
Convolutional Neural Networks

Amir H. Payberah
payberah@kth.se

20/11/2019

The Course Web Page

https://id2223kth.github.io

1 / 124

Where Are We?

2 / 124

Where Are We?

3 / 124

Let’s Start With An Example

4 / 124

MNIST Dataset

I Handwritten digits in the MNIST dataset are 28x28 pixel greyscale images.

5 / 124

One-Layer Network For Classifying MNIST (1/4)

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

6 / 124

One-Layer Network For Classifying MNIST (2/4)

I Let’s make a one-layer neural network for classifying digits.

I Each neuron in a neural network:
• Does a weighted sum of all of its inputs
• Adds a bias
• Feeds the result through some non-linear activation function, e.g., softmax.

7 / 124

One-Layer Network For Classifying MNIST (3/4)

I Assume we have a batch of 100 images as the input.

I Using the first column of the weights matrix W, we compute the weighted sum of
all the pixels of the first image.

• The first neuron:
L0,0 = w0,0x

(1)
0 + w1,0x

(1)
1 + · · ·+ w783,0x

(1)
783

• The 2nd neuron until the 10th:
L0,1 = w0,1x

(1)
0 + w1,1x

(1)
1 + · · ·+ w783,1x

(1)
783

· · ·
L0,9 = w0,9x

(1)
0 + w1,9x

(1)
1 + · · ·+ w783,9x

(1)
783

• Repeat the operation for the other 99 images,
i.e., x(2) · · · x(100)

8 / 124

One-Layer Network For Classifying MNIST (4/4)

I Each neuron must now add its bias.

I Apply the softmax activation function for each instance x(i).

I For each input instance x(i): Li =

Li,0
Li,1

...
Li,9

I ŷi = softmax(Li + b)

9 / 124

How Good the Predictions Are?

I Define the cost function J(W) as the cross-entropy of what the network tells us (ŷi)
and what we know to be the truth (yi), for each instance x(i).

I Compute the partial derivatives of the cross-entropy with respect to all the weights
and all the biases, ∇WJ(W).

I Update weights and biases by a fraction of the gradient W(next) = W − η∇WJ(W)

10 / 124

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

model = tf.keras.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(10, activation=’softmax’)

])

model.compile(optimizer=’sgd’, loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’])

model.fit(x_train, y_train, batch_size=100, epochs=10)

model.evaluate(x_test, y_test)

11 / 124

12 / 124

Some Improvement (1/5)

I Add more layers to improve the accuracy.

I On intermediate layers we will use the the sigmoid activation function.

I We keep softmax as the activation function on the last layer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

13 / 124

Some Improvement (2/5)

I Network initialization. e.g., using He initialization.

I Better optimizer, e.g., using Adam optimizer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

14 / 124

Some Improvement (3/5)

I Better activation function, e.g., using ReLU(z) = max(0, z).

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

15 / 124

Some Improvement (4/5)

I Overcome overfitting, e.g., using dropout.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

16 / 124

Some Improvement (5/5)

I Start fast and decay the learning rate exponentially.

I You can do this with the tf.keras.callbacks.LearningRateScheduler callback.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

17 / 124

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation=’relu’),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10, activation=’softmax’)

])

lr decay function

def lr_decay(epoch):

return 0.01 * math.pow(0.6, epoch)

lr schedule callback

lr_decay_callback = tf.keras.callbacks.LearningRateScheduler(lr_decay, verbose=True)

model.compile(optimizer=’adam’, loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’],

callbacks=[lr_decay_callback])

model.fit(x_train, y_train, batch_size=100, epochs=10)

model.evaluate(x_test, y_test)

18 / 124

Vanilla Deep Neural Networks Challenges (1/2)

I Pixels of each image were flattened into a single vector (really bad idea).

I Vanilla deep neural networks do not scale.
• In MNIST, images are black-and-white 28x28 pixel images: 28× 28 = 784 weights.

I Handwritten digits are made of shapes and we discarded the shape information when
we flattened the pixels.

19 / 124

Vanilla Deep Neural Networks Challenges (2/2)

I Difficult to recognize objects.

I Rotation

I Lighting: objects may look different depending on the level of external lighting.

I Deformation: objects can be deformed in a variety of non-affine ways.

I Scale variation: visual classes often exhibit variation in their size.

I Viewpoint invariance.

20 / 124

Tackle the Challenges

I Convolutional neural networks (CNN) can tackle the vanilla model challenges.

I CNN is a type of neural network that can take advantage of shape information.

I It applies a series of filters to the raw pixel data of an image to extract and learn
higher-level features, which the model can then use for classification.

21 / 124

Filters and Convolution Operations

22 / 124

Brain Visual Cortex Inspired CNNs

I 1959, David H. Hubel and Torsten Wiesel.

I Many neurons in the visual cortex have a small local receptive field.

I They react only to visual stimuli located in a limited region of the visual field.

23 / 124

Receptive Fields and Filters

I Imagine a flashlight that is shining over the top left of the image.

I The region that it is shining over is called the receptive field.

I This flashlight is called a filter.

I A filter is a set of weights.

I A filter is a feature detector, e.g., straight edges, simple colors, and curves.

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

24 / 124

Filters Example (1/3)

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

25 / 124

Filters Example (2/3)

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

26 / 124

Filters Example (3/3)

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

27 / 124

Convolution Operation

I Convolution takes a filter and multiplying it over the entire area of an input image.

I Imagine this flashlight (filter) sliding across all the areas of the input image.

[https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks]

28 / 124

Convolution Operation - 2D Example

29 / 124

Convolutional Neural Network (CNN)

30 / 124

CNN Components (1/2)

I Convolutional layers: apply a specified number of convolution filters to the image.

I Pooling layers: downsample the image data extracted by the convolutional layers to
reduce the dimensionality of the feature map in order to decrease processing time.

I Dense layers: a fully connected layer that performs classification on the features
extracted by the convolutional layers and downsampled by the pooling layers.

31 / 124

CNN Components (2/2)

I A CNN is composed of a stack of convolutional modules.

I Each module consists of a convolutional layer followed by a pooling layer.

I The last module is followed by one or more dense layers that perform classification.

I The final dense layer contains a single node for each target class in the model, with
a softmax activation function.

32 / 124

Convolutional Layer

33 / 124

Convolutional Layer (1/4)

I Sparse interactions

I Each neuron in the convolutional layers is only connected to pixels in its receptive
field (not every single pixel).

34 / 124

Convolutional Layer (2/4)

I Each neuron applies filters on its receptive field.
• Calculates a weighted sum of the input pixels in the receptive field.

I Adds a bias, and feeds the result through its activation function to the next layer.

I The output of this layer is a feature map (activation map)

35 / 124

Convolutional Layer (3/4)

I Parameter sharing

I All neurons of a convolutional layer reuse the same weights.

I They apply the same filter in different positions.

I Whereas in a fully-connected network, each neuron had its own set of weights.

36 / 124

Convolutional Layer (4/4)

I Assume the filter size (kernel size) is fw × fh.
• fh and fw are the height and width of the receptive field, respectively.

I A neuron in row i and column j of a given layer is connected to the outputs of the
neurons in the previous layer in rows i to i + fh − 1, and columns j to j + fw − 1.

37 / 124

Padding

I What will happen if you apply a 5x5 filter to a 32x32 input volume?
• The output volume would be 28x28.
• The spatial dimensions decrease.

I Zero padding: in order for a layer to have the same height and width as the previous
layer, it is common to add zeros around the inputs.

I In TensorFlow, padding can be either SAME or VALID to have zero padding or not.

38 / 124

Stride

I The distance between two consecutive receptive fields is called the stride.

I The stride controls how the filter convolves around the input volume.

I Assume sh and sw are the vertical and horizontal strides, then, a neuron located in
row i and column j in a layer is connected to the outputs of the neurons in the
previous layer located in rows i × sh to i × sh + fh − 1, and columns j × sw to
j× sw + fw − 1.

39 / 124

Stacking Multiple Feature Maps

I Up to now, we represented each convolutional layer with a single feature map.

I Each convolutional layer can be composed of several feature maps of equal sizes.

I Input images are also composed of multiple sublayers: one per color channel.

I A convolutional layer simultaneously applies multiple filters to its inputs.

40 / 124

Activation Function

I After calculating a weighted sum of the input pixels in the receptive fields, and adding
biases, each neuron feeds the result through its ReLU activation function to the next
layer.

I The purpose of this activation function is to add non linearity to the system.

41 / 124

Pooling Layer

42 / 124

Pooling Layer (1/2)

I After the activation functions, we can apply a pooling layer.

I Its goal is to subsample (shrink) the input image.
• To reduce the computational load, the memory usage, and the number of parameters.

43 / 124

Pooling Layer (2/2)

I Each neuron in a pooling layer is connected to the outputs of a receptive field in the
previous layer.

I A pooling neuron has no weights.

I It aggregates the inputs using an aggregation function such as the max or mean.

44 / 124

Fully Connected Layer

45 / 124

Fully Connected Layer

I This layer takes an input from the last convolution module, and outputs an N dimen-
sional vector.

• N is the number of classes that the model has to choose from.

I For example, if you wanted a digit classification model, N would be 10.

I Each number in this N dimensional vector represents the probability of a certain class.

46 / 124

Flattening

I We need to convert the output of the convolutional part of the CNN into a 1D
feature vector.

I This operation is called flattening.

I It gets the output of the convolutional layers, flattens all its structure to create a
single long feature vector to be used by the dense layer for the final classification.

47 / 124

Example

48 / 124

A Toy ConvNet: X’s and O’s

49 / 124

For Example

50 / 124

Trickier Cases

51 / 124

Deciding is Hard

52 / 124

What Computers See

53 / 124

Computers are Literal

54 / 124

ConvNets Match Pieces of the Image

55 / 124

Filters Match Pieces of the Image

56 / 124

Filters Match Pieces of the Image

57 / 124

Filters Match Pieces of the Image

58 / 124

Filters Match Pieces of the Image

59 / 124

Filters Match Pieces of the Image

60 / 124

Filters Match Pieces of the Image

61 / 124

Filtering: The Math Behind the Match

62 / 124

Filtering: The Math Behind the Match

63 / 124

Filtering: The Math Behind the Match

64 / 124

Filtering: The Math Behind the Match

65 / 124

Filtering: The Math Behind the Match

66 / 124

Filtering: The Math Behind the Match

67 / 124

Filtering: The Math Behind the Match

68 / 124

Filtering: The Math Behind the Match

69 / 124

Filtering: The Math Behind the Match

70 / 124

Filtering: The Math Behind the Match

71 / 124

Filtering: The Math Behind the Match

72 / 124

Filtering: The Math Behind the Match

73 / 124

Filtering: The Math Behind the Match

74 / 124

Filtering: The Math Behind the Match

75 / 124

Filtering: The Math Behind the Match

76 / 124

Convolution: Trying Every Possible Match

77 / 124

Three Filters Here, So Three Images Out

78 / 124

Convolution Layer

I One image becomes a stack of filtered images.

79 / 124

Rectified Linear Units (ReLUs)

80 / 124

Rectified Linear Units (ReLUs)

81 / 124

Rectified Linear Units (ReLUs)

82 / 124

Rectified Linear Units (ReLUs)

83 / 124

ReLU Layer

I A stack of images becomes a stack of images with no negative values.

84 / 124

Pooling: Shrinking the Image Stack

85 / 124

Pooling: Shrinking the Image Stack

86 / 124

Pooling: Shrinking the Image Stack

87 / 124

Pooling: Shrinking the Image Stack

88 / 124

Pooling: Shrinking the Image Stack

89 / 124

Pooling: Shrinking the Image Stack

90 / 124

Repeat For All the Filtered Images

91 / 124

Layers Get Stacked

I The output of one becomes the input of the next.

92 / 124

Deep Stacking

93 / 124

Fully Connected Layer

I Flattening the outputs before giving them to the fully connected layer.

94 / 124

Fully Connected Layer

95 / 124

Fully Connected Layer

96 / 124

Fully Connected Layer

97 / 124

Fully Connected Layer

98 / 124

Fully Connected Layer

99 / 124

Fully Connected Layer

100 / 124

Fully Connected Layer

101 / 124

Fully Connected Layer

102 / 124

Putting It All Together

103 / 124

104 / 124

One more example

I A conv layer.

I Computes 2 feature maps.

I Filters: 3x3 with stride of 2.

I Input tensor shape: [7, 7, 3].

I Output tensor shape: [3, 3, 2].

[http://cs231n.github.io/convolutional-networks]

105 / 124

106 / 124

CNN in TensorFlow

107 / 124

CNN in TensorFlow (1/7)

I A CNN for the MNIST dataset with the following network.

I Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

I Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

I Conv. layer 2: computes 64 feature maps using a 5x5 filter.

I Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

I Dense layer: densely connected layer with 1024 neurons.

I Softmax layer

108 / 124

CNN in TensorFlow (2/7)

I Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

I Padding same is added to preserve width and height.

I Input tensor shape: [batch size, 28, 28, 1]

I Output tensor shape: [batch size, 28, 28, 32]

MNIST images are 28x28 pixels, and have one color channel: [28, 28, 1]

tf.keras.layers.Conv2D(kernel_size=5, filters=32, activation=’relu’, padding=’same’,

input_shape=[28, 28, 1])

109 / 124

CNN in TensorFlow (3/7)

I Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

I Input tensor shape: [batch size, 28, 28, 32]

I Output tensor shape: [batch size, 14, 14, 32]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

110 / 124

CNN in TensorFlow (4/7)

I Conv. layer 2: computes 64 feature maps using a 5x5 filter.

I Padding same is added to preserve width and height.

I Input tensor shape: [batch size, 14, 14, 32]

I Output tensor shape: [batch size, 14, 14, 64]

tf.keras.layers.Conv2D(kernel_size=5, filters=64, activation=’relu’, padding=’same’)

111 / 124

CNN in TensorFlow (5/7)

I Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

I Input tensor shape: [batch size, 14, 14, 64]

I Output tensor shape: [batch size, 7, 7, 64]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

112 / 124

CNN in TensorFlow (6/7)

I Flatten tensor into a batch of vectors.
• Input tensor shape: [batch size, 7, 7, 64]
• Output tensor shape: [batch size, 7 ∗ 7 ∗ 64]

tf.keras.layers.Flatten()

I Dense layer: densely connected layer with 1024 neurons.
• Input tensor shape: [batch size, 7 ∗ 7 ∗ 64]
• Output tensor shape: [batch size, 1024]

tf.keras.layers.Dense(1024, activation=’relu’)

I Softmax layer: softmax layer with 10 neurons.
• Input tensor shape: [batch size, 1024]
• Output tensor shape: [batch size, 10]

tf.keras.layers.Dense(10, activation=’softmax’)

113 / 124

CNN in TensorFlow (7/7)

model = tf.keras.Sequential([

tf.keras.layers.Conv2D(kernel_size=5, filters=32, activation=’relu’, padding=’same’,

input_shape=[28, 28, 1]),

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2),

tf.keras.layers.Conv2D(kernel_size=5, filters=64, activation=’relu’, padding=’same’),

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(1024, activation=’relu’),

tf.keras.layers.Dense(10, activation=’softmax’)

])

114 / 124

115 / 124

Training CNNs

116 / 124

Training CNN (1/4)

I Let’s see how to use backpropagation on a single convolutional layer.

I Assume we have an input X of size 3x3 and a single filter W of size 2x2.

I No padding and stride = 1.

I It generates an output H of size 2x2.

117 / 124

Training CNN (2/4)

I Forward pass

h11 = W11X11 + W12X12 + W21X21 + W22X22

h12 = W11X12 + W12X13 + W21X22 + W22X23

h21 = W11X21 + W12X22 + W21X31 + W22X32

h22 = W11X22 + W12X23 + W21X32 + W22X33

118 / 124

Training CNN (3/4)

I Backward pass

I E is the error: E = Eh11 + Eh12 + Eh21 + Eh22

∂E

∂W11
=
∂Eh11
∂h11

∂h11

∂W11
+
∂Eh12
∂h12

∂h12

∂W11
+
∂Eh21
∂h21

∂h21

∂W11
+
∂Eh22
∂h22

∂h22

∂W11

∂E

∂W12
=
∂Eh11
∂h11

∂h11

∂W12
+
∂Eh12
∂h12

∂h12

∂W12
+
∂Eh21
∂h21

∂h21

∂W12
+
∂Eh22
∂h22

∂h22

∂W12

∂E

∂W21
=
∂Eh11
∂h11

∂h11

∂W21
+
∂Eh12
∂h12

∂h12

∂W21
+
∂Eh21
∂h21

∂h21

∂W21
+
∂Eh22
∂h22

∂h22

∂W21

∂E

∂W22
=
∂Eh11
∂h11

∂h11

∂W22
+
∂Eh12
∂h12

∂h12

∂W22
+
∂Eh21
∂h21

∂h21

∂W22
+
∂Eh22
∂h22

∂h22

∂W22

119 / 124

Training CNN (4/4)

I Update the wights W

W
(next)
11 = W11 − η

∂E

∂W11

W
(next)
12 = W12 − η

∂E

∂W12

W
(next)
21 = W21 − η

∂E

∂W21

W
(next)
22 = W22 − η

∂E

∂W22

120 / 124

Summary

121 / 124

Summary

I Receptive fields and filters

I Convolution operation

I Padding and strides

I Pooling layer

I Flattening, dropout, dense

122 / 124

Reference

I Tensorflow and Deep Learning without a PhD
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

I Ian Goodfellow et al., Deep Learning (Ch. 9)

I Aurélien Géron, Hands-On Machine Learning (Ch. 14)

123 / 124

Questions?

124 / 124

