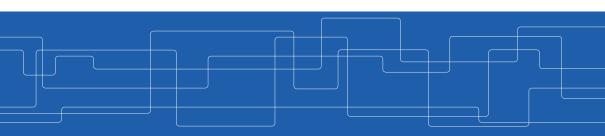


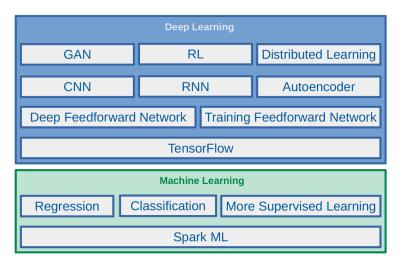
### Deep Feedforwards Networks

Amir H. Payberah payberah@kth.se 13/11/2019

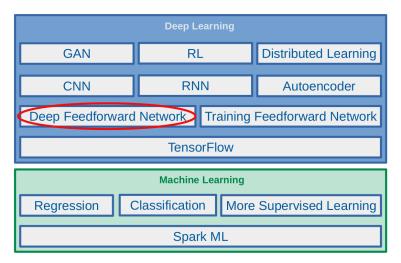


https://id2223kth.github.io



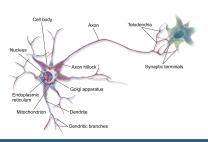






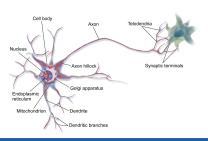


▶ Brain architecture has inspired artificial neural networks.



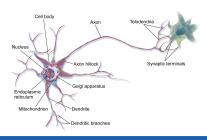


- ▶ Brain architecture has inspired artificial neural networks.
- ► A biological neuron is composed of
  - Cell body, many dendrites (branching extensions), one axon (long extension), synapses



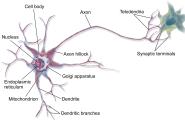


- Brain architecture has inspired artificial neural networks.
- ► A biological neuron is composed of
  - Cell body, many dendrites (branching extensions), one axon (long extension), synapses
- ▶ Biological neurons receive signals from other neurons via these synapses.

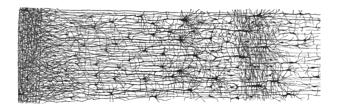




- Brain architecture has inspired artificial neural networks.
- ► A biological neuron is composed of
  - Cell body, many dendrites (branching extensions), one axon (long extension), synapses
- ▶ Biological neurons receive signals from other neurons via these synapses.
- ► When a neuron receives a sufficient number of signals within a few milliseconds, it fires its own signals.



- ▶ Biological neurons are organized in a vast network of billions of neurons.
- ► Each neuron typically is connected to thousands of other neurons.





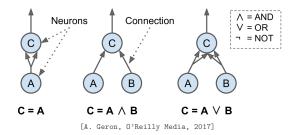
### A Simple Artificial Neural Network

- ▶ One or more binary inputs and one binary output
- ▶ Activates its output when more than a certain number of its inputs are active.



### A Simple Artificial Neural Network

- ▶ One or more binary inputs and one binary output
- ► Activates its output when more than a certain number of its inputs are active.





### The Linear Threshold Unit (LTU)

▶ Inputs of a LTU are numbers (not binary).

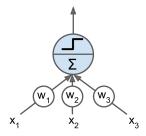


### The Linear Threshold Unit (LTU)

- ▶ Inputs of a LTU are numbers (not binary).
- ▶ Each input connection is associated with a weight.
- ► Computes a weighted sum of its inputs and applies a step function to that sum.

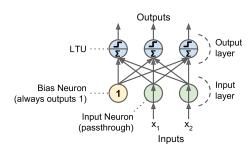
$$ightharpoonup z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = \mathbf{w}^\mathsf{T} \mathbf{x}$$

• 
$$\hat{y} = \text{step}(z) = \text{step}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$



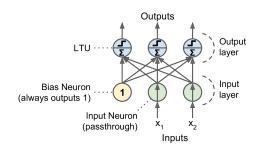
# The Perceptron

► The perceptron is a single layer of LTUs.





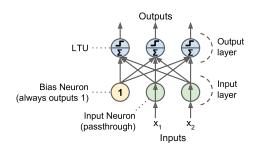
- ► The perceptron is a single layer of LTUs.
- ▶ The input neurons output whatever input they are fed.





### The Perceptron

- ► The perceptron is a single layer of LTUs.
- ► The input neurons output whatever input they are fed.
- ► A bias neuron, which just outputs 1 all the time.



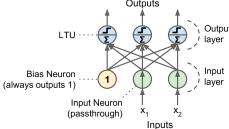


### The Perceptron

- ► The perceptron is a single layer of LTUs.
- ▶ The input neurons output whatever input they are fed.
- ▶ A bias neuron, which just outputs 1 all the time.

► If we use logistic function (sigmoid) instead of a step function, it computes a continuous output.

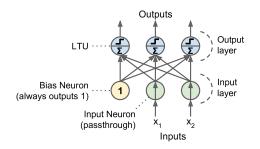
Outputs

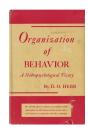




### How is a Perceptron Trained? (1/2)

► The Perceptron training algorithm is inspired by Hebb's rule.

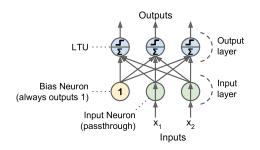


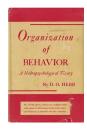




### How is a Perceptron Trained? (1/2)

- ► The Perceptron training algorithm is inspired by Hebb's rule.
- ▶ When a biological neuron often triggers another neuron, the connection between these two neurons grows stronger.







### How is a Perceptron Trained? (2/2)

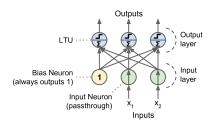
- ▶ Feed one training instance  $\mathbf{x}$  to each neuron  $\mathbf{j}$  at a time and make its prediction  $\hat{\mathbf{y}}$ .
- ► Update the connection weights.



### How is a Perceptron Trained? (2/2)

- ▶ Feed one training instance  $\mathbf{x}$  to each neuron  $\mathbf{j}$  at a time and make its prediction  $\hat{\mathbf{y}}$ .
- ▶ Update the connection weights.

$$\begin{split} \hat{\mathbf{y}}_{j} &= \sigma(\mathbf{w}_{j}^{\mathsf{T}}\mathbf{x} + \mathbf{b}) \\ \mathbf{J}(\mathbf{w}_{j}) &= \mathtt{cross\_entropy}(\mathbf{y}_{j}, \hat{\mathbf{y}}_{j}) \\ \mathbf{w}_{i,j}^{(\mathtt{next})} &= \mathbf{w}_{i,j} - \eta \frac{\partial \mathbf{J}(\mathbf{w}_{j})}{\mathbf{w}_{i}} \end{split}$$





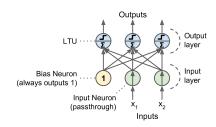
### How is a Perceptron Trained? (2/2)

- ▶ Feed one training instance  $\mathbf{x}$  to each neuron  $\mathbf{j}$  at a time and make its prediction  $\hat{\mathbf{y}}$ .
- ► Update the connection weights.

$$\begin{split} \hat{\mathbf{y}}_{j} &= \sigma(\mathbf{w}_{j}^{\mathsf{T}}\mathbf{x} + \mathbf{b}) \\ \mathbf{J}(\mathbf{w}_{j}) &= \mathtt{cross\_entropy}(\mathbf{y}_{j}, \hat{\mathbf{y}}_{j}) \\ \mathbf{w}_{i,j}^{(\mathtt{next})} &= \mathbf{w}_{i,j} - \eta \frac{\partial \mathbf{J}(\mathbf{w}_{j})}{\mathbf{w}_{i}} \end{split}$$



- ightharpoonup  $w_{i,j}$ : the weight between neurons i and j.
- x<sub>i</sub>: the ith input value.
- $ightharpoonup \hat{y}_i$ : the jth predicted output value.
- ▶ y<sub>i</sub>: the jth true output value.
- $\triangleright$   $\eta$ : the learning rate.



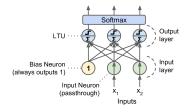


# Perceptron in TensorFlow





### Perceptron in TensorFlow

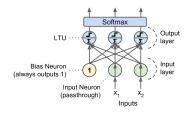


```
n_neurons = 3
n_features = 2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_neurons, input_shape=(n_features,), activation="softmax"))
```



### Perceptron in TensorFlow



```
n_neurons = 3
n_features = 2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_neurons, input_shape=(n_features,), activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=30)
```



# Multi-Layer Perceptron (MLP)



# Perceptron Weakness (1/2)

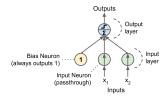
▶ Incapable of solving some trivial problems, e.g., XOR classification problem. Why?



## Perceptron Weakness (1/2)

▶ Incapable of solving some trivial problems, e.g., XOR classification problem. Why?

| А | В | A XOR B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

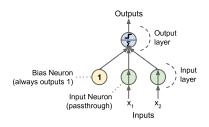


$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$



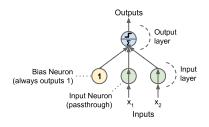
## Perceptron Weakness (2/2)



$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{\mathbf{y}} = \text{step}(\mathbf{z}), \mathbf{z} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{b}$$
 
$$\mathbf{J}(\mathbf{w}) = \frac{1}{4} \sum_{\mathbf{y} \in \mathbf{X}} (\hat{\mathbf{y}}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^2$$



### Perceptron Weakness (2/2)



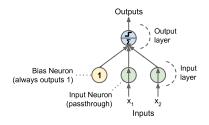
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{\mathbf{y}} = \text{step}(\mathbf{z}), \mathbf{z} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{b}$$

$$\mathbf{J}(\mathbf{w}) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (\hat{\mathbf{y}}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^2$$

If we minimize  $J(\mathbf{w})$ , we obtain  $w_1 = 0$ ,  $w_2 = 0$ , and  $b = \frac{1}{2}$ .



### Perceptron Weakness (2/2)



$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{\mathbf{y}} = \text{step}(\mathbf{z}), \mathbf{z} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{b}$$

$$\mathbf{J}(\mathbf{w}) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (\hat{\mathbf{y}}(\mathbf{x}) - \mathbf{y}(\mathbf{x}))^2$$

- ▶ If we minimize  $J(\mathbf{w})$ , we obtain  $\mathbf{w}_1 = 0$ ,  $\mathbf{w}_2 = 0$ , and  $\mathbf{b} = \frac{1}{2}$ .
- ▶ But, the model outputs 0.5 everywhere.



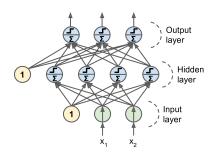
### Multi-Layer Perceptron (MLP)

- ▶ The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.
- ► The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward neural network.



### Feedforward Neural Network Architecture

- ► A feedforward neural network is composed of:
  - One input layer
  - One or more hidden layers
  - One final output layer



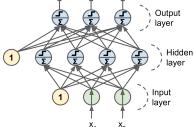


### Feedforward Neural Network Architecture

- ► A feedforward neural network is composed of:
  - One input layer
  - One or more hidden layers
  - One final output layer

► Every layer except the output layer includes a bias neuron and is fully connected to the next layer.

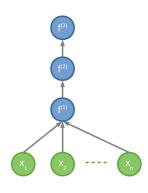
▲ ▲ ▲





### How Does it Work?

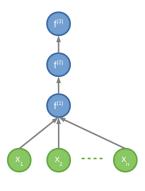
► The model is associated with a directed acyclic graph describing how the functions are composed together.





#### How Does it Work?

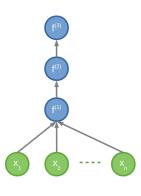
- ► The model is associated with a directed acyclic graph describing how the functions are composed together.
- ► E.g., assume a network with just a single neuron in each layer.
- Also assume we have three functions  $\mathbf{f}^{(1)}$ ,  $\mathbf{f}^{(2)}$ , and  $\mathbf{f}^{(3)}$  connected in a chain:  $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}) = \mathbf{f}^{(3)}(\mathbf{f}^{(2)}(\mathbf{f}^{(1)}(\mathbf{x})))$





#### How Does it Work?

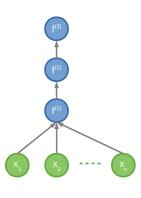
- ► The model is associated with a directed acyclic graph describing how the functions are composed together.
- ► E.g., assume a network with just a single neuron in each layer.
- Also assume we have three functions  $\mathbf{f}^{(1)}$ ,  $\mathbf{f}^{(2)}$ , and  $\mathbf{f}^{(3)}$  connected in a chain:  $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}) = \mathbf{f}^{(3)}(\mathbf{f}^{(2)}(\mathbf{f}^{(1)}(\mathbf{x})))$
- $ightharpoonup f^{(1)}$  is called the first layer of the network.
- f<sup>(2)</sup> is called the second layer, and so on.





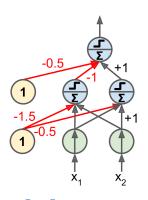
#### How Does it Work?

- ► The model is associated with a directed acyclic graph describing how the functions are composed together.
- ► E.g., assume a network with just a single neuron in each layer.
- Also assume we have three functions  $\mathbf{f}^{(1)}$ ,  $\mathbf{f}^{(2)}$ , and  $\mathbf{f}^{(3)}$  connected in a chain:  $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}) = \mathbf{f}^{(3)}(\mathbf{f}^{(2)}(\mathbf{f}^{(1)}(\mathbf{x})))$
- $ightharpoonup f^{(1)}$  is called the first layer of the network.
- f<sup>(2)</sup> is called the second layer, and so on.
- ► The length of the chain gives the depth of the model.





### XOR with Feedforward Neural Network (1/3)



$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{W}_{x} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{b}_{x} = \begin{bmatrix} -1.5 \\ -0.5 \end{bmatrix}$$

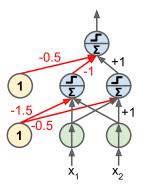
$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{W}_{\mathrm{x}} = \left[ egin{array}{cc} 1 & 1 \ 1 & 1 \end{array} 
ight]$$

$$\mathbf{b}_{x} = \left[ \begin{array}{c} -1.5 \\ -0.5 \end{array} \right]$$



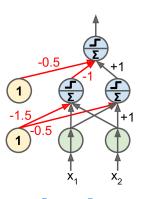
#### XOR with Feedforward Neural Network (2/3)



$$\begin{aligned} \textbf{out}_h &= \textbf{X} \textbf{W}_x^\intercal + \textbf{b}_x = \begin{bmatrix} -1.5 & -0.5 \\ -0.5 & 0.5 \\ -0.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} & \textbf{h} = \text{step}(\textbf{out}_h) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \\ \textbf{w}_h &= \begin{bmatrix} -1 \\ 1 \end{bmatrix} & \textbf{b}_h = -0.5 \end{aligned}$$



### XOR with Feedforward Neural Network (3/3)



$$\mathbf{out} = \mathbf{w}_h^\mathsf{T} \mathbf{h} + b_h = \begin{bmatrix} -0.5 \\ 0.5 \\ 0.5 \\ -0.5 \end{bmatrix} \qquad \mathtt{step}(\mathbf{out}) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$



## How to Learn Model Parameters **W**?



#### Feedforward Neural Network - Cost Function

► We use the cross-entropy (minimizing the negative log-likelihood) between the training data y and the model's predictions ŷ as the cost function.

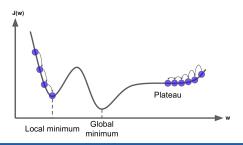
$$\mathtt{cost}(\mathtt{y}, \boldsymbol{\hat{\mathtt{y}}}) = -\sum_{\mathtt{j}} \mathtt{y}_{\mathtt{j}} \mathtt{log}(\boldsymbol{\hat{\mathtt{y}}}_{\mathtt{j}})$$



► The most significant difference between the linear models we have seen so far and feedforward neural network?

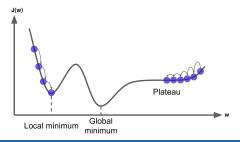


- ► The most significant difference between the linear models we have seen so far and feedforward neural network?
- ► The non-linearity of a neural network causes its cost functions to become non-convex.





- ► The most significant difference between the linear models we have seen so far and feedforward neural network?
- The non-linearity of a neural network causes its cost functions to become non-convex.
- ▶ Linear models, with convex cost function, guarantee to find global minimum.
  - Convex optimization converges starting from any initial parameters.





► Stochastic gradient descent applied to non-convex cost functions has no such convergence guarantee.



- ► Stochastic gradient descent applied to non-convex cost functions has no such convergence guarantee.
- ▶ It is sensitive to the values of the initial parameters.



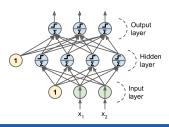
- Stochastic gradient descent applied to non-convex cost functions has no such convergence guarantee.
- ▶ It is sensitive to the values of the initial parameters.
- ► For feedforward neural networks, it is important to initialize all weights to small random values.



- ► Stochastic gradient descent applied to non-convex cost functions has no such convergence guarantee.
- ▶ It is sensitive to the values of the initial parameters.
- ► For feedforward neural networks, it is important to initialize all weights to small random values.
- ► The biases may be initialized to zero or to small positive values.

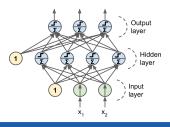


► How to train a feedforward neural network?



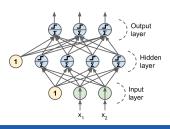


- ► How to train a feedforward neural network?
- ▶ For each training instance  $\mathbf{x}^{(i)}$  the algorithm does the following steps:



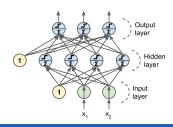


- ► How to train a feedforward neural network?
- ▶ For each training instance  $x^{(i)}$  the algorithm does the following steps:
  - 1. Forward pass: make a prediction (compute  $\hat{y}^{(i)} = f(x^{(i)})$ ).



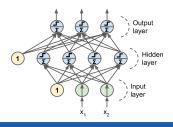


- ► How to train a feedforward neural network?
- ▶ For each training instance  $x^{(i)}$  the algorithm does the following steps:
  - 1. Forward pass: make a prediction (compute  $\hat{y}^{(i)} = f(\mathbf{x}^{(i)})$ ).
  - 2. Measure the error (compute  $cost(\hat{y}^{(i)}, y^{(i)})$ ).



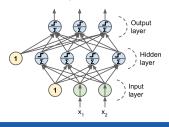


- ► How to train a feedforward neural network?
- ▶ For each training instance  $x^{(i)}$  the algorithm does the following steps:
  - 1. Forward pass: make a prediction (compute  $\hat{y}^{(i)} = f(\mathbf{x}^{(i)})$ ).
  - 2. Measure the error (compute  $cost(\hat{y}^{(i)}, y^{(i)})$ ).
  - 3. Backward pass: go through each layer in reverse to measure the error contribution from each connection.



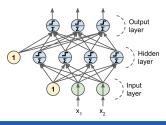


- ► How to train a feedforward neural network?
- ► For each training instance **x**<sup>(i)</sup> the algorithm does the following steps:
  - 1. Forward pass: make a prediction (compute  $\hat{y}^{(i)} = f(\mathbf{x}^{(i)})$ ).
  - 2. Measure the error (compute  $cost(\hat{y}^{(i)}, y^{(i)})$ ).
  - Backward pass: go through each layer in reverse to measure the error contribution from each connection.
  - 4. Tweak the connection weights to reduce the error (update W and b).



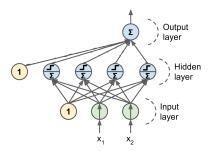


- ► How to train a feedforward neural network?
- ▶ For each training instance  $\mathbf{x}^{(i)}$  the algorithm does the following steps:
  - 1. Forward pass: make a prediction (compute  $\hat{y}^{(i)} = f(\mathbf{x}^{(i)})$ ).
  - 2. Measure the error (compute  $cost(\hat{y}^{(i)}, y^{(i)})$ ).
  - Backward pass: go through each layer in reverse to measure the error contribution from each connection.
  - 4. Tweak the connection weights to reduce the error (update **W** and **b**).
- ▶ It's called the backpropagation training algorithm



## Output Unit (1/3)

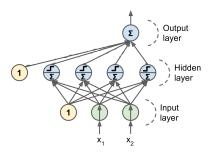
▶ Linear units in neurons of the output layer.





## Output Unit (1/3)

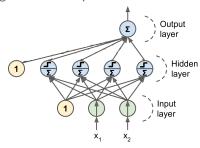
- ▶ Linear units in neurons of the output layer.
- ▶ Output function:  $\hat{y}_j = \mathbf{w}_j^T \mathbf{h} + \mathbf{b}_j$ .





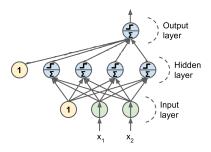
## Output Unit (1/3)

- ▶ Linear units in neurons of the output layer.
- ▶ Output function:  $\hat{y}_j = \mathbf{w}_j^\mathsf{T} \mathbf{h} + \mathbf{b}_j$ .
- ► Cost function: minimizing the mean squared error.



## Output Unit (2/3)

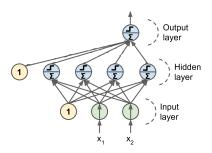
► Sigmoid units in neurons of the output layer (binomial classification).





### Output Unit (2/3)

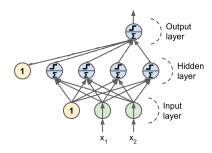
- ► Sigmoid units in neurons of the output layer (binomial classification).
- Output function:  $\hat{y}_j = \sigma(\mathbf{w}_j^\mathsf{T} \mathbf{h} + \mathbf{b}_j)$ .





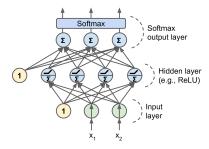
## Output Unit (2/3)

- ► Sigmoid units in neurons of the output layer (binomial classification).
- ▶ Output function:  $\hat{y}_j = \sigma(\mathbf{w}_i^\mathsf{T} \mathbf{h} + \mathbf{b}_j)$ .
- ► Cost function: minimizing the cross-entropy.



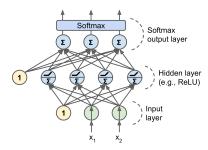
## Output Unit (3/3)

► Softmax units in neurons of the output layer (multinomial classification).





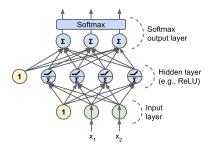
- ► Softmax units in neurons of the output layer (multinomial classification).
- ▶ Output function:  $\hat{y}_j = softmax(\mathbf{w}_i^T \mathbf{h} + b_j)$ .





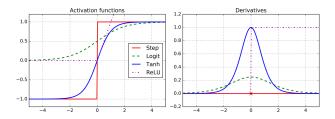
## Output Unit (3/3)

- ► Softmax units in neurons of the output layer (multinomial classification).
- Output function:  $\hat{y}_j = softmax(\mathbf{w}_j^T \mathbf{h} + b_j)$ .
- ► Cost function: minimizing the cross-entropy.



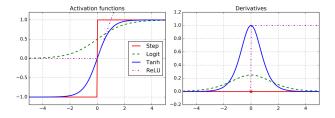
► In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?

- ► In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?
- ► Alternative activation functions:





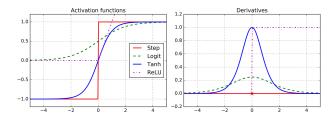
- ► In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?
- Alternative activation functions:
  - 1. Logistic function (sigmoid):  $\sigma(z) = \frac{1}{1+e^{-z}}$





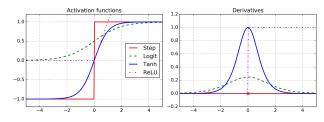
- ▶ In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?
- Alternative activation functions:

  - 1. Logistic function (sigmoid):  $\sigma(z) = \frac{1}{1+e^{-z}}$ 2. Hyperbolic tangent function:  $\tanh(z) = 2\sigma(2z) 1$





- ► In order for the backpropagation algorithm to work properly, we need to replace the step function with other activation functions. Why?
- Alternative activation functions:
  - 1. Logistic function (sigmoid):  $\sigma(z) = \frac{1}{1+e^{-z}}$
  - 2. Hyperbolic tangent function:  $tanh(z) = 2\sigma(2z) 1$
  - 3. Rectified linear units (ReLUs): ReLU(z) = max(0, z)



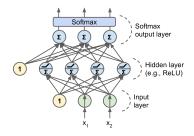


## Feedforward Network in TensorFlow





#### Feedforward Network in TensorFlow

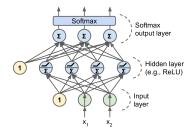


```
n_output = 3
n_hidden = 4
n_features = 2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))
model.add(keras.layers.Dense(n_output, activation="softmax"))
```



#### Feedforward Network in TensorFlow



```
n_output = 3
n_hidden = 4
n_features = 2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))
model.add(keras.layers.Dense(n_output, activation="softmax"))
```

model.compile(loss="sparse\_categorical\_crossentropy", optimizer="sgd", metrics=["accuracy"])
model.fit(X\_train, y\_train, epochs=30)



# Dive into Backpropagation Algorithm





[https://i.pinimg.com/originals/82/d9/2c/82d92c2c15c580c2b2fce65a83fe0b3f.jpg]



Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).



- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.



- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- ► Then the chain rule states that  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$



- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- ► Then the chain rule states that  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- ► Example:

$$z = f(y) = 5y^4$$
 and  $y = g(x) = x^3 + 7$ 



- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- ► Then the chain rule states that  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- Example:

$$z = f(y) = 5y^4 \text{ and } y = g(x) = x^3 + 7$$
 
$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$



- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- ► Then the chain rule states that  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- Example:

$$\begin{split} z &= f(y) = 5y^4 \text{ and } y = g(x) = x^3 + 7 \\ &\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \\ &\frac{dz}{dy} = 20y^3 \text{ and } \frac{dy}{dx} = 3x^2 \end{split}$$



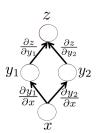
- Assume  $x \in \mathbb{R}$ , and two functions f and g, and also assume y = g(x) and z = f(y) = f(g(x)).
- ► The chain rule of calculus is used to compute the derivatives of functions, e.g., z, formed by composing other functions, e.g., g.
- ► Then the chain rule states that  $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- ► Example:

$$\begin{split} z &= f(y) = 5y^4 \text{ and } y = g(x) = x^3 + 7 \\ &\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \\ &\frac{dz}{dy} = 20y^3 \text{ and } \frac{dy}{dx} = 3x^2 \\ &\frac{dz}{dy} = 20y^3 \times 3x^2 = 20(x^3 + 7) \times 3x^2 \end{split}$$



► Two paths chain rule.

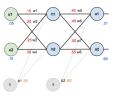
$$\begin{split} z &= f(y_1, y_2) \text{ where } y_1 = g(x) \text{ and } y_2 = h(x) \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} \end{split}$$



- ► Backpropagation training algorithm for MLPs
- ► The algorithm repeats the following steps:
  - 1. Forward pass
  - 2. Backward pass

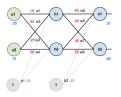


► Calculates outputs given input patterns.



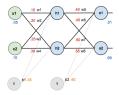


- ► Calculates outputs given input patterns.
- ► For each training instance



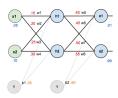


- ► Calculates outputs given input patterns.
- ► For each training instance
  - Feeds it to the network and computes the output of every neuron in each consecutive layer.



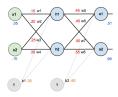


- ► Calculates outputs given input patterns.
- ► For each training instance
  - Feeds it to the network and computes the output of every neuron in each consecutive layer.
  - Measures the network's output error (i.e., the difference between the true and the predicted output of the network)





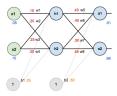
- ► Calculates outputs given input patterns.
- ► For each training instance
  - Feeds it to the network and computes the output of every neuron in each consecutive layer.
  - Measures the network's output error (i.e., the difference between the true and the predicted output of the network)
  - Computes how much each neuron in the last hidden layer contributed to each output neuron's error.





## Backpropagation - Backward Pass

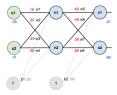
▶ Updates weights by calculating gradients.





## Backpropagation - Backward Pass

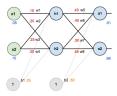
- ► Updates weights by calculating gradients.
- ► Measures how much of these error contributions came from each neuron in the previous hidden layer
  - Proceeds until the algorithm reaches the input layer.





#### Backpropagation - Backward Pass

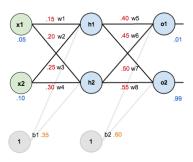
- ► Updates weights by calculating gradients.
- ► Measures how much of these error contributions came from each neuron in the previous hidden layer
  - Proceeds until the algorithm reaches the input layer.
- ► The last step is the gradient descent step on all the connection weights in the network, using the error gradients measured earlier.





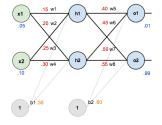
#### Backpropagation Example

- ► Two inputs, two hidden, and two output neurons.
- ▶ Bias in hidden and output neurons.
- ► Logistic activation in all the neurons.
- ▶ Squared error function as the cost function.





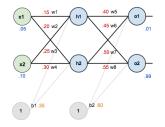
► Compute the output of the hidden layer



$$\mathtt{net_{h1}} = \mathtt{w_1x_1} + \mathtt{w_2x_2} + \mathtt{b_1} = 0.15 \times 0.05 + 0.2 \times 0.1 + 0.35 = 0.3775$$



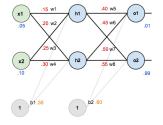
► Compute the output of the hidden layer



$$\begin{split} \text{net}_{h1} &= \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \mathtt{b}_1 = 0.15 \times 0.05 + 0.2 \times 0.1 + 0.35 = 0.3775 \\ \text{out}_{h1} &= \frac{1}{1 + \mathtt{e}^{\mathtt{net}_{h1}}} = \frac{1}{1 + \mathtt{e}^{0.3775}} = 0.59327 \\ \text{out}_{h2} &= 0.59688 \end{split}$$



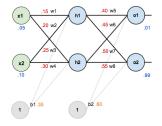
► Compute the output of the output layer



 $net_{o1} = w_5out_{h1} + w_6out_{h2} + b_2 = 0.4 \times 0.59327 + 0.45 \times 0.59688 + 0.6 = 1.1059$ 



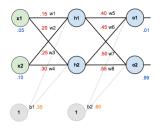
► Compute the output of the output layer



$$\begin{split} \text{net}_{\text{o}1} &= \text{w}_5 \text{out}_{\text{h}1} + \text{w}_6 \text{out}_{\text{h}2} + \text{b}_2 = 0.4 \times 0.59327 + 0.45 \times 0.59688 + 0.6 = 1.1059 \\ \text{out}_{\text{o}1} &= \frac{1}{1 + \text{e}^{\text{net}_{\text{o}1}}} = \frac{1}{1 + \text{e}^{1.1059}} = 0.75136 \\ \text{out}_{\text{o}2} &= 0.77292 \end{split}$$



► Calculate the error for each output



$$\begin{split} E_{o1} &= \frac{1}{2} (\text{target}_{o1} - \text{output}_{o1})^2 = \frac{1}{2} (0.01 - 0.75136)^2 = 0.27481 \\ E_{o2} &= 0.02356 \\ E_{total} &= \sum \frac{1}{2} (\text{target} - \text{output})^2 = E_{o1} + E_{o2} = 0.27481 + 0.02356 = 0.29837 \end{split}$$



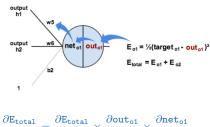


[http://marimancusi.blogspot.com/2015/09/are-you-book-dragon.html]



# Backpropagation - Backward Pass - Output Layer (1/6)

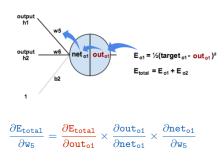
- ► Consider w<sub>5</sub>
- ▶ We want to know how much a change in  $w_5$  affects the total error  $\left(\frac{\partial E_{\text{total}}}{\partial w_5}\right)$
- ► Applying the chain rule





## Backpropagation - Backward Pass - Output Layer (2/6)

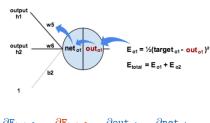
► First, how much does the total error change with respect to the output?  $(\frac{\partial E_{\text{total}}}{\partial \text{out}_{01}})$ 





# Backpropagation - Backward Pass - Output Layer (2/6)

▶ First, how much does the total error change with respect to the output?  $(\frac{\partial E_{\text{total}}}{\partial \text{out}_{o1}})$ 



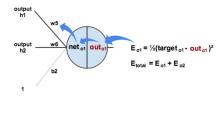
$$\frac{\partial E_{\text{total}}}{\partial w_{5}} = \frac{\frac{\partial E_{\text{total}}}{\partial \text{out}_{\text{o}1}} \times \frac{\partial \text{out}_{\text{o}1}}{\partial \text{net}_{\text{o}1}} \times \frac{\partial \text{net}_{\text{o}1}}{\partial w_{5}}$$

$$\begin{split} E_{\text{total}} &= \frac{1}{2} (\text{target}_{\text{ol}} - \text{out}_{\text{ol}})^2 + \frac{1}{2} (\text{target}_{\text{o2}} - \text{out}_{\text{o2}})^2 \\ \frac{\partial E_{\text{total}}}{\partial \text{out}_{\text{ol}}} &= -2\frac{1}{2} (\text{target}_{\text{ol}} - \text{out}_{\text{ol}}) = -(0.01 - 0.75136) = 0.74136 \end{split}$$



## Backpropagation - Backward Pass - Output Layer (3/6)

Next, how much does the out<sub>o1</sub> change with respect to its total input  $net_{o1}$ ?  $\left(\frac{\partial out_{o1}}{\partial net_{o1}}\right)$ 



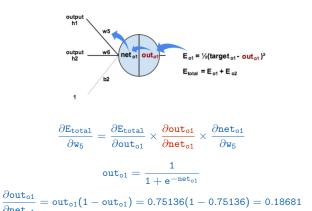
$$\frac{\partial E_{\text{total}}}{\partial w_5} = \frac{\partial E_{\text{total}}}{\partial \text{out}_{\text{o}1}} \times \frac{\partial \text{out}_{\text{o}1}}{\partial \text{net}_{\text{o}1}} \times \frac{\partial \text{net}_{\text{o}2}}{\partial w_5}$$



# Backpropagation - Backward Pass - Output Layer (3/6)

▶ Next, how much does the out<sub>o1</sub> change with respect to its total input net<sub>o1</sub>?  $\left(\frac{\partial \text{out}_{\text{o}1}}{\partial \text{net}_{\text{o}1}}\right)$ 

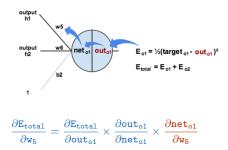
 $\partial \mathtt{net_{o1}}$ 





## Backpropagation - Backward Pass - Output Layer (4/6)

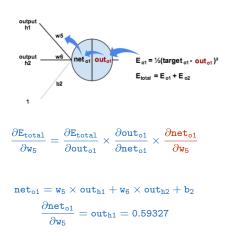
▶ Finally, how much does the total  $net_{o1}$  change with respect to  $w_5$ ?  $\left(\frac{\partial net_{o1}}{\partial w_5}\right)$ 





## Backpropagation - Backward Pass - Output Layer (4/6)

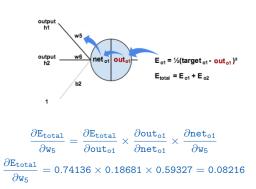
▶ Finally, how much does the total  $net_{o1}$  change with respect to  $w_5$ ?  $\left(\frac{\partial net_{o1}}{\partial w_5}\right)$ 





## Backpropagation - Backward Pass - Output Layer (5/6)

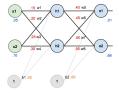
▶ Putting it all together:





#### Backpropagation - Backward Pass - Output Layer (6/6)

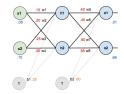
▶ To decrease the error, we subtract this value from the current weight.





#### Backpropagation - Backward Pass - Output Layer (6/6)

- ▶ To decrease the error, we subtract this value from the current weight.
- We assume that the learning rate is  $\eta = 0.5$ .



$$\begin{split} w_5^{(next)} &= w_5 - \eta \times \frac{\partial E_{total}}{\partial w_5} = 0.4 - 0.5 \times 0.08216 = 0.35891 \\ & w_6^{(next)} = 0.40866 \\ & w_7^{(next)} = 0.5113 \\ & w_8^{(next)} = 0.56137 \end{split}$$





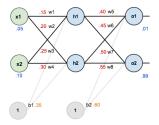
[https://makeameme.org/meme/oooh-this]



#### Backpropagation - Backward Pass - Hidden Layer (1/8)

- ► Continue the backwards pass by calculating new values for w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>, and w<sub>4</sub>.
- ▶ For  $w_1$  we have:

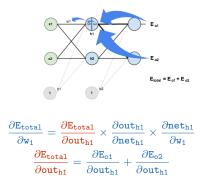
$$\frac{\partial E_{\text{total}}}{\partial w_1} = \frac{\partial E_{\text{total}}}{\partial \text{out}_{h1}} \times \frac{\partial \text{out}_{h1}}{\partial \text{net}_{h1}} \times \frac{\partial \text{net}_{h1}}{\partial w_1}$$





#### Backpropagation - Backward Pass - Hidden Layer (2/8)

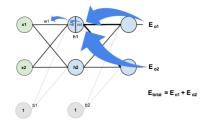
- ► Here, the output of each hidden layer neuron contributes to the output of multiple output neurons.
- ▶ E.g.,  $\operatorname{out}_{h1}$  affects both  $\operatorname{out}_{o1}$  and  $\operatorname{out}_{o2}$ , so  $\frac{\partial E_{\text{total}}}{\partial \operatorname{out}_{h1}}$  needs to take into consideration its effect on the both output neurons.





#### Backpropagation - Backward Pass - Hidden Layer (3/8)

 $\blacktriangleright$  Starting with  $\frac{\partial E_{o1}}{\partial \text{out}_{h1}}$ 

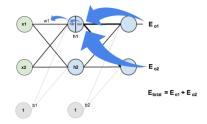


$$\begin{split} \frac{\partial E_{\text{total}}}{\partial \text{out}_{\text{h1}}} &= \frac{\partial E_{\text{o1}}}{\partial \text{out}_{\text{h1}}} + \frac{\partial E_{\text{o2}}}{\partial \text{out}_{\text{h1}}} \\ \frac{\partial E_{\text{o1}}}{\partial \text{out}_{\text{h1}}} &= \frac{\partial E_{\text{o1}}}{\partial \text{out}_{\text{o1}}} \times \frac{\partial \text{out}_{\text{o1}}}{\partial \text{net}_{\text{o1}}} \times \frac{\partial \text{net}_{\text{o1}}}{\partial \text{out}_{\text{h1}}} \\ \frac{\partial E_{\text{o1}}}{\partial \text{out}_{\text{o1}}} &= 0.74136, \frac{\partial \text{out}_{\text{o1}}}{\partial \text{net}_{\text{o1}}} = 0.18681 \\ \text{net}_{\text{o1}} &= w_5 \times \text{out}_{\text{h1}} + w_6 \times \text{out}_{\text{h2}} + b_2 \\ \frac{\partial \text{net}_{\text{o1}}}{\partial \text{out}_{\text{h1}}} &= w_5 = 0.40 \end{split}$$



#### Backpropagation - Backward Pass - Hidden Layer (4/8)

▶ Plugging them together.

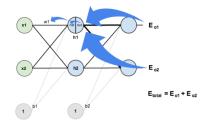


$$\begin{split} \frac{\partial E_{\text{o}1}}{\partial \text{out}_{\text{h}1}} &= \frac{\partial E_{\text{o}1}}{\partial \text{out}_{\text{o}1}} \times \frac{\partial \text{out}_{\text{o}1}}{\partial \text{net}_{\text{o}1}} \times \frac{\partial \text{net}_{\text{o}1}}{\partial \text{out}_{\text{h}1}} = 0.74136 \times 0.18681 \times 0.40 = 0.0554 \\ &\qquad \qquad \frac{\partial E_{\text{o}2}}{\partial \text{out}_{\text{h}1}} = -0.01905 \end{split}$$



#### Backpropagation - Backward Pass - Hidden Layer (4/8)

▶ Plugging them together.

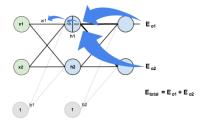


$$\begin{split} \frac{\partial E_{o1}}{\partial out_{h1}} &= \frac{\partial E_{o1}}{\partial out_{o1}} \times \frac{\partial out_{o1}}{\partial net_{o1}} \times \frac{\partial net_{o1}}{\partial out_{h1}} = 0.74136 \times 0.18681 \times 0.40 = 0.0554 \\ &\qquad \qquad \frac{\partial E_{o2}}{\partial out_{h1}} = -0.01905 \\ &\qquad \qquad \frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.0554 + -0.01905 = 0.03635 \end{split}$$



#### Backpropagation - Backward Pass - Hidden Layer (5/8)

▶ Now we need to figure out  $\frac{\partial \text{out}_{h1}}{\partial \text{net}_{h1}}$ 



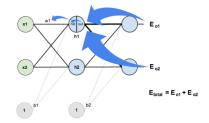
$$\begin{split} \frac{\partial E_{\text{total}}}{\partial w_1} &= \frac{\partial E_{\text{total}}}{\partial \text{out}_{h1}} \times \frac{\frac{\partial \text{out}_{h1}}{\partial \text{net}_{h1}}}{\frac{\partial \text{net}_{h1}}{\partial w_1}} \times \frac{\partial \text{net}_{h1}}{\partial w_1} \\ &\text{out}_{h1} = \frac{1}{1 + e^{-\text{net}_{h1}}} \end{split}$$

$$\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59327(1 - 0.59327) = 0.2413$$



#### Backpropagation - Backward Pass - Hidden Layer (6/8)

► And then  $\frac{\partial \text{net}_{h1}}{\partial w_1}$ .

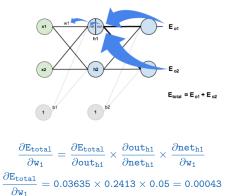


$$\begin{split} \frac{\partial E_{total}}{\partial w_1} &= \frac{\partial E_{total}}{\partial out_{h1}} \times \frac{\partial out_{h1}}{\partial net_{h1}} \times \frac{\partial net_{h1}}{\partial w_1} \\ &net_{h1} = w_1x_1 + w_2x_2 + b_1 \\ &\frac{\partial net_{h1}}{\partial w_1} = x_1 = 0.05 \end{split}$$



#### Backpropagation - Backward Pass - Hidden Layer (7/8)

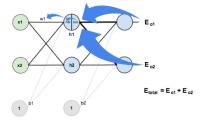
▶ Putting it all together.





#### Backpropagation - Backward Pass - Hidden Layer (8/8)

- ▶ We can now update w<sub>1</sub>.
- ► Repeating this for w<sub>2</sub>, w<sub>3</sub>, and w<sub>4</sub>.



$$\begin{split} w_1^{(\text{next})} &= w_1 - \eta \times \frac{\partial E_{\text{total}}}{\partial w_1} = 0.15 - 0.5 \times 0.00043 = 0.14978 \\ & w_2^{(\text{next})} = 0.19956 \\ & w_3^{(\text{next})} = 0.24975 \\ & w_4^{(\text{next})} = 0.2995 \end{split}$$



### Summary

# Summary

- ► LTU
- Perceptron
- ► Perceptron weakness
- ► MLP and feedforward neural network
- Gradient-based learning
- ▶ Backpropagation: forward pass and backward pass
- ▶ Output unit: linear, sigmoid, softmax
- ► Hidden units: sigmoid, tanh, relu

# Reference

- ▶ Ian Goodfellow et al., Deep Learning (Ch. 6)
- ► Aurélien Géron, Hands-On Machine Learning (Ch. 10)



### Questions?