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Let’s Start with an Example
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[https://www.telegraph.co.uk/lifestyle/pets/8151921/Dogs-are-smarter-than-cats-feline-friends-disagree.html]
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Example (1/4)

I Given the dataset of m cancer tests.

Tumor size Cancer

330 1

120 0

400 1
...

...

I Predict the risk of cancer, as a function of the tumor size?
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Example (2/4)

Tumor size Cancer

330 1

120 0

400 1

...
...

x =


330

120

400

...

 y =


1

0

1

...



I x(i) ∈ R: x
(i)
1 is the tumor size of the ith instance in the training set.
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Example (3/4)

Tumor size Cancer

330 1

120 0

400 1

...
...

x =


330

120

400

...

 y =


1

0

1

...


I Predict the risk of cancer ŷ as a function of the tumor sizes x1, i.e., ŷ = f(x1)

I E.g., what is ŷ, if x1 = 500?

I As an initial choice: ŷ = fw(x) = w0 + w1x1

I Bad model!
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Example (4/4)

I A better model ŷ = 1
1+e−(w0+w1x1)
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Sigmoid Function

I The sigmoid function, denoted by σ(.), outputs a number between 0 and 1.

σ(t) =
1

1 + e−t

I When t < 0, then σ(t) < 0.5

I when t ≥ 0, then σ(t) ≥ 0.5
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Binomial Logistic Regression
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Binomial Logistic Regression (1/2)

I Our goal: to build a system that takes input x ∈ Rn and predicts output ŷ ∈ {0, 1}.

I To specify which of 2 categories an input x belongs to.
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Binomial Logistic Regression (2/2)

I Linear regression: the model computes the weighted sum of the input features (plus
a bias term).

ŷ = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I Binomial logistic regression: the model computes a weighted sum of the input features
(plus a bias term), but it outputs the logistic of this result.

z = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

ŷ = σ(z) =
1

1 + e−z
=

1

1 + e−wᵀx
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How to Learn Model Parameters w?
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Linear Regression - Cost Function

I One reasonable model should make ŷ close to y, at least for the training dataset.

I Cost function J(w): the mean squared error (MSE)

cost(ŷ(i), y(i)) = (ŷ(i) − y(i))2

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) =
1

m

m∑
i

(ŷ(i) − y(i))2
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Binomial Logistic Regression - Cost Function (1/5)

I Naive idea: minimizing the Mean Squared Error (MSE)

cost(ŷ(i), y(i)) = (ŷ(i) − y(i))2

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) =
1

m

m∑
i

(ŷ(i) − y(i))2

J(w) = MSE(w) =
1

m

m∑
i

(
1

1 + e−wᵀx(i)
− y(i))2

I This cost function is a non-convex function for parameter optimization.
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Binomial Logistic Regression - Cost Function (2/5)

I What do we mean by non-convex?

I If a line joining two points on the curve, crosses the curve.

I The algorithm may converge to a local minimum.

I We want a convex logistic regression cost function J(w).
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Binomial Logistic Regression - Cost Function (3/5)

I The predicted value ŷ = σ(wᵀx) = 1
1+e−wᵀx

I cost(ŷ(i), y(i)) = ?

I The cost(ŷ(i), y(i)) should be
• Close to 0, if the predicted value ŷ will be close to true value y.
• Large, if the predicted value ŷ will be far from the true value y.

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0
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cost(ŷ(i), y(i)) =

{
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Binomial Logistic Regression - Cost Function (4/5)

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

when y = 1 when y = 0
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Binomial Logistic Regression - Cost Function (5/5)

I We can define J(w) as below

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))
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How to Learn Model Parameters w?

I We want to choose w so as to minimize J(w).

I An approach to find w: gradient descent
• Batch gradient descent
• Stochastic gradient descent
• Mini-batch gradient descent
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Binomial Logistic Regression Gradient Descent (1/3)

I Goal: find w that minimizes J(w) = −1
m

∑m
i(y(i)log(ŷ(i))+(1−y(i))log(1− ŷ(i))).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(w)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(w)
∂w (simultaneously for all parameters)
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Binomial Logistic Regression Gradient Descent (2/3)

I 1. Determine a descent direction ∂J(w)
∂w .

ŷ = σ(wᵀx) =
1

1+ e−wᵀx

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) = −
1

m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

∂J(w)

∂wj
=

1

m

m∑
i

−(y(i)
1

ŷ(i)
− (1− y(i))

1

1− ŷ(i)
)
∂ŷ(i)

∂wj

=
1

m

m∑
i

−(y(i)
1

ŷ(i)
− (1− y(i))

1

1− ŷ(i)
)ŷ(i)(1− ŷ(i))

∂wᵀx

∂wj

=
1

m

m∑
i

−(y(i)(1− ŷ(i))− (1− y(i))ŷ(i))xj

=
1

m

m∑
i

(ŷ(i) − y(i))xj
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ŷ(i)
− (1− y(i))

1

1− ŷ(i)
)
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Binomial Logistic Regression Gradient Descent (3/3)

I 2. Choose a step size η

I 3. Update the parameters: w
(next)
j = wj − η ∂J(w)

∂wj
• 0 ≤ j ≤ n, where n is the number of features.
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Binomial Logistic Regression Gradient Descent - Example (1/4)

Tumor size Cancer

330 1

120 0

400 1

X =

 1 330

1 120

1 400

 y =

 1

0

1


I Predict the risk of cancer ŷ as a function of the tumor sizes x1.

I E.g., what is ŷ, if x1 = 500?
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Binomial Logistic Regression Gradient Descent - Example (2/4)

X =

 1 330

1 120

1 400

 y =

 1

0

1



ŷ = σ(w0 + w1x1) =
1

1+ e−(w0+w1x1)

J(w) = −
1

m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

∂J(w)

∂w0
=

1

3

3∑
i

(ŷ(i) − y(i))x0

=
1

3
[(

1

1+ e−(w0+330w1)
− 1) + (

1

1+ e−(w0+120w1)
− 0) + (

1

1+ e−(w0+400w1)
− 1)]
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(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))
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Binomial Logistic Regression Gradient Descent - Example (4/4)

w
(next)
0 = w0 − η

∂J(w)

∂w0

w
(next)
1 = w1 − η

∂J(w)

∂w1
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Binomial Logistic Regression in Spark

case class cancer(x1: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer(400, 1))).toDF

val testData = spark.createDataFrame(Seq(cancer(500, 0))).toDF

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")

val train = va.transform(trainData)

val test = va.transform(testData)

import org.apache.spark.ml.classification.LogisticRegression

val lr = new LogisticRegression().setFeaturesCol("features").setLabelCol("y")

.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)

val lrModel = lr.fit(train)

lrModel.transform(test).show

30 / 74



Binomial Logistic Regression in Spark

case class cancer(x1: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer(400, 1))).toDF

val testData = spark.createDataFrame(Seq(cancer(500, 0))).toDF

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")

val train = va.transform(trainData)

val test = va.transform(testData)

import org.apache.spark.ml.classification.LogisticRegression

val lr = new LogisticRegression().setFeaturesCol("features").setLabelCol("y")

.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)

val lrModel = lr.fit(train)

lrModel.transform(test).show

30 / 74



Binomial Logistic Regression in Spark

case class cancer(x1: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer(400, 1))).toDF

val testData = spark.createDataFrame(Seq(cancer(500, 0))).toDF

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")

val train = va.transform(trainData)

val test = va.transform(testData)

import org.apache.spark.ml.classification.LogisticRegression

val lr = new LogisticRegression().setFeaturesCol("features").setLabelCol("y")

.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)

val lrModel = lr.fit(train)

lrModel.transform(test).show

30 / 74



Binomial Logistic Regression
Probabilistic Interpretation
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Probability and Likelihood (1/2)

I Let X : {x(1), x(2), · · · , x(m)} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter θ.

• For six tosses of a coin, X : {h, t, t, t, h, t}, h: head, and t: tail.
• Suppose you have a coin with probability θ to land heads and (1− θ) to land tails.

I p(X | θ = 2
3

) is the probability of X given θ = 2
3

.

I p(X = h | θ) is the likelihood of θ given X = h.

I Likelihood (L): a function of the parameters (θ) of a probability model, given specific
observed data, e.g., X = h.

L(θ) = p(X | θ)

32 / 74
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I Likelihood (L): a function of the parameters (θ) of a probability model, given specific
observed data, e.g., X = h.

L(θ) = p(X | θ)
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Probability and Likelihood (2/2)

I If samples in X are independent we have:

L(θ) = p(X | θ) = p(x(1), x(2), · · · , x(m) | θ)

= p(x(1) | θ)p(x(2) | θ) · · · p(x(m) | θ) =
m∏

i=1

p(x(i) | θ)
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Likelihood and Log-Likelihood

I The Likelihood product is prone to numerical underflow.

L(θ) = p(X | θ) =
m∏

i=1

p(x(i) | θ)

I To overcome this problem we can use the logarithm of the likelihood.
• Transforms a product into a sum.

log(L(θ)) = log(p(X | θ)) =
m∑

i=1

logp(x(i) | θ)

I Negative Log-Likelihood: −logL(θ) = −
∑m

i=1 logp(x(i) | θ)
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Binomial Logistic Regression and Log-Likelihood (1/2)

I Let’s consider the value of ŷ(i) as the probability:{
p(y(i) = 1 | x(i);w) = ŷ(i)

p(y(i) = 0 | x(i);w) = 1− ŷ(i)
⇒ p(y(i) | x(i);w) = (ŷ(i))y

(i)

(1− ŷ(i))(1−y(i))

I So the likelihood is:

L(w) = p(y | x;w) =
m∏

i=1

p(y(i) | x(i);w) =
m∏

i=1

(ŷ(i))y
(i)

(1− ŷ(i))(1−y(i))

I And the negative log-likelihood:

−log(L(w)) = −
m∑

i=1

logp(y(i) | x(i);w) = −
m∑

i=1

y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))
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Binomial Logistic Regression and Log-Likelihood (2/2)

I The negative log-likelihood:

−log(L(w)) = −
m∑

i=1

logp(y(i) | x(i);w) = −
m∑

i=1

y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))

I This equation is the same as the the logistic regression cost function.

J(w) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

I Minimize the negative log-likelihood to minimize the cost function J(w).
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Binomial Logistic Regression and Cross-Entropy (1/2)

I Negative log-likelihood is also called the cross-entropy

I Coss-entropy: quantify the difference (error) between two probability distributions.

I How close is the predicted distribution to the true distribution?

H(p, q) = −
∑
j

pjlog(qj)

I Where p is the true distriution, and q is the predicted distribution.
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Binomial Logistic Regression and Cross-Entropy (2/2)

H(p, q) = −
∑
j

pjlog(qj)

I The true probability distribution: p(y = 1) = y and p(y = 0) = 1− y

I The predicted probability distribution: q(y = 1) = ŷ and q(y = 0) = 1− ŷ

I p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}
I So, the cross-entropy of p and q is nothing but the logistic cost function.

H(p, q) = −
∑
j

pjlog(qj) = −(ylog(ŷ) + (1− y)log(1− ŷ)) = cost(y, ŷ)

J(w) =
1

m

m∑
i

cost(y, ŷ) =
1

m

m∑
i

H(p, q) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))

I Minimize the cross-entropy to minimize the cost function J(w).
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I p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}
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J(w) =
1

m

m∑
i

cost(y, ŷ) =
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J(w) =
1

m

m∑
i

cost(y, ŷ) =
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I Minimize the cross-entropy to minimize the cost function J(w).

38 / 74



Binomial Logistic Regression and Cross-Entropy (2/2)

H(p, q) = −
∑
j

pjlog(qj)

I The true probability distribution: p(y = 1) = y and p(y = 0) = 1− y

I The predicted probability distribution: q(y = 1) = ŷ and q(y = 0) = 1− ŷ
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1

m

m∑
i

H(p, q) = −1
m

m∑
i
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Multinomial Logistic Regression
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Multinomial Logistic Regression

I Multinomial classifiers can distinguish between more than two classes.

I Instead of y ∈ {0, 1}, we have y ∈ {1, 2, · · · , k}.
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Binomial vs. Multinomial Logistic Regression (1/2)

I In a binomial classifier, y ∈ {0, 1}, the estimator is ŷ = p(y = 1 | x;w).
• We find one set of parameters w.

wᵀ = [w0, w1, · · · , wn]

I In multinomial classifier, y ∈ {1, 2, · · · , k}, we need to estimate the result for each
individual label, i.e., ŷj = p(y = j | x;w).

• We find k set of parameters W.

W =


[w0,1, w1,1, · · · , wn,1]
[w0,2, w1,2, · · · , wn,2]

...
[w0,k, w1,k, · · · , wn,k]

 =


wᵀ

1

wᵀ
2

...
wᵀ

k
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Binomial vs. Multinomial Logistic Regression (2/2)

I In a binary class, y ∈ {0, 1}, we use the sigmoid function.

wᵀx = w0x0 + w1x1 + · · ·+ wnxn

ŷ = p(y = 1 | x;w) = σ(wᵀx) =
1

1 + e−wᵀx

I In multiclasses, y ∈ {1, 2, · · · , k}, we use the softmax function.

wᵀ
jx = w0,jx0 + w1,jx1 + · · ·+ wn,jxn, 1 ≤ j ≤ k

ŷj = p(y = j | x;wj) = σ(wᵀ
jx) =

ew
ᵀ
j x∑k

i=1 e
wᵀ
i x
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Sigmoid vs. Softmax

I Sigmoid function: σ(wᵀx) = 1
1+e−wᵀx

I Softmax function: σ(wᵀ
jx) = e

w
ᵀ
j x∑k

i=1 e
w
ᵀ
i x

• Calculate the probabilities of each target class over all possible target classes.
• The softmax function for two classes is equivalent the sigmoid function.
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How Does Softmax Work? - Step 1

I For each instance x(i), computes the score wᵀ
jx

(i) for each class j.

wᵀ
jx

(i) = w0,jx
(i)
0 + w1,jx

(i)
1 + · · ·+ wnjx

(i)
n

I Note that each class j has its own dedicated parameter vector wj.

W =


[w0,1, w1,1, · · · , wn,1]
[w0,2, w1,2, · · · , wn,2]

...
[w0,k, w1,k, · · · , wn,k]

 =


wᵀ
1

wᵀ
2

...
wᵀ
k
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How Does Softmax Work? - Step 2

I For each instance x(i), apply the softmax function on its scores: wᵀ
1x

(i), · · · ,wᵀ
kx

(i)

I Estimates the probability that the instance x(i) belongs to class j.

ŷ
(i)
j = p(y(i) = j | x(i);wj) = σ(wᵀ

jx
(i)) =

ew
ᵀ
j x

(i)∑k
l=1 e

wᵀ
l x

(i)

I k: the number of classes.

I wᵀ
jx

(i): the scores of class j for the instance x(i).

I σ(wᵀ
jx

(i)): the estimated probability that x(i) belongs to class j.
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How Does Softmax Work? - Step 3

I Predicts the class with the highest estimated probability.
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Softmax Model Estimation and Prediction - Example (1/2)

I Assume we have a training set consisting of m = 4 instances from k = 3 classes.

x(1) → class1, y(1)ᵀ = [1 0 0]

x(2) → class2, y(2)ᵀ = [0 1 0]

x(3) → class3, y(3)ᵀ = [0 0 1]

x(4) → class3, y(4)ᵀ = [0 0 1]

Y =


1 0 0

0 1 0

0 0 1

0 0 1



I Assume training set X and random parameters W are as below:

X =


1 0.1 0.5
1 1.1 2.3
1 −1.1 −2.3
1 −1.5 −2.5

 W =

 0.01 0.1 0.1
0.1 0.2 0.3
0.1 0.2 0.3
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Softmax Model Estimation and Prediction - Example (2/2)

I Now, let’s compute the softmax activation:

ŷ
(i)
j = p(y(i) = j | x(i);wj) = σ(wᵀ

j x
(i)) =

e
wᵀ
j x(i)∑k

l=1 e
wᵀ
l x(i)

Ŷ =


ŷ(1)ᵀ

ŷ(2)ᵀ

ŷ(3)ᵀ

ŷ(4)ᵀ

 =


0.29 0.34 0.36
0.21 0.33 0.46
0.43 0.33 0.24
0.45 0.33 0.22

 the predicted classes =


3

3

1

1

 The correct classes =


1

2

3

3



I They are terribly wrong.

I We need to update the weights based on the cost function.

I What is the cost function?
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ŷ
(i)
j = p(y(i) = j | x(i);wj) = σ(wᵀ

j x
(i)) =

e
wᵀ
j x(i)∑k

l=1 e
wᵀ
l x(i)

Ŷ =
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Multinomial Logistic Regression - Cost Function (1/2)

I The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

I Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

J(wj) = −1
m

m∑
i=1

k∑
j=1

y
(i)
j log(ŷ

(i)
j )

I y
(i)
j is 1 if the target class for the ith instance is j, otherwise, it is 0.

49 / 74



Multinomial Logistic Regression - Cost Function (1/2)

I The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

I Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

J(wj) = −1
m

m∑
i=1

k∑
j=1

y
(i)
j log(ŷ
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49 / 74



Multinomial Logistic Regression - Cost Function (1/2)

I The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

I Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

J(wj) = −1
m

m∑
i=1

k∑
j=1

y
(i)
j log(ŷ
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Multinomial Logistic Regression - Cost Function (2/2)

J(wj) = −1
m

m∑
i=1

k∑
j=1

y
(i)
j log(ŷ

(i)
j )

I y
(i)
j is 1 if the target class for the ith instance is j, otherwise, it is 0.

I If there are two classes (k = 2), this cost function is equivalent to the logistic
regression’s cost function.

J(w) = −1
m

m∑
i=1

[y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))]
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How to Learn Model Parameters W?

I Goal: find W that minimizes J(W).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∂J(W)
∂w

2. Choose a step size η

3. Update the parameters: w(next) = w− η ∂J(W)
∂w (simultaneously for all parameters)
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Multinomial Logistic Regression in Spark

val training = spark.read.format("libsvm").load("multiclass_data.txt")

import org.apache.spark.ml.classification.LogisticRegression

val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)

val lrModel = lr.fit(training)

println(s"Coefficients: \n${lrModel.coefficientMatrix}")

println(s"Intercepts: \n${lrModel.interceptVector}")
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Performance Measures
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Performance Measures

I Evaluate the performance of a model.

I Depends on the application and its requirements.

I There are many different types of classification algorithms, but the evaluation of
them share similar principles.
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Evaluation of Classification Models (1/3)

I In a classification problem, there exists a true output y and a model-generated pre-
dicted output ŷ for each data point.

I The results for each instance point can be assigned to one of four categories:
• True Positive (TP)
• True Negative (TN)
• False Positive (FP)
• False Negative (FN)
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Evaluation of Classification Models (2/3)

I True Positive (TP): the label y is positive and prediction ŷ is also positive.

I True Negative (TN): the label y is negative and prediction ŷ is also negative.
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Evaluation of Classification Models (3/3)

I False Positive (FP): the label y is negative but prediction ŷ is positive (type I error).

I False Negative (FN): the label y is positive but prediction ŷ is negative (type II error).
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Why Pure Accuracy Is Not A Good Metric?

I Accuracy: how close the prediction is to the true value.

I Assume a highly unbalanced dataset

I E.g., a dataset where 95% of the data points are not fraud and 5% of the data points
are fraud.

I A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.

I For this reason, metrics like precision and recall are typically used.
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Precision

I It is the accuracy of the positive predictions.

Precision = p(y = 1 | ŷ = 1) =
TP

TP + FP
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Recall

I Is is the ratio of positive instances that are correctly detected by the classifier.

I Also called sensitivity or true positive rate (TPR).

Recall = p(ŷ = 1 | y = 1) =
TP

TP + FN
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F1 Score

I F1 score: combine precision and recall into a single metric.

I The F1 score is the harmonic mean of precision and recall.

I Whereas the regular mean treats all values equally, the harmonic mean gives much
more weight to low values.

I F1 only gets high score if both recall and precision are high.

F1 =
2

1
precision

+ 1
recall
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Confusion Matrix

I The confusion matrix is K× K, where K is the number of classes.

I It shows the number of correct and incorrect predictions made by the classification
model compared to the actual outcomes in the data.
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Confusion Matrix - Example

TP = 3, TN = 5, FP = 1, FN = 2

Precision =
TP

TP + FP
=

3

3 + 1
=

3

4

Recall (TPR) =
TP

TP + FN
=

3

3 + 2
=

3

5

FPR =
FP

TN + FP
=

1

5 + 1
=

5

6
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Precision-Recall Tradeoff

I Precision-recall tradeoff: increasing precision reduces recall, and vice versa.

I Assume a classifier that detects number 5 from the other digits.
• If an instance score is greater than a threshold, it assigns it to the positive class,

otherwise to the negative class.

I Raising the threshold (move it to the arrow on the right), the false positive (the 6)
becomes a true negative, thereby increasing precision.

I Lowering the threshold increases recall and reduces precision.
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The ROC Curve (1/2)

I True positive rate (TPR) (recall): p(ŷ = 1 | y = 1)

I False positive rate (FPR): p(ŷ = 1 | y = 0)

I The receiver operating characteristic (ROC) curves summarize the trade-off between
the TPR and FPR for a model using different probability thresholds.
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The ROC Curve (2/2)

I Here is a tradeoff: the higher the TPR, the more FPR the classifier produces.

I The dotted line represents the ROC curve of a purely random classifier.

I A good classifier moves toward the top-left corner.

I Area under the curve (AUC)
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Binomial Logistic Regression Measurements in Spark

val lr = new LogisticRegression()

val lrModel = lr.fit(training)

val trainingSummary = lrModel.binarySummary

// obtain the objective per iteration.

val objectiveHistory = trainingSummary.objectiveHistory

objectiveHistory.foreach(loss => println(loss))

// obtain the ROC as a dataframe and areaUnderROC.

val roc = trainingSummary.roc

roc.show()

println(s"areaUnderROC: ${trainingSummary.areaUnderROC}")

// set the model threshold to maximize F-Measure

val fMeasure = trainingSummary.fMeasureByThreshold

val maxFMeasure = fMeasure.select(max("F-Measure")).head().getDouble(0)

val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure)

.select("threshold").head().getDouble(0)

lrModel.setThreshold(bestThreshold)
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Multinomial Logistic Regression in Spark (1/2)

val trainingSummary = lrModel.summary

// for multiclass, we can inspect metrics on a per-label basis

println("False positive rate by label:")

trainingSummary.falsePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>

println(s"label $label: $rate")

}

println("True positive rate by label:")

trainingSummary.truePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>

println(s"label $label: $rate")

}
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Multinomial Logistic Regression in Spark (2/2)

println("Precision by label:")

trainingSummary.precisionByLabel.zipWithIndex.foreach { case (prec, label) =>

println(s"label $label: $prec")

}

println("Recall by label:")

trainingSummary.recallByLabel.zipWithIndex.foreach { case (rec, label) =>

println(s"label $label: $rec")

}

val accuracy = trainingSummary.accuracy

val falsePositiveRate = trainingSummary.weightedFalsePositiveRate

val truePositiveRate = trainingSummary.weightedTruePositiveRate

val fMeasure = trainingSummary.weightedFMeasure

val precision = trainingSummary.weightedPrecision

val recall = trainingSummary.weightedRecall
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Summary
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Summary

I Binomial logistic regression
• y ∈ {0, 1}
• Sigmoid function
• Minimize the cross-entropy

I Multinomial logistic regression
• y ∈ {1, 2, · · · , k}
• Softmax function
• Minimize the cross-entropy

I Performance measurements
• TP, TF, FP, FN
• Precision, recall, F1
• Threshold and ROC
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Reference

I Ian Goodfellow et al., Deep Learning (Ch. 4, 5)

I Aurélien Géron, Hands-On Machine Learning (Ch. 3)

I Matei Zaharia et al., Spark - The Definitive Guide (Ch. 26)
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Questions?
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