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A few Words about CPU and GPU
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[https://www.tripsavvy.com/how-to-get-from-copenhagen-to-stockholm-1626275]
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Ferrari or Truck?
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Ferrari or Truck?

I Pick up your partner?

I Moving the furniture?
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CPU vs GPU
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Do We Need GPU for Deep Learning?
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I Which components of a DNN would require intense hardware resource?

I A few candidates are:

• Preprocessing input data
• Training the model
• Storing the trained model
• Deployment of the model
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Training a Model

I Forward pass: input is passed through the DNN and an output is generated.

I Backward pass: weights are updated on the basis of error we get in forward pass.

I Both of these operations are essentially matrix multiplications.
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How to Train a Model Faster?

I The computationally intensive part of neural network is made up of multiple matrix
multiplications.

I How can we make it faster?

I Do these operations at the same time, instead of doing it one after the other.

I This is in a nutshell why we use GPU instead
of a CPU for training a neural network.
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Placing Operations and Variables on Devices (1/4)

I For now, lets asume to run everything on a single machine.
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Placing Operations and Variables on Devices (2/4)

I Place the data preprocessing operations on CPUs, and the NN operations on GPUs.

I Adding more CPU RAM to a machine is simple and cheap, whereas the GPU RAM
is an expensive and limited resource.

• If a variable is not needed in the next few training steps, it should probably be placed
on the CPU (e.g., datasets generally belong on the CPU).

I GPUs usually have a fairly limited communication bandwidth, so it is important to
avoid unnecessary data transfers in and out of the GPUs.
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Placing Operations and Variables on Devices (3/4)

I By default, all variables/operations are placed on the first GPU: /gpu:0.

I Variables/operations that do not have a GPU kernel are placed on the CPU: /cpu:0.

I A kernel is a variable or operation’s implementation for a specific data and device
type.

• For example, there is a GPU kernel for the float32 tf.matmul() operation, but there
is no GPU kernel for int32 tf.matmul() (only a CPU kernel).
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Placing Operations and Variables on Devices (4/4)

I TensorFlow automatically decides which device to execute an operation and copies
tensors to that device.

I However, TensorFlow operations can be explicitly placed on specific devices using the
tf.device context manager.
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Manual Device Placement (1/3)

I Use with tf.device to create a device context.

I All the operations within that context will run on the same designated device.

tf.debugging.set_log_device_placement(True)

a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

c = tf.matmul(a, b)

print(c)

Output:

Executing op MatMul in device /job:localhost/replica:0/task:0/device:GPU:0

tf.Tensor(

[[22. 28.]

[49. 64.]], shape=(2, 2), dtype=float32)
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Manual Device Placement (2/3)

tf.debugging.set_log_device_placement(True)

with tf.device(’/cpu:0’):

a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

c = tf.matmul(a, b)

print(c)

Executing op MatMul in device /job:localhost/replica:0/task:0/device:GPU:0

tf.Tensor(

[[22. 28.]

[49. 64.]], shape=(2, 2), dtype=float32)

I Here, a and b are assigned to CPU:0.

I Since a device was not explicitly specified for the matmul operation, it will be run on
the default device GPU:0.
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Manual Device Placement (3/3)
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Parallel Execution Across Multiple Devices
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Parallelization

I Train large deep learning models with huge amounts of training data.

I Parallelization and distribution are essential.

I Two main approaches to training a single model across multiple devices:
• Model parallelization
• Data parallelization
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Model Parallelization
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Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Mayer, R. et al., arXiv:1903.11314, 2019]
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Fully Connetected Model Parallelization (1/2)

I To place each layer on a different device.

I Not good: each layer needs to wait for the output of the previous layer before it can
do anything.
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Fully Connetected Model Parallelization (2/2)

I Slice the model vertically.
• E.g., the left half of each layer on one device, and the right part on another device.

I Slightly better: both halves of each layer can indeed work in parallel.

I Each half of the next layer requires the output of both halves: lot of cross-device
communication.

28 / 81



Fully Connetected Model Parallelization (2/2)

I Slice the model vertically.
• E.g., the left half of each layer on one device, and the right part on another device.

I Slightly better: both halves of each layer can indeed work in parallel.

I Each half of the next layer requires the output of both halves: lot of cross-device
communication.

28 / 81



Fully Connetected Model Parallelization (2/2)

I Slice the model vertically.
• E.g., the left half of each layer on one device, and the right part on another device.

I Slightly better: both halves of each layer can indeed work in parallel.

I Each half of the next layer requires the output of both halves: lot of cross-device
communication.

28 / 81



CNN Model Parallelization

I Some NN, such as CNN, contains layers that are only partially connected to the lower
layers.

I Easier to distribute the model across devices in an efficient way.
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RNN Model Parallelization

I Split the NN horizontally by placing each layer on a different device.

I At the first step, only one device will be active.

I At the second step, two will be active.

I While the first layer will be handling the
second value, the second layer will be handling
the output of the first layer for the first value.

I By the time the signal propagates to the
output layer, all devices will be active
simultaneously.
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Data Parallelization
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Data Parallelization (1/2)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Mayer, R. et al., arXiv:1903.11314, 2019]
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Data Parallelization (2/2)

1. Compute the gradient of the loss function using a mini-batch on each GPU.

2. Compute the mean of the gradients by inter-GPU communication.

3. Update the model.
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Data Parallelization Design Issues

I System Architecture: how to synchronize the parameters

I Synchronization: when to synchronize the parameters
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System Architecture
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System Architecture - Centralized

I How to aggregate gradients (compute the mean of the gradients)?

I How the parameters of the different replicas are synchronized?
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System Architecture - Centralized

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).
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System Architecture - Decentralized

I Mirror all the model parameters across all workers (No PS).

I Workers exchange parameter updates directly via an allreduce operation.
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Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce
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AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Master-Worker AllReduce

I Selecting one process as a master, gather all arrays into the master.

I Perform reduction operations locally in the master.

I Distribute the result to the other processes.

I The master becomes a bottleneck (not scalable).

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Other implementations

I Some try to minimize bandwidth.

I Some try to minimize latency.

[Zhao H. et al., arXiv:1312.3020, 2013]
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AllReduce Implementation - Ring-AllReduce (1/6)

I The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase
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AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1) % m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (3/6)

I In the first share-reduce step, process A sends a0 to process B.

I Process B sends b1 to process C, etc.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum or mean)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (5/6)

I The share-reduce phase finishes when each process holds the complete reduction of
chunk i.

I At this point each process holds a part of the end result.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (6/6)

I The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

I This consolidates the result of each chunk in every process.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce

• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2( N
m
× (m− 1)).
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Synchronization
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Synchronization

I When to synchronize the parameters among the parallel workers?
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Synchronization - Synchronous

I After each iteration (processing of a mini-batch), the workers synchronize their pa-
rameter updates.

• Easy to reason about the model convergence.
• The training process prone to the straggler problem, where the slowest worker slows

down all the others.

[Mayer, R. et al., arXiv:1903.11314, 2019]
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Synchronization - Asynchronous

I Workers update their model independently from each other.

• A worker may train on stale (delayed) parameters.
• This makes it hard to mathematically reason about the model convergence.
• It provides the workers flexibility in their training process, completely avoiding all strag-

gler problems.

[Mayer, R. et al., arXiv:1903.11314, 2019]
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Data Parallelization in TensorFlow
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TensorFlow Distribution Strategies

I tf.distribute.Strategy is a TensorFlow API to distribute training.

I Supports both parameter server and allreduce models.
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Single Server
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Single Server Training - MirroredStrategy (1/2)

I Synchronous distribute training training on multiple GPUs on one machine.

I One replica per GPU.

I The parameters of the model are mirrored across all the replicas.

I These parameters are kept in sync with each other by applying identical updates.

I The parameters updates are communicated using allreduce algorithms.

mirrored_strategy = tf.distribute.MirroredStrategy()

# to use only some of the GPUs on your machine

mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])
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Single Server Training - MirroredStrategy (2/2)

I There are different implementation of allreduce.

I You can override the cross GPU communication:
• tf.distribute.NcclAllReduce (the default)
• tf.distribute.ReductionToOneDevice
• tf.distribute.HierarchicalCopyAllReduce

mirrored_strategy = tf.distribute.MirroredStrategy(

cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
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Single Server Training - CentralStorageStrategy

I Parameters are not mirrored, instead they are placed on the CPU.

I Operations are replicated across all local GPUs.

I Does synchronous training.

central_storage_strategy = tf.distribute.experimental.CentralStorageStrategy()
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Single Server Trainings - Example

I Creat a strategy, e.g., MirroredStrategy or CentralStorageStrategy.

I Call its scope() method to get a distribution context.

I Wrap the creation and compilation of the model inside that context.

I Call the model’s fit() and predict() method normally (outside the context).

distribution = tf.distribute.MirroredStrategy()

with distribution.scope():

model = keras.models.Sequential([...])

model.compile(...)

model.fit(...)

model.predict(...)
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Multi Servers
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Multi Servers Trainings - MultiWorkerMirroredStrategy (1/2)

I Very similar to MirroredStrategy.

I Synchronous distributed training across multiple workers, each with potentially mul-
tiple GPUs.

I Makes copies of all parameters of the model on each device across all workers.

multiworker_strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
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Multi Servers Trainings - MultiWorkerMirroredStrategy (2/2)

I Two different implementations:
• CollectiveCommunication.RING (ring-based implementation)
• CollectiveCommunication.NCCL (Nvidia’s NCCL implementation)

I CollectiveCommunication.AUTO defers the choice to the runtime.

I The best choice of collective implementation depends upon the number and kind of
GPUs, and the network interconnect in the cluster.

# ring-based collectives

multiworker_strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(

tf.distribute.experimental.CollectiveCommunication.RING)
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Multi Servers Trainings - ParameterServerStrategy

I Supports parameter servers training on multiple machines.

I Some machines are designated as workers and some as parameter servers.

I Each parameter of the model is placed on one parameter server.

I Computation is replicated across all GPUs of all the workers.

ps_strategy = tf.distribute.experimental.ParameterServerStrategy()
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Multi Servers Trainings - More Details

I A TensorFlow cluster is a group of TensorFlow processes running in parallel.

I Each TF process (a.k.a task) in the cluster has a type:

• Worker: performs computations, usually on a machine with one or more GPUs.
• Parameter Server (ps): keeps track of parameters values, it is usually on a CPU-only

machine.

I The set of tasks that share the same type is often called a job. For example, the
worker job is the set of all workers.
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Multi Servers Trainings - Example (1/3)

I Assume a cluster with 3 tasks (2 workers and 1 parameter server).

cluster_spec = tf.train.ClusterSpec({

"worker": [

"machine-a.example.com:2222", # /job:worker/task:0

"machine-b.example.com:2222" # /job:worker/task:1

],

"ps": ["machine-a.example.com:2221"] # /job:ps/task:0

})
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Multi Servers Trainings - Example (2/3)

I To start a task, you must give it the cluster spec and define its type and index (ID),
e.g., worker 0.

ps0 = tf.distribute.Server(cluster_spec, job_name="ps", task_index=0)

worker0 = tf.distribute.Server(cluster_spec, job_name="worker", task_index=0)

worker1 = tf.distribute.Server(cluster_spec, job_name="worker", task_index=1)
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Multi Servers Trainings - Example (3/3)

I Alternative way to specify a cluster spec is to use the TF CONFIG environment variable
before starting the program.

I For example to run worker 1:

distribution = tf.distribute.experimental.ParameterServerStrategy()

os.environ["TF_CONFIG"] = json.dumps({

"cluster": {

"worker": ["machine-a.example.com:2222", "machine-b.example.com:2222"],

"ps": ["machine-a.example.com:2221"]},

"task": {"type": "worker", "index": 1}

})

with distribution.scope():

model = keras.models.Sequential([...])

model.compile(...)

model.fit(...)
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Communication Overhead
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Communication Overhead in Data Parallelization

I Synchronizing the model replicas in data-parallel training requires communication
between workers (in allreduce)

I Between workers and parameter servers (in the centralized architecture).

I Such communication can easily become the bottleneck of the overall training process.
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Approaches for Communication Efficiency

I Reducing the model precision

I Compressing the model updates

I Improving the communication scheduling
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Reducing the Model Precision

I Reduce the precision of the parameters’ data types, e.g., from double precision to
single floating point.

I It saves communication bandwidth when parameter updates need to be transferred
over the network.

I It reduces the model size, which can be useful when the model is deployed on resource-
constrained hardware such as GPUs.

75 / 81



Reducing the Model Precision

I Reduce the precision of the parameters’ data types, e.g., from double precision to
single floating point.

I It saves communication bandwidth when parameter updates need to be transferred
over the network.

I It reduces the model size, which can be useful when the model is deployed on resource-
constrained hardware such as GPUs.

75 / 81



Reducing the Model Precision

I Reduce the precision of the parameters’ data types, e.g., from double precision to
single floating point.

I It saves communication bandwidth when parameter updates need to be transferred
over the network.

I It reduces the model size, which can be useful when the model is deployed on resource-
constrained hardware such as GPUs.

75 / 81



Compressing the Model Updates

I The model updates communicated between workers and between workers and pa-
rameter servers can be compressed.

I Gradient quantization: reducing the number of bits per gradient.

I Gradient sparsification: communicating only important gradients that have a signifi-
cant value.
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Improving the Communication Scheduling

I Communication patterns in data-parallel are typically bursty, especially in syn-
chronous systems.

• All workers may share their updated parameters at the same time with their peer
workers or parameter servers.

I To prevent that the network bandwidth is exceeded and communication is delayed,
the communication of the different workers can be scheduled such that it does not
overlap.

• Prioritize specific messages over others.
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Summary

I CPU vs. GPU

I Parallelization

I Model-parallel

I Data-parallel
• Parameter server vs. AllReduce
• Synchronized vs. asynchronoused

I Communication challenges
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