stochastic Gradient Descent (2/3)

- ▶ The algorithm is much faster, but less regular than batch gradient descent.
 - Instead of decreasing until it reaches the minimum, the cost function will bounce up and down.
 - It never settles down.

Stochastic Gradient Descent (3/3)

- With randomness the algorithm can never settle at the minimum.
- One solution is simulated annealing: start with large learning rate, then make it smaller and smaller.

Stochastic Gradient Descent (3/3)

- With randomness the algorithm can never settle at the minimum.
- One solution is simulated annealing: start with large learning rate, then make it smaller and smaller.
- Learning schedule: the function that determines the learning rate at each step.

Stochastic Gradient Descent - Example (1/3)

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540

 $\hat{\mathbf{y}} = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$

	1	2104	3 -		[400]
	1	1600	3		330
X =	1	2400	3	y =	369
	1	1416	2		232
	1	3000	4		540

Stochastic Gradient Descent - Example (2/3)

$$\mathbf{X} = \begin{bmatrix} 1 & 2104 & 3 \\ 1 & 1600 & 3 \\ 1 & 2400 & 3 \\ 1 & 1416 & 2 \\ 1 & 3000 & 4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix}$$

$$\begin{aligned} \frac{\partial J(\mathbf{w})}{\partial w_0} &= \frac{2}{m} (\mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_0^{(i)} = \frac{2}{5} [(w_0 + 1600w_1 + 3w_2 - 330)] \\ \frac{\partial J(\mathbf{w})}{\partial w_1} &= \frac{2}{m} (\mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_1^{(i)} = \frac{2}{5} [1600(w_0 + 1600w_1 + 3w_2 - 330)] \\ \frac{\partial J(\mathbf{w})}{\partial w_2} &= \frac{2}{m} (\mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_2^{(i)} = \frac{2}{5} [3(w_0 + 1600w_1 + 3w_2 - 330)] \end{aligned}$$

Stochastic Gradient Descent - Example (3/3)

$$\begin{split} \mathbf{w}_{0}^{(\text{next})} &= \mathbf{w}_{0} - \eta \frac{\partial \mathbf{J}(\mathbf{w})}{\partial \mathbf{w}_{0}} \\ \mathbf{w}_{1}^{(\text{next})} &= \mathbf{w}_{1} - \eta \frac{\partial \mathbf{J}(\mathbf{w})}{\partial \mathbf{w}_{1}} \\ \mathbf{w}_{2}^{(\text{next})} &= \mathbf{w}_{2} - \eta \frac{\partial \mathbf{J}(\mathbf{w})}{\partial \mathbf{w}_{2}} \end{split}$$

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent

- Batch gradient descent: at each step, it computes the gradients based on the full training set.
- Stochastic gradient descent: at each step, it computes the gradients based on just one instance.
- Mini-batch gradient descent: at each step, it computes the gradients based on small random sets of instances called mini-batches.

Comparison of Algorithms for Linear Regression

Algorithm	Large <i>m</i>	Large <i>n</i>
Normal Equation	Fast	Slow
Batch GD	Slow	Fast
Stochastic GD	Fast	Fast
Mini-batch GD	Fast	Fast

Gradient Descent in Spark

val data = spark.read.format("libsvm").load("data.txt")

Gradient Descent in Spark

val data = spark.read.format("libsvm").load("data.txt")

```
import org.apache.spark.ml.regression.LinearRegression
val lr = new LinearRegression().setMaxIter(10)
val lrModel = lr.fit(data)
```


Gradient Descent in Spark

val data = spark.read.format("libsvm").load("data.txt")

```
import org.apache.spark.ml.regression.LinearRegression
```

```
val lr = new LinearRegression().setMaxIter(10)
```

```
val lrModel = lr.fit(data)
```

println(s"Coefficients: \${lrModel.coefficients} Intercept: \${lrModel.intercept}")

```
val trainingSummary = lrModel.summary
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
```


Generalization

Training Data and Test Data

• Split data into a training set and a test set.

Training Data and Test Data

- Split data into a training set and a test set.
- ► Use training set when training a machine learning model.
 - Compute training error on the training set.
 - Try to reduce this training error.

	Full Dataset:		
<pre>val data = spark.read.format("libsvm").load("data.txt")</pre>	Training Data	Test Data	
<pre>val Array(trainDF, testDF) = data.randomSplit(Array(0.8, 0.2))</pre>			

Full Determine

Training Data and Test Data

- Split data into a training set and a test set.
- ► Use training set when training a machine learning model.
 - Compute training error on the training set.
 - Try to reduce this training error.
- ► Use test set to measure the accuracy of the model.
 - Test error is the error when you run the trained model on test data (new data).

Full Dataset:

<pre>val data = spark.read.format("libsvm").load("data.txt")</pre>	<pre>data = spark.read.format("libsvm").load("data.txt")</pre>		
<pre>val Array(trainDF, testDF) = data.randomSplit(Array(0.8, 0.2))</pre>	Training Data	Test Data	

- Generalization: make a model that performs well on test data.
 - Have a small test error.

- Generalization: make a model that performs well on test data.
 - Have a small test error.
- Challenges
 - 1. Make the training error small.
 - 2. Make the gap between training and test error small.

More About The Test Error

► The test error is defined as the expected value of the error on test set.

$$MSE = rac{1}{k} \sum_i^k (\hat{y}^{(i)} - y^{(i)})^2$$
, k: the num. of instances in the test set $= E[(\hat{y} - y)^2]$

More About The Test Error

► The test error is defined as the expected value of the error on test set.

$$\begin{split} \text{MSE} &= \frac{1}{k}\sum_{i}^{k}(\hat{y}^{(i)}-y^{(i)})^2, \text{ k: the num. of instances in the test set} \\ &= \text{E}[(\hat{y}-y)^2] \end{split}$$

• A model's test error can be expressed as the sum of bias and variance.

$$\mathbf{E}[(\mathbf{\hat{y}} - \mathbf{y})^2] = \mathbf{Bias}[\mathbf{\hat{y}}, \mathbf{y}]^2 + \mathbf{Var}[\mathbf{\hat{y}}] + \varepsilon^2$$

▶ Bias: the expected deviation from the true value of the function.

 $\texttt{Bias}[\boldsymbol{\hat{y}}, \boldsymbol{y}] = \texttt{E}[\boldsymbol{\hat{y}}] - \boldsymbol{y}$

Bias and Underfitting

• Bias: the expected deviation from the true value of the function.

 $\texttt{Bias}[\hat{\mathtt{y}},\mathtt{y}] = \mathtt{E}[\hat{\mathtt{y}}] - \mathtt{y}$

- A high-bias model is most likely to underfit the training data.
 - High error value on the training set.

Bias and Underfitting

▶ Bias: the expected deviation from the true value of the function.

 $\texttt{Bias}[\boldsymbol{\hat{y}}, \boldsymbol{y}] = \texttt{E}[\boldsymbol{\hat{y}}] - \boldsymbol{y}$

- A high-bias model is most likely to underfit the training data.
 - High error value on the training set.
- Underfitting happens when the model is too simple to learn the underlying structure of the data.

Variance and Overfitting

► Variance: how much a model changes if you train it on a different training set.
Var[ŷ] = E[(ŷ - E[ŷ])²]

Variance and Overfitting

- ► Variance: how much a model changes if you train it on a different training set. Var[ŷ] = E[(ŷ - E[ŷ])²]
- A high-variance model is most likely to overfit the training data.
 - The gap between the training error and test error is too large.

Variance and Overfitting

- ► Variance: how much a model changes if you train it on a different training set. Var[ŷ] = E[(ŷ - E[ŷ])²]
- A high-variance model is most likely to overfit the training data.
 - The gap between the training error and test error is too large.
- Overfitting happens when the model is too complex relative to the amount and noisiness of the training data.

• Assume a model with two parameters w_0 (intercept) and w_1 (slope): $\hat{y} = w_0 + w_1 x$

- ▶ Assume a model with two parameters w_0 (intercept) and w_1 (slope): $\hat{y} = w_0 + w_1 x$
- ► They give the learning algorithm two degrees of freedom.

- ▶ Assume a model with two parameters w_0 (intercept) and w_1 (slope): $\hat{y} = w_0 + w_1 x$
- ► They give the learning algorithm two degrees of freedom.
- We tweak both the w_0 and w_1 to adapt the model to the training data.

- ▶ Assume a model with two parameters w_0 (intercept) and w_1 (slope): $\hat{y} = w_0 + w_1 x$
- ► They give the learning algorithm two degrees of freedom.
- We tweak both the w_0 and w_1 to adapt the model to the training data.
- ► If we forced w₀ = 0, the algorithm would have only one degree of freedom and would have a much harder time fitting the data properly.

- ► Increasing degrees of freedom will typically increase its variance and reduce its bias.
- ► Decreasing degrees of freedom increases its bias and reduces its variance.
- This is why it is called a tradeoff.

[https://ml.berkeley.edu/blog/2017/07/13/tutorial-4]

Regularization (1/2)

- One way to reduce the risk of overfitting is to have fewer degrees of freedom.
- Regularization is a technique to reduce the risk of overfitting.
- For a linear model, regularization is achieved by constraining the weights of the model.

 $J(\mathbf{w}) = MSE(\mathbf{w}) + \lambda R(\mathbf{w})$

Regularization (2/2)

▶ Lasso regression (/1): $\mathbb{R}(\mathbf{w}) = \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$ is added to the cost function:

$$\mathbf{J}(\mathbf{w}) = \mathtt{MSE}(\mathbf{w}) + \lambda \sum_{\mathtt{i}=1}^{n} |\mathbf{w}_{\mathtt{i}}|$$

Regularization (2/2)

- ► Lasso regression (/1): $\mathbb{R}(\mathbf{w}) = \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$ is added to the cost function: $J(\mathbf{w}) = \mathbb{MSE}(\mathbf{w}) + \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$
- Ridge regression (/2): $\mathbb{R}(\mathbf{w}) = \lambda \sum_{i=1}^{n} w_i^2$ is added to the cost function. $J(\mathbf{w}) = MSE(\mathbf{w}) + \lambda \sum_{i=1}^{n} w_i^2$

Regularization (2/2)

- ► Lasso regression (/1): $\mathbb{R}(\mathbf{w}) = \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$ is added to the cost function: $J(\mathbf{w}) = \mathbb{MSE}(\mathbf{w}) + \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$
- ► Ridge regression (/2): $R(\mathbf{w}) = \lambda \sum_{i=1}^{n} w_i^2$ is added to the cost function. $J(\mathbf{w}) = MSE(\mathbf{w}) + \lambda \sum_{i=1}^{n} w_i^2$
- ► ElasticNet: a middle ground between /1 and /2 regularization. $J(\mathbf{w}) = MSE(\mathbf{w}) + \alpha\lambda \sum_{i=1}^{n} |w_i| + (1 - \alpha)\lambda \sum_{i=1}^{n} w_i^2$

Regularization in Spark

$$J(\mathbf{w}) = \texttt{MSE}(\mathbf{w}) + \alpha \lambda \sum_{i=1}^{n} |\mathbf{w}_i| + (1 - \alpha) \lambda \sum_{i=1}^{n} \mathbf{w}_i^2$$

- If $\alpha = 0$: /2 regularization
- If $\alpha = 1$: /1 regularization
- For α in (0, 1): a combination of /1 and /2 regularizations

```
import org.apache.spark.ml.regression.LinearRegression
val lr = new LinearRegression().setElasticNetParam(0.8)
val lrModel = lr.fit(data)
```


Hyperparameters

Hyperparameters and Validation Sets (1/2)

Hyperparameters are settings that we can use to control the behavior of a learning algorithm.

Hyperparameters and Validation Sets (1/2)

- ► Hyperparameters are settings that we can use to control the behavior of a learning algorithm.
- ► The values of hyperparameters are not adapted by the learning algorithm itself.
 - E.g., the α and λ values for regularization.

Hyperparameters and Validation Sets (1/2)

- ► Hyperparameters are settings that we can use to control the behavior of a learning algorithm.
- ► The values of hyperparameters are not adapted by the learning algorithm itself.
 - E.g., the α and λ values for regularization.
- We do not learn the hyperparameter.
 - It is not appropriate to learn that hyperparameter on the training set.
 - If learned on the training set, such hyperparameters would always result in overfitting.

Hyperparameters and Validation Sets (2/2)

► To find hyperparameters, we need a validation set of examples that the training algorithm does not observe.

Hyperparameters and Validation Sets (2/2)

- ► To find hyperparameters, we need a validation set of examples that the training algorithm does not observe.
- ▶ We construct the validation set from the training data (not the test data).

Hyperparameters and Validation Sets (2/2)

- ► To find hyperparameters, we need a validation set of examples that the training algorithm does not observe.
- ▶ We construct the validation set from the training data (not the test data).
- ▶ We split the training data into two disjoint subsets:
 - 1. One is used to learn the parameters.
 - 2. The other one (the validation set) is used to estimate the test error during or after training, allowing for the hyperparameters to be updated accordingly.

Full Dataset:		
Training Data	Validation Data	Test Data

 Cross-validation: a technique to avoid wasting too much training data in validation sets.

- Cross-validation: a technique to avoid wasting too much training data in validation sets.
- ▶ The training set is split into complementary subsets.

Cross-Validation

- Cross-validation: a technique to avoid wasting too much training data in validation sets.
- ► The training set is split into complementary subsets.
- Each model is trained against a different combination of these subsets and validated against the remaining parts.

Cross-Validation

- Cross-validation: a technique to avoid wasting too much training data in validation sets.
- The training set is split into complementary subsets.
- Each model is trained against a different combination of these subsets and validated against the remaining parts.
- Once the model type and hyperparameters have been selected, a final model is trained using these hyperparameters on the full training set, and the test error is measured on the test set.

Hyperparameters and Cross-Validation in Spark (1/2)

- CrossValidator to optimize hyperparameters in algorithms and model selection.
- It requires the following items:
 - Estimator: algorithm or Pipeline to tune.
 - Set of ParamMaps: parameters to choose from (also called a parameter grid).
 - Evaluator: metric to measure how well a fitted Model does on held-out test data.

Hyperparameters and Cross-Validation in Spark (2/2)

```
// construct a grid of parameters to search over.
// this grid has 2 x 2 = 4 parameter settings for CrossValidator to choose from.
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, Array(0.1, 0.01))
.addGrid(lr.elasticNetParam, Array(0.0, 1.0))
.build()
```


Hyperparameters and Cross-Validation in Spark (2/2)

```
// construct a grid of parameters to search over.
// this grid has 2 x 2 = 4 parameter settings for CrossValidator to choose from.
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, Array(0.1, 0.01))
.addGrid(lr.elasticNetParam, Array(0.0, 1.0))
.build()
```

```
val lr = new LinearRegression()
// num folds = 3 => (2 x 2) x 3 = 12 different models being trained
val cv = new CrossValidator()
.setEstimator(lr)
.setEvaluator(new RegressionEvaluator())
.setEstimatorParamMaps(paramGrid)
.setNumFolds(3)
```

```
val cvModel = cv.fit(trainDF)
```


Summary

- Linear regression model $\hat{y} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$
 - Learning parameters **w**
 - Cost function J(w)
 - Learn parameters: normal equation, gradient descent (batch, stochastic, mini-batch)
- Generalization
 - Overfitting vs. underfitting
 - Bias vs. variance
 - Regularization: Lasso regression, Ridge regression, ElasticNet
- Hyperparameters and cross-validation

- ▶ Ian Goodfellow et al., Deep Learning (Ch. 4, 5)
- ► Aurélien Géron, Hands-On Machine Learning (Ch. 2, 4)
- ▶ Matei Zaharia et al., Spark The Definitive Guide (Ch. 27)

Questions?