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Let’s Start with an Example
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The Housing Price Example (1/3)

I Given the dataset of m houses.

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369
...

...
...

I Predict the prices of other houses, as a function of the size of living area and number
of bedrooms?
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The Housing Price Example (2/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

...
...

...

x(1) =

[
2104

3

]
y(1) = 400 x(2) =

[
1600

3

]
y(2) = 330 x(3) =

[
2400

3

]
y(3) = 369

X =


x(1)ᵀ

x(2)ᵀ

x(3)ᵀ

...

 =


2104 3

1600 3

2400 3

...
...

 y =


400

330

369

...


I x(i) ∈ R2: x

(i)
1 is the living area, and x

(i)
2 is the number of bedrooms of the ith

house in the training set.
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The Housing Price Example (3/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369
...

...
...

I Predict the prices of other houses ŷ as a function of the size of their living areas x1,
and number of bedrooms x2, i.e., ŷ = f(x1, x2)

I E.g., what is ŷ, if x1 = 4000 and x2 = 4?

I As an initial choice: ŷ = fw(x) = w1x1 + w2x2
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[http://www.vias.org/science cartoons/regression.html]
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Linear Regression
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Linear Regression (1/2)

I Our goal: to build a system that takes input x ∈ Rn and predicts output ŷ ∈ R.

I In linear regression, the output ŷ is a linear function of the input x.

ŷ = fw(x) = w1x1 + w2x2 + · · ·+ wnxn

ŷ = wᵀx

• ŷ: the predicted value
• n: the number of features
• xi: the ith feature value
• wj: the jth model parameter (w ∈ Rn)
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Linear Regression (2/2)

I Linear regression often has one additional parameter, called intercept b:

ŷ = wᵀx + b

I Instead of adding the bias parameter b, we can augment x with an extra entry that
is always set to 1.

ŷ = fw(x) = w0x0 + w1x1 + w2x2 + · · ·+ wnxn, where x0 = 1
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Linear Regression - Model Parameters

I Parameters w ∈ Rn are values that control the behavior of the model.

I w are a set of weights that determine how each feature affects the prediction.

• wi > 0: increasing the value of the feature xi, increases the value of our prediction ŷ.
• wi < 0: increasing the value of the feature xi, decreases the value of our prediction ŷ.
• wi = 0: the value of the feature xi, has no effect on the prediction ŷ.
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13 / 87



Linear Regression - Model Parameters

I Parameters w ∈ Rn are values that control the behavior of the model.

I w are a set of weights that determine how each feature affects the prediction.
• wi > 0: increasing the value of the feature xi, increases the value of our prediction ŷ.
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• wi < 0: increasing the value of the feature xi, decreases the value of our prediction ŷ.
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ŷ = fw(x) = w0x0 + w1x1 + w2x2 + · · ·+ wnxn

14 / 87



How to Learn Model Parameters w?
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Linear Regression - Cost Function (1/2)

I One reasonable model should make ŷ close to y, at least for the training dataset.

I Residual: the difference between the dependent variable y and the predicted value ŷ.

r(i) = y(i) − ŷ(i)
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Linear Regression - Cost Function (2/2)

I Cost function J(w)
• For each value of the w, it measures how close the ŷ(i) is to the corresponding y(i).
• We can define J(w) as the mean squared error (MSE):

J(w) = MSE(w) =
1

m

m∑
i

(ŷ(i) − y(i))2

= E[(ŷ− y)2] =
1

m
||ŷ− y||22
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How to Learn Model Parameters?

I We want to choose w so as to minimize J(w).

I Two approaches to find w:
• Normal equation
• Gradient descent
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Normal Equation
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Derivatives and Gradient (1/4)

[https://mathequality.wordpress.com/2012/09/26/derivative-dance-gangnam-style/]
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Derivatives and Gradient (2/4)

I The first derivative of f(x), shown as f′(x), shows the slope of the tangent line to
the function at the poa x.

I f(x) = x2 ⇒ f′(x) = 2x

I If f(x) is increasing, then f′(x) > 0

I If f(x) is decreasing, then f′(x) < 0

I If f(x) is at local minimum/maximum,
then f′(x) = 0
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Derivatives and Gradient (3/4)

I What if a function has multiple arguments, e.g., f(x1, x2, · · · , xn)

I Partial derivatives: the derivative with respect to a particular argument.
• ∂f

∂x1
, the derivative with respect to x1

• ∂f
∂x2

, the derivative with respect to x2

I ∂f
∂xi

: shows how much the function f will change, if we change xi.

I Gradient: the vector of all partial derivatives for a function f.

∇xf(x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn


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Derivatives and Gradient (4/4)

I What is the gradient of f(x1, x2, x3) = x1 − x1x2 + x23?

∇xf(x) =

 ∂
∂x1

(x1 − x1x2 + x23)
∂
∂x2

(x1 − x1x2 + x23)
∂
∂x3

(x1 − x1x2 + x23)

 =

1− x2
−x1
2x3


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Normal Equation (1/2)

I To minimize J(w), we can simply solve for where its gradient is 0: ∇wJ(w) = 0

ŷ = wᵀx

X =


[x

(1)
1 , x

(1)
2 , · · · , x(1)n ]

[x
(2)
1 , x

(2)
2 , · · · , x(2)n ]

...

[x
(m)
1 , x

(m)
2 , · · · , x(m)n ]

 =


x(1)ᵀ

x(2)ᵀ

...

x(m)ᵀ

 ŷ =


ŷ(1)

ŷ(2)

...

ŷ(m)


ŷ = wᵀXᵀ or ŷ = Xw
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ŷ = wᵀx

X =


[x

(1)
1 , x

(1)
2 , · · · , x(1)n ]

[x
(2)
1 , x

(2)
2 , · · · , x(2)n ]

...

[x
(m)
1 , x

(m)
2 , · · · , x(m)n ]

 =


x(1)ᵀ

x(2)ᵀ

...

x(m)ᵀ

 ŷ =
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ŷ(2)

...
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Normal Equation (2/2)

I To minimize J(w), we can simply solve for where its gradient is 0: ∇wJ(w) = 0

J(w) =
1

m
||ŷ− y||22,∇wJ(w) = 0

⇒ ∇w
1

m
||ŷ − y||22 = 0

⇒ ∇w
1

m
||Xw − y||22 = 0

⇒ ∇w(Xw − y)ᵀ(Xw − y) = 0

⇒ ∇w(wᵀXᵀXw − 2wᵀXᵀy + yᵀy) = 0

⇒ 2XᵀXw − 2Xᵀy = 0

⇒ w = (XᵀX)−1Xᵀy
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⇒ ∇w(wᵀXᵀXw − 2wᵀXᵀy + yᵀy) = 0

⇒ 2XᵀXw − 2Xᵀy = 0

⇒ w = (XᵀX)−1Xᵀy
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Normal Equation - Example (1/7)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

I Predict the value of ŷ, when x1 = 4000 and x2 = 4.

I We should find w0, w1, and w2 in ŷ = w0 + w1x1 + w2x2.

I w = (XᵀX)−1Xᵀy.
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Normal Equation - Example (2/7)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Normal Equation - Example (3/7)

XᵀX =

 1 1 1 1 1

2104 1600 2400 1416 3000

3 3 3 2 4




1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 =

 5 10520 15

10520 23751872 33144

15 33144 47


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Normal Equation - Example (4/7)

(XᵀX)−1 =

 4.90366455e+ 00 7.48766737e− 04 −2.09302326e+ 00

7.48766737e− 04 2.75281889e− 06 −2.18023256e− 03

−2.09302326e+ 00 −2.18023256e− 03 2.22674419e+ 00


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Normal Equation - Example (5/7)

Xᵀy =

 1 1 1 1 1

2104 1600 2400 1416 3000

3 3 3 2 4




400

330

369

232

540

 =

 1871

4203712

5921


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Normal Equation - Example (6/7)

w = (XᵀX)−1Xᵀy =

 4.90366455e+ 00 7.48766737e− 04 −2.09302326e+ 00

7.48766737e− 04 2.75281889e− 06 −2.18023256e− 03

−2.09302326e+ 00 −2.18023256e− 03 2.22674419e+ 00

 1871
4203712
5921


=

 −7.04346018e + 01
6.38433756e − 02
1.03436047e + 02



31 / 87



Normal Equation - Example (7/7)

I Predict the value of y, when x1 = 4000 and x2 = 4.

ŷ = −7.04346018e + 01 + 6.38433756e− 02× 4000 + 1.03436047e + 02× 4 ≈ 599
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Normal Equation in Spark

case class house(x1: Long, x2: Long, y: Long)

val trainData = Seq(house(2104, 3, 400), house(1600, 3, 330), house(2400, 3, 369),

house(1416, 2, 232), house(3000, 4, 540)).toDF

val testData = Seq(house(4000, 4, 0)).toDF

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1", "x2")).setOutputCol("features")

val train = va.transform(trainData)

val test = va.transform(testData)

import org.apache.spark.ml.regression.LinearRegression

val lr = new LinearRegression().setFeaturesCol("features").setLabelCol("y").setSolver("normal")

val lrModel = lr.fit(train)

lrModel.transform(test).show
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Normal Equation - Computational Complexity

I The computational complexity of inverting XᵀX is O(n3).
• For an m× n matrix (where n is the number of features).

I But, this equation is linear with regards to the number of instances in the training
set (it is O(m)).

• It handles large training sets efficiently, provided they can fit in memory.
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[https://dailyfintech.com/2017/03/13/now-all-we-need-is-for-blockchain-to-become-technologically-boring]
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Gradient Descent
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Gradient Descent (1/2)

I Gradient descent is a generic optimization algorithm capable of finding optimal so-
lutions to a wide range of problems.

I The idea: to tweak parameters iteratively in order to minimize a cost function.
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Gradient Descent (2/2)

I Suppose you are lost in the mountains in a dense fog.

I You can only feel the slope of the ground below your feet.

I A strategy to get to the bottom of the valley is to go downhill in the direction of the
steepest slope.
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Gradient Descent - Iterative Optimization Algorithm

I Choose a starting point, e.g., filling w with random values.

I If the stopping criterion is true return the current solution, otherwise continue.

I Find a descent direction, a direction in which the function value decreases near the
current point.

I Determine the step size, the length of a step in the given direction.
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Gradient Descent - Key Points

I Stopping criterion

I Descent direction

I Step size (learning rate)
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Gradient Descent - Stopping Criterion

I The cost function minimum property: the gradient has to be zero.

∇wJ(w) = 0
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Gradient Descent - Descent Direction (1/2)

I Direction in which the function value decreases near the current point.

I Find the direction of descent (slope).

I Example:
J(w) = w2

∂J(w)

∂w
= 2w = −2 at w = −1
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Gradient Descent - Descent Direction (2/2)

I Follow the opposite direction of the slope.

43 / 87



Gradient Descent - Learning Rate

I Learning rate: the length of steps.

I If it is too small: many iterations to converge.

I If it is too high: the algorithm might diverge.

44 / 87



Gradient Descent - Learning Rate

I Learning rate: the length of steps.

I If it is too small: many iterations to converge.

I If it is too high: the algorithm might diverge.

44 / 87



Gradient Descent - Learning Rate

I Learning rate: the length of steps.

I If it is too small: many iterations to converge.

I If it is too high: the algorithm might diverge.

44 / 87



Gradient Descent - How to Learn Model Parameters w?

I Goal: find w that minimizes J(w) =
∑m

i=1(wᵀx(i) − y(i))2.

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(w)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(w)
∂w

(should be done for all parameters simultanously)
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Gradient Descent - Different Algorithms

I Batch gradient descent

I Stochastic gradient descent

I Mini-batch gradient descent

[https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3]
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Batch Gradient Descent
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Batch Gradient Descent (1/2)

I Repeat the following steps, until the stopping criterion is satisfied:

1. Determine a descent direction ∂J(w)
∂w for all parameters w.

J(w) =
m∑

i=1

(wᵀx(i) − y(i))2

∂J(w)

∂wj
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
j ∇wJ(w) =


∂J(w)
∂w0

∂J(w)
∂w1
...

∂J(w)
∂wn

 =
2

m
Xᵀ(Xw − y)

2. Choose a step size η

3. Update the parameters: w(next) = w − η∇wJ(w)
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Batch Gradient Descent (2/2)

I The algorithm is called Batch Gradient Descent, because at each step, calculations
are over the full training set X.

I As a result it is slow on very large training sets, i.e., large m.

I But, it scales well with the number of features n.
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Batch Gradient Descent - Example (1/5)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

ŷ = w0 + w1x1 + w2x2

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Batch Gradient Descent - Example (2/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w0
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
0

=
2

5
[(w0 + 2104w1 + 3w2 − 400) + (w0 + 1600w1 + 3w2 − 330)+

(w0 + 2400w1 + 3w2 − 369) + (w0 + 1416w1 + 2w2 − 232) + (w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (3/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w1
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
1

=
2

5
[2104(w0 + 2104w1 + 3w2 − 400) + 1600(w0 + 1600w1 + 3w2 − 330)+

2400(w0 + 2400w1 + 3w2 − 369) + 1416(w0 + 1416w1 + 2w2 − 232) + 3000(w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (4/5)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540



∂J(w)

∂w2
=

2

m

m∑
i=1

(wᵀx(i) − y(i))x
(i)
2

=
2

5
[3(w0 + 2104w1 + 3w2 − 400) + 3(w0 + 1600w1 + 3w2 − 330)+

3(w0 + 2400w1 + 3w2 − 369) + 2(w0 + 1416w1 + 2w2 − 232) + 4(w0 + 3000w1 + 4w2 − 540)]
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Batch Gradient Descent - Example (5/5)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1

w
(next)
2 = w2 − η

∂J(w)

∂w2
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Stochastic Gradient Descent
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Stochastic Gradient Descent (1/3)

I Batch gradient descent problem: it’s slow, because it uses the whole training set to
compute the gradients at every step.

I Stochastic gradient descent computes the gradients based on only a single instance.

• It picks a random instance in the training set at every step.
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Stochastic Gradient Descent (2/3)

I The algorithm is much faster, but less regular than batch gradient descent.

• Instead of decreasing until it reaches the minimum, the cost function will bounce up
and down.

• It never settles down.
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Stochastic Gradient Descent (3/3)

I With randomness the algorithm can never settle at the minimum.

I One solution is simulated annealing: start with large learning rate, then make it
smaller and smaller.

I Learning schedule: the function that determines the learning rate at each step.
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Stochastic Gradient Descent - Example (1/3)

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369

1416 2 232

3000 4 540

ŷ = w0 + w1x1 + w2x2

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


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Stochastic Gradient Descent - Example (2/3)

X =


1 2104 3

1 1600 3

1 2400 3

1 1416 2

1 3000 4

 y =


400

330

369

232

540


∂J(w)

∂w0
=

2

m
(wᵀx(i) − y(i))x

(i)
0 =

2

5
[(w0 + 1600w1 + 3w2 − 330)]

∂J(w)

∂w1
=

2

m
(wᵀx(i) − y(i))x

(i)
1 =

2

5
[1600(w0 + 1600w1 + 3w2 − 330)]

∂J(w)

∂w2
=

2

m
(wᵀx(i) − y(i))x

(i)
2 =

2

5
[3(w0 + 1600w1 + 3w2 − 330)]
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Stochastic Gradient Descent - Example (3/3)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1

w
(next)
2 = w2 − η

∂J(w)

∂w2

61 / 87



Mini-Batch Gradient Descent
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Mini-Batch Gradient Descent

I Batch gradient descent: at each step, it computes the gradients based on the full
training set.

I Stochastic gradient descent: at each step, it computes the gradients based on just
one instance.

I Mini-batch gradient descent: at each step, it computes the gradients based on small
random sets of instances called mini-batches.
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Comparison of Algorithms for Linear Regression
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Gradient Descent in Spark

val data = spark.read.format("libsvm").load("data.txt")

import org.apache.spark.ml.regression.LinearRegression

val lr = new LinearRegression().setMaxIter(10)

val lrModel = lr.fit(data)

println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")

val trainingSummary = lrModel.summary

println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
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Generalization
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Training Data and Test Data

I Split data into a training set and a test set.

I Use training set when training a machine learning model.
• Compute training error on the training set.
• Try to reduce this training error.

I Use test set to measure the accuracy of the model.
• Test error is the error when you run the trained model on test data (new data).

val data = spark.read.format("libsvm").load("data.txt")

val Array(trainDF, testDF) = data.randomSplit(Array(0.8, 0.2))
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Generalization

I Generalization: make a model that performs well on test data.
• Have a small test error.

I Challenges

1. Make the training error small.
2. Make the gap between training and test error small.
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More About The Test Error

I The test error is defined as the expected value of the error on test set.

MSE =
1

k

k∑
i

(ŷ(i) − y(i))2, k: the num. of instances in the test set

= E[(ŷ− y)2]

I A model’s test error can be expressed as the sum of bias and variance.

E[(ŷ− y)2] = Bias[ŷ, y]2 + Var[ŷ] + ε2
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Bias and Underfitting

I Bias: the expected deviation from the true value of the function.

Bias[ŷ, y] = E[ŷ]− y

I A high-bias model is most likely to underfit the training data.
• High error value on the training set.

I Underfitting happens when the model is too simple to learn the underlying structure
of the data.
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Variance and Overfitting

I Variance: how much a model changes if you train it on a different training set.

Var[ŷ] = E[(ŷ− E[ŷ])2]

I A high-variance model is most likely to overfit the training data.
• The gap between the training error and test error is too large.

I Overfitting happens when the model is too complex relative to the amount and
noisiness of the training data.
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The Bias/Variance Tradeoff (1/2)

I Assume a model with two parameters w0 (intercept) and w1 (slope): ŷ = w0 + w1x

I They give the learning algorithm two degrees of freedom.

I We tweak both the w0 and w1 to adapt the model to the training data.

I If we forced w0 = 0, the algorithm would have only one degree of freedom and would
have a much harder time fitting the data properly.
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The Bias/Variance Tradeoff (2/2)

I Increasing degrees of freedom will typically increase its variance and reduce its bias.

I Decreasing degrees of freedom increases its bias and reduces its variance.

I This is why it is called a tradeoff.

[https://ml.berkeley.edu/blog/2017/07/13/tutorial-4]
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Regularization (1/2)

I One way to reduce the risk of overfitting is to have fewer degrees of freedom.

I Regularization is a technique to reduce the risk of overfitting.

I For a linear model, regularization is achieved by constraining the weights of the
model.

J(w) = MSE(w) + λR(w)
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Regularization (2/2)

I Lasso regression (l1): R(w) = λ
∑n

i=1 |wi| is added to the cost function:

J(w) = MSE(w) + λ

n∑
i=1

|wi|

I Ridge regression (l2): R(w) = λ
∑n

i=1 w
2
i is added to the cost function.

J(w) = MSE(w) + λ

n∑
i=1

w2i

I ElasticNet: a middle ground between l1 and l2 regularization.

J(w) = MSE(w) + αλ

n∑
i=1

|wi|+ (1− α)λ
n∑

i=1

w2i
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Regularization in Spark

J(w) = MSE(w) + αλ

n∑
i=1

|wi|+ (1− α)λ
n∑

i=1

w2i

I If α = 0: l2 regularization

I If α = 1: l1 regularization

I For α in (0, 1): a combination of l1 and l2 regularizations

import org.apache.spark.ml.regression.LinearRegression

val lr = new LinearRegression().setElasticNetParam(0.8)

val lrModel = lr.fit(data)
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Hyperparameters
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Hyperparameters and Validation Sets (1/2)

I Hyperparameters are settings that we can use to control the behavior of a learning
algorithm.

I The values of hyperparameters are not adapted by the learning algorithm itself.
• E.g., the α and λ values for regularization.

I We do not learn the hyperparameter.
• It is not appropriate to learn that hyperparameter on the training set.
• If learned on the training set, such hyperparameters would always result in overfitting.
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Hyperparameters and Validation Sets (2/2)

I To find hyperparameters, we need a validation set of examples that the training
algorithm does not observe.

I We construct the validation set from the training data (not the test data).

I We split the training data into two disjoint subsets:

1. One is used to learn the parameters.
2. The other one (the validation set) is used to estimate the test error during or after

training, allowing for the hyperparameters to be updated accordingly.
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Cross-Validation

I Cross-validation: a technique to avoid wasting too much training data in validation
sets.

I The training set is split into complementary subsets.

I Each model is trained against a different combination of these subsets and validated
against the remaining parts.

I Once the model type and hyperparameters have been selected, a final model is trained
using these hyperparameters on the full training set, and the test error is measured
on the test set.
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Hyperparameters and Cross-Validation in Spark (1/2)

I CrossValidator to optimize hyperparameters in algorithms and model selection.

I It requires the following items:
• Estimator: algorithm or Pipeline to tune.
• Set of ParamMaps: parameters to choose from (also called a parameter grid).
• Evaluator: metric to measure how well a fitted Model does on held-out test data.
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Hyperparameters and Cross-Validation in Spark (2/2)

// construct a grid of parameters to search over.

// this grid has 2 x 2 = 4 parameter settings for CrossValidator to choose from.

val paramGrid = new ParamGridBuilder()

.addGrid(lr.regParam, Array(0.1, 0.01))

.addGrid(lr.elasticNetParam, Array(0.0, 1.0))

.build()

val lr = new LinearRegression()

// num folds = 3 => (2 x 2) x 3 = 12 different models being trained

val cv = new CrossValidator()

.setEstimator(lr)

.setEvaluator(new RegressionEvaluator())

.setEstimatorParamMaps(paramGrid)

.setNumFolds(3)

val cvModel = cv.fit(trainDF)
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Summary
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Summary

I Linear regression model ŷ = wᵀx
• Learning parameters w
• Cost function J(w)
• Learn parameters: normal equation, gradient descent (batch, stochastic, mini-batch)

I Generalization
• Overfitting vs. underfitting
• Bias vs. variance
• Regularization: Lasso regression, Ridge regression, ElasticNet

I Hyperparameters and cross-validation
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I Ian Goodfellow et al., Deep Learning (Ch. 4, 5)

I Aurélien Géron, Hands-On Machine Learning (Ch. 2, 4)

I Matei Zaharia et al., Spark - The Definitive Guide (Ch. 27)
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Questions?
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