b

k.
EFXTHE

NSKAP
3% OCH KONST 3%

S

Machine Learning - Classification

Amir H. Payberah
payberah@Qkth.se
6/11/2019

The Course Web Page

https://id2223kth.github.io

Where Are We?

Deep Learning

Disrbuted Leaming

Deep Feedforward Network || Training Feedforward Network

Machine Learning

| Regression || Classification ||More Supervised Learningl

Spark ML

Where Are We?

Deep Learning

Distrbuted Leaming

Deep Feedforward Network [Training Feedforward Network

Machine Learning

| Regression M Classification HMore Supervised Learningl

Spark ML

Let's Start with an Example

[https://www.telegraph.co.uk/lifestyle/pets/8151921/Dogs-are-smarter-than-cats-feline-friends-disagree.html]

Example (1/4)

» Given the dataset of m cancer tests.

Tumor size | Cancer

330 1
120 0
400 1

Example (1/4)

» Given the dataset of m cancer tests.

Tumor size | Cancer

330 1
120 0
400 1

» Predict the risk of cancer, as a function of the tumor size?

Example (2/4)

Tumor size | Cancer
330 1
120 0
400 1
330 1
120 0
X = 1400 y=|1

X X

X

X X

Tumor size

Example (2/4)

Tumor size | Cancer

330 1
120 0
400 1 1 X X X XX
330 1
120 0
X = [400 y= |1 0 X X X

Tumor size

» x() e R: xgi) is the tumor size of the ith instance in the training set.

Example (3/4)

Tumor size | Cancer

330 1
120 0
400 1 1 XXX XX
330 1
120 0
X = [400 y=|1 o
X

Tumor size

» Predict the risk of cancer § as a function of the tumor sizes x4, i.e., § = £(x1)

» E.g., what is §, if x4 = 5007

Example (3/4)

Tumor size ‘ Cancer

330 1
120 0] y=wx+b
400 1 1 X X X XX
330 1
120 0 A
X = [400 y= |1
ol x X

300
Tumor size

» Predict the risk of cancer § as a function of the tumor sizes x4, i.e., § = £(x1)

» E.g., what is §, if x4 = 5007

» As an initial choice: § = £,(x) = wo + wixy

Example (3/4)

Tumor size ‘ Cancer

330 1
120 0
400 1 1
330 1
120 0 A
X = (400 y= |1 o

>

v

E.g., what is §, if x4 = 5007

» As an initial choice: § = £,(x) = wo + wixy

Bad model!

v

300
Tumor size

Predict the risk of cancer § as a function of the tumor sizes x4, i.e., § = £(x1)

y=wx+b
1 XX X X
[c] X X X X
Tumor size
1

» A better model § =

14+e—(wotwixy)

X X X

Tumor size

Y =1/(1+ ")

Sigmoid Function

» The sigmoid function, denoted by o(.), outputs a number between 0 and 1.

t)= ———
o(t) 1+et

1of
osl| — W=r7=

0.6

0.4
0.2
0.0

» When t < 0, then o(t) < 0.5

» when t > 0, then o(t) > 0.5

Binomial Logistic Regression

Binomial Logistic Regression (1/2)

» Our goal: to build a system that takes input x € R™ and predicts output § € {0, 1}.

» To specify which of 2 categories an input x belongs to.

300

Tumor size

Binomial Logistic Regression (2/2)

» Linear regression: the model computes the weighted sum of the input features (plus
a bias term).

§ = WoXo + WXy + WaXg + -+ + WpXp = W'X

Binomial Logistic Regression (2/2)

» Linear regression: the model computes the weighted sum of the input features (plus
a bias term).

§ = WoXo + WXy + WaXg + -+ + WpXp = W'X

» Binomial logistic regression: the model computes a weighted sum of the input features
(plus a bias term), but it outputs the logistic of this result.

Z = WoXo + WiX1 + WoXo + - -+ 4 WpXy = WTX
1 1

§=o0(2)

T 1lte? 1te W

Z = WoXg + WiXq1 + WoXo + -+ + WpXp = WIX
N 1 - 1
C14eZ 14e WX

§=o0(z)

How to Learn Model Parameters w?

Linear Regression - Cost Function

J=w0 + wixl

n=0;-J5)

» One reasonable model should make § close to y, at least for the training dataset.
» Cost function J(w): the mean squared error (MSE)
cost (3™, y)) = (31 — yV)?

m m

. . 1 . .
I(w) = = cost(y),y)) = =3 (5 — y®)?

i i

Binomial Logistic Regression - Cost Function (1/5)

» Naive idea: minimizing the Mean Squared Error (MSE)

cost(3™,yV) = (5 — yy?

1 i) 1 . .
Iw) = = 3 cost(31),y1) = = 37 (31 — 1)y’

Binomial Logistic Regression - Cost Function (1/5)

» Naive idea: minimizing the Mean Squared Error (MSE)

cost(3™,yV) = (5 — yy?

1 i) 1 . .
Iw) = = 3 cost(31),y1) = = 37 (31 — 1)y’

i i

m

3(w) = MsE(w) = = 3 (

—wa(i
m < 1+e

Binomial Logistic Regression - Cost Function (1/5)

» Naive idea: minimizing the Mean Squared Error (MSE)

cost (3™, y)) = (31 — yV)?

m m

1 : _ 1) _
3(w) = D cost(y®, y) = D75~y
J(w) = MSE(w) = i(; gy
m 1+ e—wa(i)

i

» This cost function is a non-convex function for parameter optimization.

Binomial Logistic Regression - Cost Function (2/5)

» What do we mean by non-convex?
> If a line joining two points on the curve, crosses the curve.

» The algorithm may converge to a local minimum.

J(w)

Plateau

H
- Global
Local minimum

minimum

Binomial Logistic Regression - Cost Function (2/5)

» What do we mean by non-convex?
> If a line joining two points on the curve, crosses the curve.
» The algorithm may converge to a local minimum.

» We want a convex logistic regression cost function J(w).

J(w)
A

Plateau

H
- Global
Local minimum

minimum

Binomial Logistic Regression - Cost Function (3/5)

1

» The predicted value § = o(wTx) = e v

» cost(§(), y(1)) =7

Binomial Logistic Regression - Cost Function (3/5)

1

» The predicted value § = o(wTx) = e v

» cost(§(), y(1)) =7

» The cost(§1), y()) should be

» Close to 0, if the predicted value § will be close to true value y.
e Large, if the predicted value § will be far from the true value y.

Binomial Logistic Regression - Cost Function (3/5)

1

» The predicted value § = o(wTx) = e v

» cost(§(), y(1)) =7

» The cost(§1), y()) should be

» Close to 0, if the predicted value § will be close to true value y.
e Large, if the predicted value § will be far from the true value y.

R _ (1) if v =
cost(y(l)jy(l))—{ log(31r) ity

Binomial Logistic Regression - Cost Function (4/5)

. _ (1) if v =
(1) (1)) _ log(y') ity
COSt(y Y) { —log(l (1)) if y(1) _

-log(y) -log(1-y)
A

Binomial Logistic Regression - Cost Function (5/5)

» We can define J(w) as below

. A B +(1) if v =1
g@), gy = [~og(e™) - if 1y
cost(y , ¥y) { —1og(1 - y(i)) if y(i) =0

Binomial Logistic Regression - Cost Function (5/5)

» We can define J(w) as below

)) _ (1) ; (1) —
cost(y(l),y(l)){ log(7'*) if y

1
—log(1—3®) if y® =o

How to Learn Model Parameters w?

» We want to choose w so as to minimize J(w).

» An approach to find w: gradient descent
» Batch gradient descent
¢ Stochastic gradient descent
e Mini-batch gradient descent

Binomial Logistic Regression Gradient Descent (1/3)

> Goal: find w that minimizes J(w) = —1 > (y(M)10g(5(1)) 4 (1 —y))10g(1 —51))).

Binomial Logistic Regression Gradient Descent (1/3)

» Goal: find w that minimizes J(w) = —% S""(y(M10g(31) + (1 —y()1og(1 —51))).

m i

» Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

Binomial Logistic Regression Gradient Descent (1/3)

» Goal: find w that minimizes J(w) = —2 "% (y(M)1og(31)) 4 (1 — y())10g(1 —51)).

m 1

» Start at a random point, and repeat the following steps, until the stopping criterion

is satisfied:

1. Determine a descent direction 22(%)

ow

Binomial Logistic Regression Gradient Descent (1/3)

» Goal: find w that minimizes J(w) = —2 "% (y(M)1og(31)) 4 (1 — y())10g(1 —51)).

m 1

» Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:
93(w)
ow

1. Determine a descent direction
2. Choose a step size

Binomial Logistic Regression Gradient Descent (1/3)

» Goal: find w that minimizes J(w) = —2 "% (y(M)1og(31)) 4 (1 — y())10g(1 —51)).

m 1

» Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:
1. Determine a descent direction ai)(:')

2. Choose a step size

0J(w) (

3. Update the parameters; w(®*®) =y — 7 D

simultaneously for all parameters)

Binomial Logistic Regression Gradient Descent (2/3)

Binomial Logistic Regression Gradient Descent (3/3)

» 2. Choose a step size)

» 3. Update the parameters: wgneXt) =Wy — 776551‘2')

* 0 < j <n, where n is the number of features.

Binomial Logistic Regression Gradient Descent - Example (1/4)

Tumor size ‘ Cancer

330 1

120 0

400 1
1330 1
X=|1]120 y=1|0
1 | 400 1

> Predict the risk of cancer § as a function of the tumor sizes x;.

» E.g., whatis §, if x4 = 5007

Binomial Logistic Regression Gradient Descent - Example (2/4)

. B 1
§=o(wo +wixy) = T o—Gotvinn)

J(w) = 2

= =2 > (5 W10g(9D) + (1~ y)10g(1 ~ 3V))

Binomial Logistic Regression Gradient Descent - Example (2/4)

1

§ = o(wo +wixq1) = 1+ e—(wotwixs)

Iw) ==

D (W10g(3™) + (1 - y)10g(1 — 511)))

83(w)

Owo

3
Z(y(i) —y)xo

i

1

3

1 1 1
:é[(mﬂ)ﬂiw)ﬂ

1

1+ e—(wo+120w1) 14 e— (wo+400w1) -

Binomial Logistic Regression Gradient Descent - Example (3/4)

. B 1
§=o(wo +wixy) = T o—Gotvinn)

J(w) = 2

= =2 > (5 W10g(9D) + (1~ y)10g(1 ~ 3V))

Binomial Logistic Regression Gradient Descent - Example (3/4)

o B 1

§ = o(wo +wix1) = m

1o (; i) _
J(w) = - Z(y(l)log(?(l)) +(1- y(l))log(l B }7(1)))

IW) 1~))
8W1 - 3 g(y y)X1

1

1 oGormm ~ O+ 20 orony)

_1330 ! 1 120
= 38300 =z — 1)+ 120(

Binomial Logistic Regression Gradient Descent - Example (4/4)

Wg)nex'c) — Wy — T](()J(W)

aWo
gmext) _ naJ (w)

Binomial Logistic Regression in Spark

case class cancer(xl: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer (400, 1))).toDF
val testData = spark.createDataFrame(Seq(cancer (500, 0))).toDF

Binomial Logistic Regression in Spark

case class cancer(xl: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer (400, 1))).toDF
val testData = spark.createDataFrame(Seq(cancer (500, 0))).toDF

import org.apache.spark.ml.feature.VectorAssembler

val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")

val train = va.transform(trainData)
val test = va.transform(testData)

Binomial Logistic Regression in Spark

case class cancer(xl: Long, y: Long)

val trainData = spark.createDataFrame(Seq(cancer(330, 1), cancer(120, 0), cancer (400, 1))).toDF
val testData = spark.createDataFrame(Seq(cancer (500, 0))).toDF

import org.apache.spark.ml.feature.VectorAssembler
val va = new VectorAssembler().setInputCols(Array("x1")).setOutputCol("features")

val train = va.transform(trainData)
val test = va.transform(testData)

import org.apache.spark.ml.classification.LogisticRegression

val 1r = new LogisticRegression().setFeaturesCol("features").setLabelCol("y")
.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)

val lrModel = lr.fit(train)
1rModel .transform(test) .show

Binomial Logistic Regression
Probabilistic Interpretation

Probability and Likelihood (1/2)

» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.

Probability and Likelihood (1/2)

» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.
e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.
¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

Probability and Likelihood (1/2)

» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.
e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.
¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

> p(X | 6 = 2) is the probability of X given 6 = 2.

Probability and Likelihood (1/2)

» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.
e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.
¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

> p(X | 6 = 2) is the probability of X given 6 = 2.

» p(X =h | 0) is the likelihood of ¢ given X = h.

Probability and Likelihood (1/2)

Let X : {x(1), x(® ... %} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.

e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.

¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

>

v

p(X | 6 = 2) is the probability of X given 6 = 2.

v

p(X =h | 0) is the likelihood of # given X = h.

v

Likelihood (L): a function of the parameters () of a probability model, given specific
observed data, e.g., X = h.

L(0) =p(X | 0)

Probability and Likelihood (2/2)

» If samples in X are independent we have:

L(Q) f— p(X ’ 9) = P(X(l)7x(2)7 o e ’X(m) | 9)

m

=p(xY | 0)p(x? | 0)---p(x™ | 0) = [] p(x*) |)

i=1

Likelihood and Log-Likelihood

» The Likelihood product is prone to numerical underflow

L(6) = p(X | 0) = Hp

Likelihood and Log-Likelihood

» The Likelihood product is prone to numerical underflow

L(6) = p(X | 0) = Hp

» To overcome this problem we can use the logarithm of the likelihood.
e Transforms a product into a sum.

log(L(0)) = log(p(X | 6)) Zlogp

Likelihood and Log-Likelihood

>

The Likelihood product is prone to numerical underflow

L(0) = p(X | 0) = Hp

» To overcome this problem we can use the logarithm of the likelihood.
e Transforms a product into a sum.

log(L(0)) = log(p(X | 6)) Zlogp

v

Negative Log-Likelihood: —logL(f) = — > §_, 10gP(X(i) | 0)

Binomial Logistic Regression and Log-Likelihood (1/2)

» Let's consider the value of §(!) as the probability:

p(y®) =1 | x;w) =0 . 1) | 4 (3@ (1 — g5
— w)=1— y i

= p(y™ [x¥;w) =

Binomial Logistic Regression and Log-Likelihood (1/2)

» Let's consider the value of §(!) as the probability:

» So the likelihood is:

m m

i i ~(i)yy® & (1)) (1—yW
L(w) =p(y | x;w) = [[p(v™ | x®;w) = [y (1 =g

i=1 i=1

Binomial Logistic Regression and Log-Likelihood (1/2)

» Let's consider the value of §(!) as the probability:

» So the likelihood is:
i i ~(i)yy® & (1)) (1—yW
L(w) =p(y | x;w) = [[p(y® | x¥;w) = [T(sW) (1 — gt

» And the negative Iog—likelihood:
—log(L Z logp(y () | x(i — Zy(i)log(y(i)) +(1— y(i))log(l - }7(1))

Binomial Logistic Regression and Log-Likelihood (2/2)

» The negative Iog—likelihood:
—log(L Z logp(y™® | xt = =3 y010g(3W) + (1 — @) Log(1 — 7))

Binomial Logistic Regression and Log-Likelihood (2/2)

» The negative Iog—likelihood:
—log(L Z logp(y™® | xt = =3 y010g(3W) + (1 — @) Log(1 — 7))

» This equation is the same as the the logistic regression cost function.

m

Iw) = == 3 (7W10g(s) + (1 - y)10g(1 — 3))

i

Binomial Logistic Regression and Log-Likelihood (2/2)

» The negative Iog—likelihood:
—log(L Z logp(y™® | xt = =3 y010g(3W) + (1 — @) Log(1 — 7))

» This equation is the same as the the logistic regression cost function.

m

Iw) = == 3 (7W10g(s) + (1 - y)10g(1 — 3))

i

» Minimize the negative log-likelihood to minimize the cost function J(w).

Binomial Logistic Regression and Cross-Entropy (1/2)

>

» Coss-entropy: quantify the difference (error) between two probability distributions.

Negative log-likelihood is also called the cross-entropy

» How close is the predicted distribution to the true distribution?

H(p,q) = — Z pjlog(q;)

v

Where p is the true distriution, and q is the predicted distribution.

Binomial Logistic Regression and Cross-Entropy (2/2)

H(p,q) = — ijlog(qj)

Binomial Logistic Regression and Cross-Entropy (2/2)

H(p,q) = — ijlog(qj)

» The true probability distribution: p(y =1) =y and p(y=0)=1—y

Binomial Logistic Regression and Cross-Entropy (2/2)

H(p,q) = — ijlog(qj)

» The true probability distribution: p(y =1) =y and p(y=0)=1—y
» The predicted probability distribution: q(y =1) =g and q(y=0)=1—-7¥

Binomial Logistic Regression and Cross-Entropy (2/2)

H(p,q) = — > _ pjlog(ay)
]
» The true probability distribution: p(y =1) =y and p(y=0)=1—y

» The predicted probability distribution: q(y =1) =g and q(y=0)=1—-7¥
»pe{y,l-ytandqgec{y,1 -7}

Binomial Logistic Regression and Cross-Entropy (2/2)

— > pjlog(ay)
J
» The true probability distribution: p(y =1) =y andp(y=0)=1—y
» The predicted probability distribution: q(y =1) =g and q(y=0)=1—-7¥
»pe{y,t—yjandqe{y,1-7}
» So, the cross-entropy of p and q is nothing but the logistic cost function.

H(p,q) = ijlog q;) = —(ylog(§) + (1 — y)log(1 — §)) = cost(y,¥)

Binomial Logistic Regression and Cross-Entropy (2/2)

— > pjlog(ay)
J
» The true probability distribution: p(y =1) =y andp(y=0)=1—y
» The predicted probability distribution: q(y =1) =g and q(y=0)=1—-7¥
»pe{y,t—yjandqe{y,1-7}
» So, the cross-entropy of p and q is nothing but the logistic cost function.

H(p,q) = ijlog q;) = —(ylog(§) + (1 — y)log(1 — §)) = cost(y,¥)

Zcost v, 5) Z H(p,q) = iZ(y()1Og((1)) + (1 —y(i))log(1 _y(i)))

i

» Minimize the cross-entropy to minimize the cost function J(w).

Multinomial Logistic Regression

Multinomial Logistic Regression

» Multinomial classifiers can distinguish between more than two classes.

» Instead of y € {0,1}, we havey € {1,2,--- | k}.

Binomial vs. Multinomial Logistic Regression (1/2)

» In a binomial classifier, y € {0, 1}, the estimator is § = p(y =1 | x; w).
e We find one set of parameters w.

wh = [WO>W17"' awn]

Binomial vs. Multinomial Logistic Regression (1/2)

» In a binomial classifier, y € {0, 1}, the estimator is § = p(y =1 | x; w).
e We find one set of parameters w.

wh = [WO>W17"' awn]

» In multinomial classifier, y € {1,2,--- ,k}, we need to estimate the result for each
individual label, i.e., §5 =p(y = j | x;w).

Binomial vs. Multinomial Logistic Regression (1/2)

» In a binomial classifier, y € {0, 1}, the estimator is § = p(y =1 | x; w).
e We find one set of parameters w.

WT - [W07W17"' awn]

» In multinomial classifier, y € {1,2,--- ,k}, we need to estimate the result for each
individual label, i.e., §5 =p(y = j | x;w).
e We find k set of parameters W.

[Wo,1, W11, Wn1] wi
[W0;27 Wi,2, ’WH,Q] Wg

W = , -

[wo,ka Wik, " 7Wn,k] Wl;r

Binomial vs. Multinomial Logistic Regression (2/2)

» In a binary class, y € {0,1}, we use the sigmoid function.

wix = WoXo + WiX1 + -+ WpXy
1
14 e—Wx

y=p(y=1]xw)=0c(w'x)=

Binomial vs. Multinomial Logistic Regression (2/2)

» In a binary class, y € {0,1}, we use the sigmoid function.

wix = WoXo + WiX1 + -+ WpXy

R 1
y=ry=1lxw)=o(wix) = =5
» In multiclasses, y € {1,2,--- ,k}, we use the softmax function.

W}-—X = Wo,jX0 + W1,jX1 + + -+ + Wn jXn, 1<j<k

Sigmoid vs. Softmax

» Sigmoid function: o(wTx) = —t

Tre—wTs
. w}'x
» Softmax function: o(wlx) = —=—+
J Zk . ew. X
T

e Calculate the probabilities of each target class over all possible target classes.
e The softmax function for two classes is equivalent the sigmoid function.

Softmax

[J
S5

How Does Softmax Work? - Step 1

» For each instance x(!), computes the score WJT.x(i) for each class j.

(1)

W:]!-X(i) — wO,j X(()i) + W17jX1 + PPN + wnj Xr(li)

» Note that each class j has its own dedicated parameter vector wj.

[Wo,17W1,1, co >Wn,1] WI
[W0,27 W12, " 7Wn72] W;

T
[WO,kv Wik, "* »Wn,k] Wy

How Does Softmax Work? - Step 2

For each instance x(1), apply the softmax function on its scores: w]x() ... wlx(®)

>

Estimates the probability that the instance x() belongs to class j.

v

wTx(®)
i i ; i ' -
73 =p(r™ = 5 | xHwy) = o(w]x®) = SE e
1=1

k: the number of classes.

v

v

wJTx(i): the scores of class j for the instance x(1).

v

a(wJTx(i)): the estimated probability that x(*) belongs to class j.

How Does Softmax Work? - Step 3

» Predicts the class with the highest estimated probability.

Softmax Model Estimation and Prediction - Example (1/2)

» Assume we have a training set consisting of m = 4 instances from k = 3 classes.

x() = class1,y(IT = [1 0 0]

1 0 O

x®) = class2,y?T = [0 1 0] 0 1 0
Y =

x®) = class3,y®)T =0 0 1] 0 0 1

o 0 1

x® = class3,y®T = [0 0 1]

Softmax Model Estimation and Prediction - Example (1/2)

» Assume we have a training set consisting of m = 4 instances from k = 3 classes.
x() = class1,y(IT = [1 0 0]
x®) = class2,y?T = [0 1 0]

x(®) = class3,y®)T = [0 0 1]

O O O
o O+~ O
= = O O

x® = class3,y®T = [0 0 1]

» Assume training set X and random parameters W are as below:

1] o1 0.5

111 53 [0.01 0.1 0.1}
W =

1

1

X = 0.1 0.2 0.3

—hio=23 0.1 0.2 0.3

—-15 —-256

Softmax Model Estimation and Prediction - Example (2/2)

» Now, let's compute the softmax activation:

wJTx(l)
@ _ Dv@) — 5 @ W) = o(wTxPy = &
957 =p(y" =3 [xwy) = o(wixV) = ———=—
1=1¢7t
g 029 034 036 3 1
5 g7 0.21 0.33 0.46 3 2
_| 9 _|o : : : _ B
Y = g = 043 033 024 the predicted classes = 1 The correct classes = 3
y(4)T 0.45 0.33 0.22 1 3

Softmax Model Estimation and Prediction - Example (2/2)

» Now, let's compute the softmax activation:

g
vt 0.29 0.34
2)T 0.21 0.33

0.43
0.45 0.33

IO
3
|
o
w
@

3

y
y_|9
y
y

» They are terribly wrong.

p(y) = j | xW;wy) = o(wlx)) =

0.36
0.46
0.24
0.22

J

the predicted classes = The correct classes =

W w N -

Softmax Model Estimation and Prediction - Example (2/2)

» Now, let's compute the softmax activation:

wJTx(l)
o) _ (1) — 5 1 x@) W) = Ty(1)y — €
957 =p(y" =3 [xwy) = o(wixV) = ———=—
1=18"
g7 0.29 0.34 0.36 3 1
o g7 021 0.33 0.46 3 2
_ 1Y _ . . . ; _ _
Y = y(3)T = 043 033 024 the predicted classes = 1 The correct classes = 3
y(4)T 0.45 0.33 0.22 1 3

» They are terribly wrong.

» We need to update the weights based on the cost function.

Softmax Model Estimation and Prediction - Example (2/2)

» Now, let's compute the softmax activation:

wJTx(l)
o) _ (1) — 5 1 x@) W) = Ty(1)y — €
957 =p(y" =3 [xwy) = o(wixV) = ———=—
1=18"
g7 0.29 0.34 0.36 3 1
o g7 021 0.33 0.46 3 2
_ 1Y _ . . . ; _ _
Y = y(3)T = 043 033 024 the predicted classes = 1 The correct classes = 3
y(4)T 0.45 0.33 0.22 1 3

» They are terribly wrong.

» We need to update the weights based on the cost function.

» What is the cost function?

Multinomial Logistic Regression - Cost Function (1/2)

» The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

Multinomial Logistic Regression - Cost Function (1/2)

» The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

» Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

m k
1 i (i
Iwy) = —— 3" >y 108(55)

i=1 j=t

Multinomial Logistic Regression - Cost Function (1/2)

» The objective is to have a model that estimates a high probability for the target class,
and consequently a low probability for the other classes.

» Cost function: the cross-entropy between the correct classes and predicted class for
all classes.

m k
1 i (i
Iwy) = —— 3" >y 108(55)

i=1 j=t

(1)

> yy is 1if the target class for the ith instance is j, otherwise, it is 0.

Multinomial Logistic Regression - Cost Function (2/2)

m k
1 i (i
I(ws) = —— 3" Yy 108(55")

i=1 j=1

() is 1 if the target class for the ith instance is j, otherwise, it is 0.

byj

Multinomial Logistic Regression - Cost Function (2/2)

m k
1 i (i
I(ws) = —— 3" Yy 108(55")

i=1 j=1

(1)

> yj is 1 if the target class for the ith instance is j, otherwise, it is 0.

» If there are two classes (k = 2), this cost function is equivalent to the logistic
regression’s cost function.

Iw) =~ [y P10g(3) + (1 - y)10g(1 — 3]

How to Learn Model Parameters W?

» Goal: find W that minimizes J(W).

How to Learn Model Parameters W?

» Goal: find W that minimizes J(W).

» Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

How to Learn Model Parameters W?

» Goal: find W that minimizes J(W).

» Start at a random point, and repeat the following steps, until the stopping criterion

is satisfied:
I(W)

1. Determine a descent direction

ow

How to Learn Model Parameters W?

» Goal: find W that minimizes J(W).

» Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:
AI(W)
ow

1. Determine a descent direction
2. Choose a step size

How to Learn Model Parameters W?

» Goal: find W that minimizes J(W).

» Start at a random point, and repeat the following steps, until the stopping criterion

is satisfied:
1. Determine a descent direction anwW)
2. Choose a step size
3. Update the parameters; w(®*t) = y — nméwa) (simultaneously for all parameters)

Multinomial Logistic Regression in Spark

val training = spark.read.format("libsvm").load("multiclass_data.txt")

Multinomial Logistic Regression in Spark

val training = spark.read.format("libsvm").load("multiclass_data.txt")

import org.apache.spark.ml.classification.LogisticRegression

val 1r = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val 1lrModel = lr.fit(training)

Multinomial Logistic Regression in Spark

val training = spark.read.format("libsvm").load("multiclass_data.txt")

import org.apache.spark.ml.classification.LogisticRegression

val 1r = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val 1lrModel = lr.fit(training)

println(s"Coefficients: \n${lrModel.coefficientMatrix}")
println(s"Intercepts: \n${lrModel.interceptVector}")

Performance Measures

GIMME SOME
GREAT
PERFORMANCE!

Performance Measures

» Evaluate the performance of a model.

» Depends on the application and its requirements.

» There are many different types of classification algorithms, but the evaluation of
them share similar principles.

Evaluation of Classification Models (1/3)

> In a classification problem, there exists a true output y and a model-generated pre-
dicted output § for each data point.

» The results for each instance point can be assigned to one of four categories:

e True Positive (TP)
e True Negative (TN)
o False Positive (FP)
« False Negative (FN)

Evaluation of Classification Models (2/3)

» True Positive (TP): the label y is positive and prediction § is also positive.
» True Negative (TN): the label y is negative and prediction § is also negative.

= =0
yAl YR

false negatives true negatives

° o ®y=00° o

Evaluation of Classification Models (3/3)

» False Positive (FP): the label y is negative but prediction § is positive (type | error).
» False Negative (FN): the label y is positive but prediction § is negative (type Il error).

=1 =0
yA yA
r h'd Y
false negatives true negatives

° o ®g=00 Type Il error
(false Negative)

o

Why Pure Accuracy Is Not A Good Metric?

» Accuracy: how close the prediction is to the true value.

Why Pure Accuracy Is Not A Good Metric?

» Accuracy: how close the prediction is to the true value.

» Assume a highly unbalanced dataset

» E.g., a dataset where 95% of the data points are not fraud and 5% of the data points
are fraud.

Why Pure Accuracy Is Not A Good Metric?

>

Accuracy: how close the prediction is to the true value.

v

Assume a highly unbalanced dataset

v

E.g., a dataset where 95% of the data points are not fraud and 5% of the data points
are fraud.

» A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.

Why Pure Accuracy Is Not A Good Metric?

>

Accuracy: how close the prediction is to the true value.

v

Assume a highly unbalanced dataset

v

E.g., a dataset where 95% of the data points are not fraud and 5% of the data points
are fraud.

» A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.

v

For this reason, metrics like precision and recall are typically used.

Precision

» It is the accuracy of the positive predictions.

Precision=p(y=1]|§=1)

Precision =

Recall

> |s is the ratio of positive instances that are correctly detected by the classifier.

» Also called sensitivity or true positive rate (TPR).

TP

Recall =

F1 Score

>

F1 score: combine precision and recall into a single metric.

v

The F1 score is the harmonic mean of precision and recall.

v

Whereas the regular mean treats all values equally, the harmonic mean gives much
more weight to low values.

v

F1 only gets high score if both recall and precision are high.

2
1 + 1

recall

F1=

precision

Confusion Matrix

» The confusion matrix is K X K, where K is the number of classes.

> It shows the number of correct and incorrect predictions made by the classification
model compared to the actual outcomes in the data.

Predicted
Negative Positive g
Negative z ‘
Actual ; 3

Positive 5 5~ 5 5 5

Precision
(e.g., 3outof 4)

Recall
(e.g., 3out of 5)

Confusion Matrix - Example

GN\ Negative Positive

P

F 3 7
Ac::auveT(;) 6

Precision
. 5. ‘(e,g. 3outof 4)
ositive Y
o) - 1529
p—

Recall \Tf/
(e.g., 3out of 5)
TP =3, TN=5FP=1FN=2

o TP 3 3

Precision = = = —

TP 4+ FP 3+1 4
TP 3 3
Recall (TPR) = = = -
TP + FN 3+2 5

FP 1

oo,

FPR =

TN+ FP 541

Precision-Recall Tradeoff

» Precision-recall tradeoff: increasing precision reduces recall, and vice versa.

Precision: 6/8 = 75% 4/5=80% 3/3=100% 08
Recall: 6/6 = 100% 416=67% 3/6=50% ,
0.6 oy S
— -~ Precision S
FFR72 5256|5955 oa| [—_Recal
Score
Negative predictions Tl A _...=7 Positive predictions . e
Various thresholds ol
. =600000 —400000 -200000 0 200000 400000 600000

Threshold

Precision-Recall Tradeoff

» Precision-recall tradeoff: increasing precision reduces recall, and vice versa.

» Assume a classifier that detects number 5 from the other digits.

 If an instance score is greater than a threshold, it assigns it to the positive class,
otherwise to the negative class.

Precision: 6/8 = 75% 4/5=80% 3/3=100% 08
Recall: 6/6 = 100% 416=67% 3/6=50% ,
®¢[=~ Precision
FFR252 5~ €555 S
Score ' L
Negative predictions Tl A .7 Positive predictions . e
Various thresholds [

00550000 400000 ~200000 0 200000 400000 600000
Threshold

Precision-Recall Tradeoff

» Precision-recall tradeoff: increasing precision reduces recall, and vice versa.

» Assume a classifier that detects number 5 from the other digits.

 If an instance score is greater than a threshold, it assigns it to the positive class,
otherwise to the negative class.

» Raising the threshold (move it to the arrow on the right), the false positive (the 6)
becomes a true negative, thereby increasing precision.

Precision: 6/8 = 75% 4/5=80% 3/3=100% 08
Recall: 6/6 = 100% 416=67% 3/6=50% ,
®¢[=~ Precision
FFR252 5~ €555) i 2
Score ' L
Negative predictions T, A .7 Positive predictions e

Various thresholds

0 600000 400000 ~200000 0 200000 400000 600000
Threshold

Precision-Recall Tradeoff

» Precision-recall tradeoff: increasing precision reduces recall, and vice versa.
» Assume a classifier that detects number 5 from the other digits.
 If an instance score is greater than a threshold, it assigns it to the positive class,
otherwise to the negative class.
» Raising the threshold (move it to the arrow on the right), the false positive (the 6)
becomes a true negative, thereby increasing precision.
» Lowering the threshold increases recall and reduces precision.

1 =

Precision: 6/8 = 75% 45=80% 313=100% 08
Recall 6/6 = 100% 46=67% 306=50%
O¢IT== precision
| .
FFR 72525~ ¢ 555
Score L

~

Negative predictions e A .7 Positive predictions

02

Various thresholds

0 600000 400000 ~200000 0 200000 400000 600000
Threshold

The ROC Curve (1/2)

FPR = __'

» True positive rate (TPR) (recall): p(§ =1 |y =1) Recall=—=
» False positive rate (FPR): p(§ =1 | y =0)

True Positive Rate
o

ools
00 02 04 06 08 10
False Positive Rate

The ROC Curve (1/2)

FPR = __'

» True positive rate (TPR) (recall): p(§ =1 |y =1) Recall=—=
» False positive rate (FPR): p(§ =1 | y =0)

» The receiver operating characteristic (ROC) curves summarize the trade-off between
the TPR and FPR for a model using different probability thresholds.

1

° ° °
b & ®

True Positive Rate

°

°

02 [06 08 1o
False Positive Rate

o
e

The ROC Curve (2/2)

>

Here is a tradeoff: the higher the TPR, the more FPR the classifier produces.

v

The dotted line represents the ROC curve of a purely random classifier.

v

A good classifier moves toward the top-left corner.

Area under the curve (AUC) 10

v

o °
& &

True Positive Rate
°
=

0.0 0.2 04 0.6 08 1.0
False Positive Rate

Binomial Logistic Regression Measurements in Spark

val lr = new LogisticRegression()
val lrModel = lr.fit(training)

Binomial Logistic Regression Measurements in Spark

val lr = new LogisticRegression()
val lrModel = lr.fit(training)

val trainingSummary = lrModel.binarySummary

// obtain the objective per titeration.
val objectiveHistory = trainingSummary.objectiveHistory
objectiveHistory.foreach(loss => println(loss))

// obtain the ROC as a dataframe and areaUnderROC.

val roc = trainingSummary.roc

roc.show()

println(s"areaUnderROC: ${trainingSummary.areaUnderROC}")

// set the model threshold to mazimize F-Measure

val fMeasure = trainingSummary.fMeasureByThreshold

val maxFMeasure = fMeasure.select(max("F-Measure")) .head() .getDouble (0)

val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure)
.select ("threshold") .head() .getDouble (0)

1rModel.setThreshold (bestThreshold)

Multinomial Logistic Regression in Spark (1/2)

val trainingSummary = lrModel.summary

// for multiclass, we can inspect metrics on a per-label basis

println("False positive rate by label:")

trainingSummary.falsePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
println(s"label $label: $rate")

}

println("True positive rate by label:")

trainingSummary.truePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
println(s"label $label: $rate")

}

Multinomial Logistic Regression in Spark (2/2)

println("Precision by label:")

trainingSummary.precisionByLabel.zipWithIndex.foreach { case (prec, label) =>
println(s"label $label: $prec")

}

println("Recall by label:")

trainingSummary.recallByLabel.zipWithIndex.foreach { case (rec, label) =>
println(s"label $label: $rec")

}

val accuracy = trainingSummary.accuracy

val falsePositiveRate = trainingSummary.weightedFalsePositiveRate
val truePositiveRate = trainingSummary.weightedTruePositiveRate
val fMeasure = trainingSummary.weightedFMeasure

val precision = trainingSummary.weightedPrecision

val recall = trainingSummary.weightedRecall

Summary

Summary

» Binomial logistic regression
*y€E {07 1}
« Sigmoid function
e Minimize the cross-entropy

» Multinomial logistic regression
e y€E {1727... ,k}
e Softmax function
e Minimize the cross-entropy

» Performance measurements
« TP, TF, FP, FN
* Precision, recall, F1
e Threshold and ROC

Reference

» lan Goodfellow et al., Deep Learning (Ch. 4, 5)
» Aurélien Géron, Hands-On Machine Learning (Ch. 3)
» Matei Zaharia et al., Spark - The Definitive Guide (Ch. 26)

Questions?

