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The Course Web Page
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https://id2223kth.github.io

https://id2223kth.github.io/


Where Are We?
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Where Are We?
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Let’s Start With What GANs Can Do
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What GANs can do?
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• Generating faces

• Generating Airbnb bedrooms

• Super resolution

• Colorization

• Turning a simple sketch into a 
photorealistic image

• Predicting the next frames in a video

• Augmenting a dataset

• and more…
An image generated by a StyleGAN that looks 

deceptively like a portrait of a young woman.

https://en.wikipedia.org/wiki/StyleGAN


Quick overview of GANs
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• Generative Adversarial Networks (GANs) are composed of two neural 
networks:

– A generator: tries to generate data that looks similar to the training data,

– A discriminator that tries to tell real data from fake data.

• The generator and the discriminator compete against each other during 
training.

• Adversarial training is widely considered as one of the most important ideas 
in recent years.

• “The most interesting idea in the last 10 years in Machine Learning.” 

by Yann LeCun in 2016



Generative Adversarial Network
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GANs
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• GANs were proposed in 2014 by Ian Goodfellow et al.

• The idea behind GANs got researchers excited almost instantly.

• It took a few years to overcome some of the difficulties of training GANs.



The idea behind GANs
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Make neural networks compete against each other in the hope that this 
competition will push them to excel.



Overall architecture of GANs
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• A GAN is composed of two neural networks:

– Generator:

> Input: a random distribution (e.g., Gaussian)

> Output: some data (typically, an image)

– Discriminator:

> Input: either a fake image from the generator or a 
real image from the training set

> Output: a guess on whether the input image is 
fake or real.

A generative adversarial network 



Training of GANs
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• During training, the generator and the 
discriminator have opposite goals:

– The discriminator tries to tell fake images from real 
images,

– The generator tries to produce images that look real 
enough to trick the discriminator.

• Each training iteration is divided into two phases.



Training of GANs
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• Train the discriminator:

– A batch of equal number of real images
(sampled from the dataset) and fake 
images (produced by the generator) is 
passed to the discriminator.

– The labels of the batch are set to 0 for 
fake images and 1 for real images.

– Training is based on binary cross-entropy 
loss.

– Backpropagation only optimizes the 
weights of the discriminator.

• Train the generator:

– First use the current generator to 
produce another batch containing only 
fake images.

– The labels of the batch are set to 1. (we 
want the generator to produce images 
that the discriminator will wrongly believe 
to be real)

– The weights of the discriminator are 
frozen during this step, so 
backpropagation only affects the weights 
of the generator.

In the first phase: In the second phase:



A simple GAN for Fashion MNIST
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A simple GAN for Fashion MNIST
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Images generated by the GAN
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Images generated by the GAN after one epoch of training



What next? 
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• Build a GAN model

• Train for many epochs

• ?????

• Good RESULTS!



Difficulties of Training GANs
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Difficulties of Training GANs
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• During training, the generator and the discriminator constantly try to outsmart
each other.

• As training goes on, the networks may end up in a state that game theorists 
call a Nash equilibrium.



Nash Equilibrium
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• In game theory, the Nash equilibrium, named after the mathematician John 
Forbes Nash Jr., is a proposed solution of a non-cooperative game involving 
two or more players in which each player is assumed to know the equilibrium 
strategies of the other players, and no player has anything to gain by changing 
only their own strategy.

• For example, a Nash equilibrium is reached when everyone drives on the left
side of the road: no driver would be better off being the only one to switch
sides. 

• Different initial states and dynamics may lead to one equilibrium or the other. 



How does this apply to GANs
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• It has been demonstrated that a GAN can only reach a single Nash equilibrium.

• In that case, the generator produces perfectly realistic images, and the 
discriminator is forced to guess (50% real, 50% fake).

• Unfortunately, nothing guarantees that the equilibrium will ever be reached. 

• The biggest difficulty is called mode collapse:

– when the generator’s outputs gradually become less diverse.



Mode Collapse

22

• The generator gets better at producing convincing shoes than any other class. 

• This will encourage it to produce even more images of shoes. Gradually, it will 
forget how to produce anything else. 

• Meanwhile, the only fake images that the discriminator will see will be shoes, 
so it will also forget how to discriminate fake images of other classes.

• Eventually, when the discriminator manages to discriminate the fake shoes 
from the real ones, the generator will be forced to move to another class. 

• The GAN may gradually cycle across a few classes, never really becoming 
very good at any of them. 



Training might be problematic as well

23

• Because the generator and the discriminator are constantly pushing
against each other, their parameters may end up oscillating and becoming
unstable. 

• Training may begin properly, then suddenly diverge for no apparent
reason, due to these instabilities. 

• GANs are very sensitive to the hyperparameters since many factors can 
contribute to the complex dynamics.



How to Deal with the Difficulties?
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Experience Replay
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• A common technique to train GANs:

– Store the images produced by the generator at each iteration in a replay buffer 
(gradually dropping older generated images).

– Train the discriminator using real images plus fake images drawn from this buffer 
(rather than only using fake images produced by the current generator).

• Experience replay reduces the chances that the discriminator will overfit the 
latest generator’s output.



Mini-batch Discrimination
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• Another common technique that:

– Measures how similar images are across the batch and provide this statistics to the 
discriminator.

– so that the discriminator can easily reject a batch of images that lack diversity.

• Mini-batch discrimination encourages the generator to produce a greater 
variety of images, thus reducing the chance of model collapse.



Deep Convolutional GANs
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Deep Convolutional GANs (DCGANs)
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• The original GAN paper in 2014 experimented with convolutional layers, but
only tried to generate small images. 

• Build GANs based on deeper convolutional nets for larger images is tricky, as 
training was very unstable.

• But in late 2015 Alec Radford et al. proposed deep convolutional GANs 
(DCGANs) after experimenting with many different architectures and 
hyperparameters.

Radford, A.; Metz, L. & Chintala, S. (2015), 'Unsupervised Representation Learning with Deep Convolutional Generative 

Adversarial Networks' , cite arxiv:1511.06434Comment: Under review as a conference paper at ICLR 2016 .



Deep Convolutional GANs (DCGANs)
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The main guidelines they proposed for building stable convolutional GANs:

• Replace any pooling layers with strided convolutions (in the discriminator) and 
transposed convolutions (in the generator).

• Use Batch Normalization in both the generator and the discriminator, except in 
the generator’s output layer and the discriminator’s input layer.

• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in the generator for all layers except the output layer, 
which should use tanh.

• Use leaky ReLU activation in the discriminator for all layers. 



DCGAN for Fashion MNIST
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DCGAN for Fashion MNIST
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Images generated by the DCGAN after 50 epochs of training



DCGAN for Fashion MNIST
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Vector arithmetic for visual concepts (part of figure 7 from the DCGAN paper)



Limitations of DCGANs
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• DCGANs aren’t perfect, though. 

• For example, when you try to generate very large images using DCGANs, you 
often end up with locally convincing features but overall inconsistencies (such 
as shirts with one sleeve much longer than the other). 



Progressive Growing of GANs
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An important technique
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• Tero Karras et al. suggested generating small images at the
beginning of training, then gradually adding convolutional layers to both the
generator and the discriminator to produce larger and larger images (4 × 4, 8
× 8, 16 × 16, …, 512 × 512, 1,024 × 1,024). 

• This approach resembles greedy layer-wise training of stacked autoencoders. 

• The extra layers get added at the end of the generator and at the beginning of 
the discriminator, and previously trained layers remain trainable. 

Tero Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” Proceedings of the 

International Conference on Learning Representations (2018) 



Progressive Growing of GAN
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Progressive growing GAN: a GAN generator outputs 4 × 4 color images (left); we extend it to output 8 × 8 images (right)



Minibatch Standard Deviation Layer
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• Added near the end of the discriminator. For each position in the inputs, it
computes the standard deviation across all channels and all instances in
the batch. 

• These standard deviations are then averaged across all points to get a single
value.

• Finally, an extra feature map is added to each instance in the batch and filled 
with the computed value. 

• How does this help? Well, if the generator produces images with little variety, 
then there will be a small standard deviation across feature maps in the 
discriminator. Thanks to this layer, the discriminator will have easy access to 
this statistic, making it less likely to be fooled by a generator that produces too 
little diversity. This will encourage the generator to produce more diverse 
outputs, reducing the risk of mode collapse. 



Equalized Learning Rate
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• Initializes all weights using a simple Gaussian distribution with mean 0
and standard deviation 1 rather than using He initialization. 

• However, the weights are scaled down at runtime (i.e., every time the layer is 

executed) by the same factor as in He initialization: they are divided by 2

𝑛𝑖𝑛𝑝𝑢𝑡𝑠

, where 𝑛𝑖𝑛𝑝𝑢𝑡𝑠 is the number of inputs to the layer. 

• The paper demonstrated that this technique significantly improved the GAN’s
performance when using RMSProp, Adam, or other adaptive gradient 
optimizers. 

• By rescaling the weights as part of the model itself rather than just rescaling 
them upon initialization, this approach ensures that the dynamic range is the 
same for all parameters, throughout training, so they all learn at the same 
speed. This both speeds up and stabilizes training. 



Pixelwise Normalization Layer

39

• Added after each convolutional layer in the generator. It normalizes each 
activation based on all the activations in the same image and at the same 
location, but across all channels (dividing by the square root of the mean 
squared activation).

• This technique avoids explosions in the activations due to excessive 
competition between the generator and the discriminator. 



Amazing Results
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• The combination of all these techniques allowed the authors to generate 
extremely good results (https://www.youtube.com/watch?v=G06dEcZ-QTg) .

• Evaluation is one of the big challenges when working with
GANs: 

– Auto-evaluation is tricky as evaluation is subjective

– Using human raters is costly and time-consuming

– The authors proposed to measure the similarity between the local image structure of the 
generate image and the training images.

https://www.youtube.com/watch?v=G06dEcZ-QTg


StyleGANs
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StyleGANs
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• The authors used style transfer techniques in the generator to ensure that the 
generated images have the same local structure as the training images, at 
every scale, greatly improving the quality of the generated images.

• StyleGANs is composed of two networks:

– Mapping Network 

– Synthesis Network

• The discriminator and the loss function were not modified, only the generator. 



StyleGANs: Mapping Network
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Mapping Network:

• An eight-layer MLP that maps the 
latent representations z (i.e., the
codings) to a vector w. 

• This vector is then sent through 
multiple affine transformations which 
produces multiple vectors. 

• These vectors control the style of the 
generated image at different levels, 
from fine-grained texture (e.g., hair 
color) to high-level features (e.g., 
adult or child). In short, the mapping 
network maps the codings to multiple 
style vectors. 

StyleGAN’s generator architecture (part of figure 1 from the StyleGAN paper)



StyleGANs: Synthesis Network
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Synthesis Network 

• Responsible for generating the images.

• It has a constant learned input.

• It processes this input through multiple 
convolutional and upsampling layers, 
but there are two twists: 

– some noise is added to the input and to all 
the outputs of the convolutional layers 

– each noise layer is followed by an  
Adaptive Instance Normalization (AdaIN) 
layer: it standardizes each feature map 
independently, then it uses the style vector 
to determine the scale and offset of each 
feature map.

StyleGAN’s generator architecture (part of figure 1 from the StyleGAN paper)



Summary
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Summary
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• What are GANs?

• Main difficulties with adversarial training

• Main techniques to work around these difficulties

– Experience replay

– Mini-batch discrimination

• Deep convolutional GANs

• Progressive Growing of GANs

• StyleGANs



Questions?
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