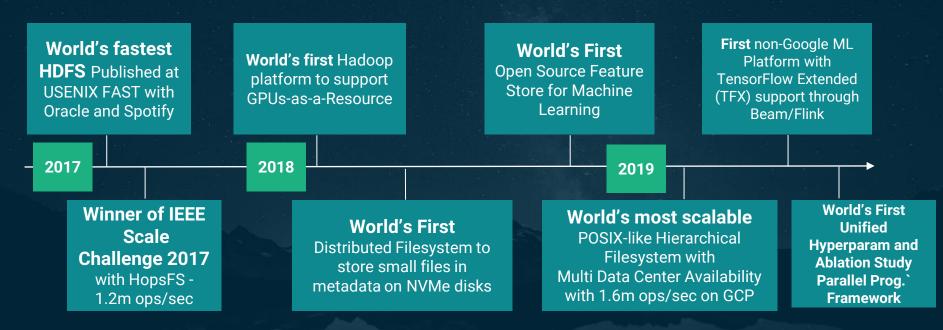


Hopsworks

Dr. Jim Dowling Sina Sheikholeslami

Nov 2019

Hopsworks Technical Milestones



"If you're working with big data and Hadoop, this one paper could repay your investment in the Morning Paper many times over.... HopsFS is a huge win."

- Adrian Colyer, The Morning Paper

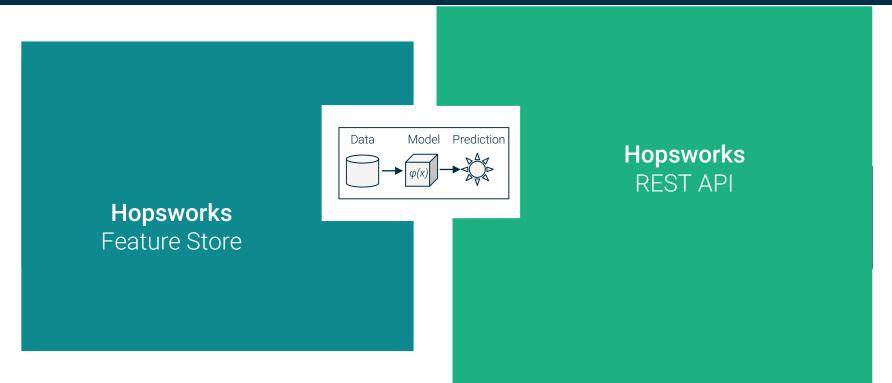
0. Slides: http://hops.io/id2223.pdf

1. Register for an account at: www.hops.site

2. Follow the Instructions here: https://bit.ly/2UEixTr

3. Getting started Videos https://bit.ly/2NnbKgu

Hopsworks hides the Complexity of Deep Learning



[Adapted from Schulley et Al "Technical Debt of ML"]

Datasources

Hopsworks

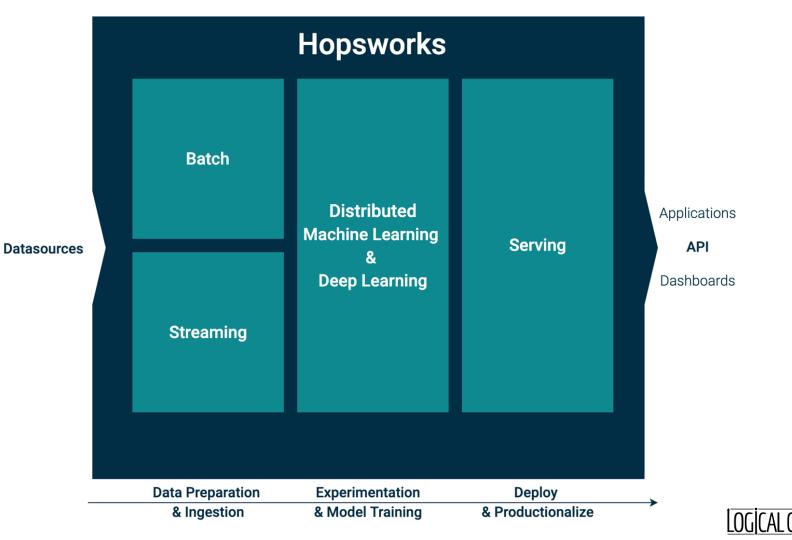
The Platform for Data Intensive Al

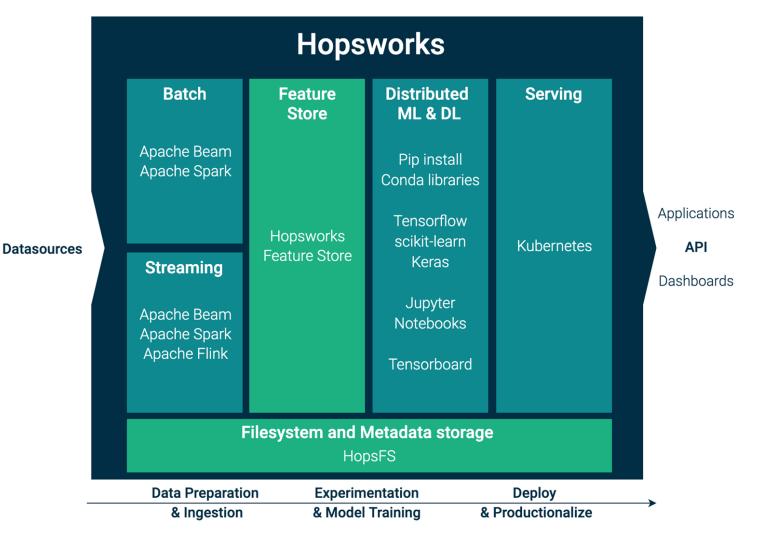
Machine Learning, Deep Learning & Model serving

Applications

API

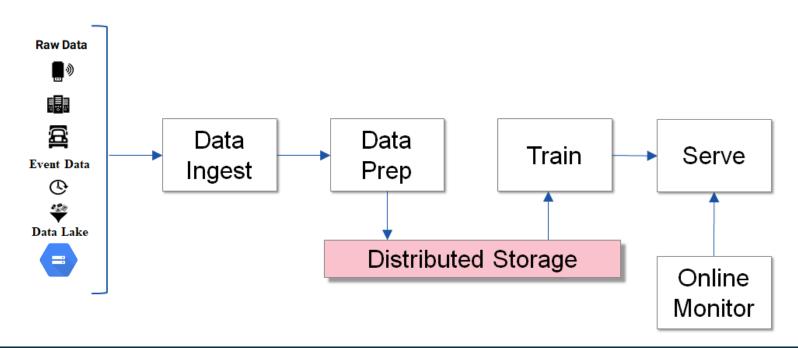
Dashboards



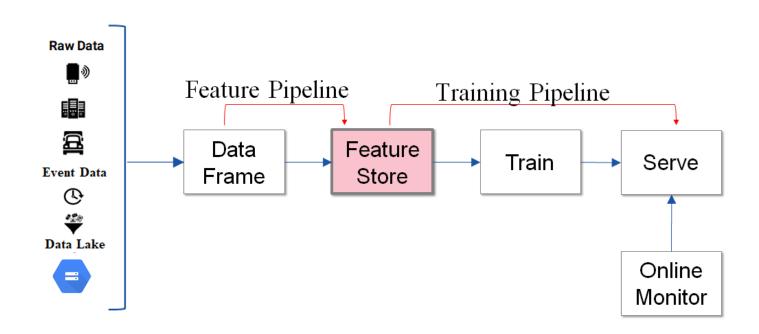


Machine Learning Pipelines

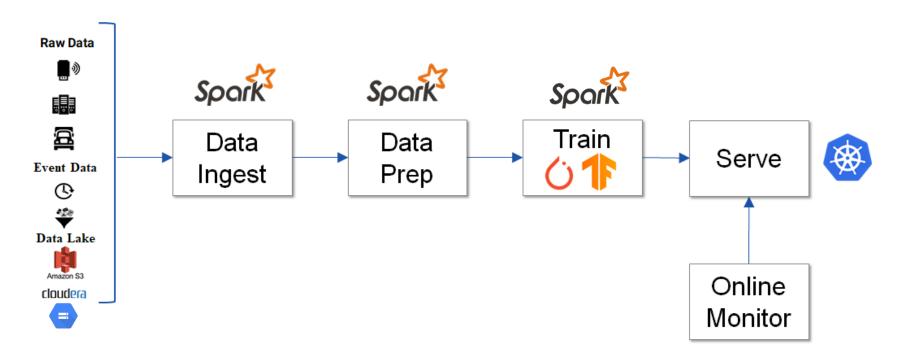
End-to-End ML Pipelines



ML Pipelines with a Feature Store



End-to-End ML Pipelines in Hopsworks



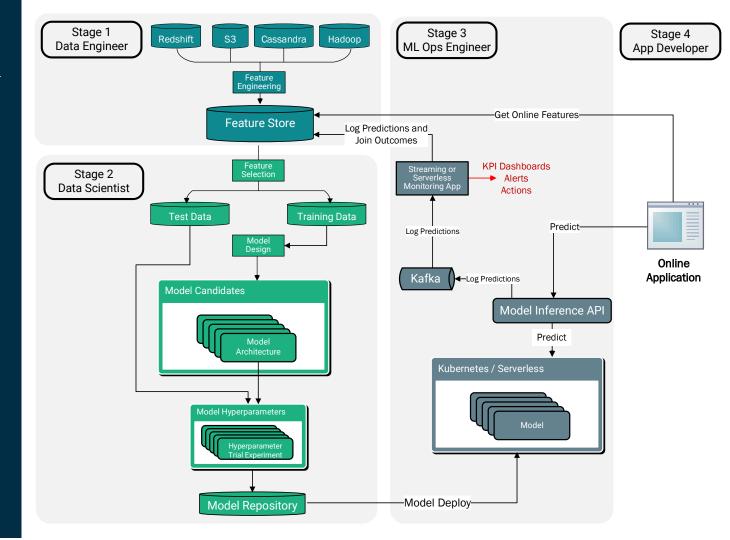
Roles in Machine Learning

Stage 1. Data Engineer

Stage 2. Data Scientist

Stage 3. ML Ops Engineer

Stage 4. App Developer

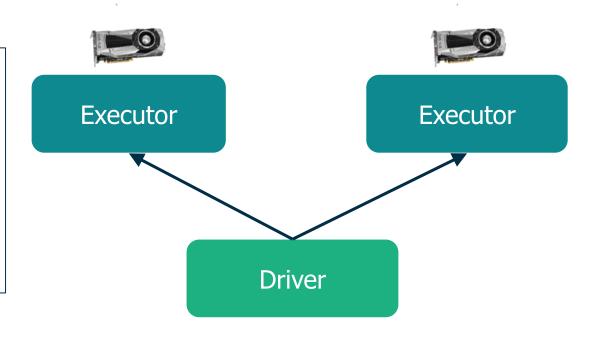


Running TensorFlow/Keras/PyTorch Apps in PySpark

Warning: micro-exposure to PySpark may cure you of distributed programming phobia

GPU(s) in PySpark Executor, Driver coordinates

PySpark makes it easier to write TensorFlow/Keras/
PyTorch code that can either be run on a single GPU or scale to run on lots of GPUS for Parallel Experiments or Distributed Training.



Need Distributed Filesystem for Coordination

- Training/Test Datasets
- Model checkpoints, Trained Models
- Experiment run data
- Provenance data
- Application logs

PySpark Hello World

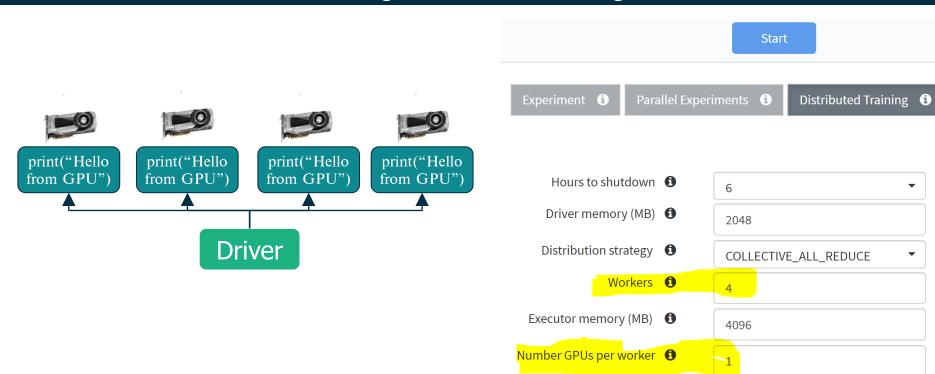
```
def executor():
    print("Hello from GPU")

from hops import experiment
experiment.launch(executor)
```


PySpark - Hello World

```
In [ ]:
def executor():
                                                       Executor
  print("Hello from GPU")
                                                    print("Hello from
                                                         GPU"
                                                             *
In [ ]:
                                                        Driver
from hops import experiment
                                                  experiment.launch(..)
experiment.launch(executor)
```


Leave code unchanged, but configure 4 Executors



Driver with 4 Executors

```
In []:

def executor():
    print("Hello from GPU")

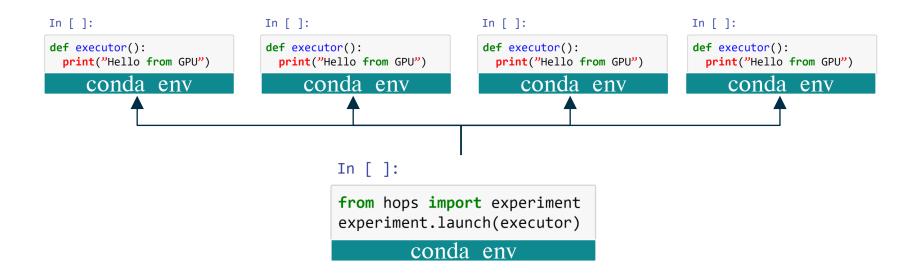
In []:

def executor():
    print("Hello from GPU")

In []:

from hops import experiment
    experiment.launch(executor)
```


Same/Replica Conda Environment on all Executors



A Conda Environment Per Project in Hopsworks

Conda Libraries

Pip Libraries

Installed Python Libraries

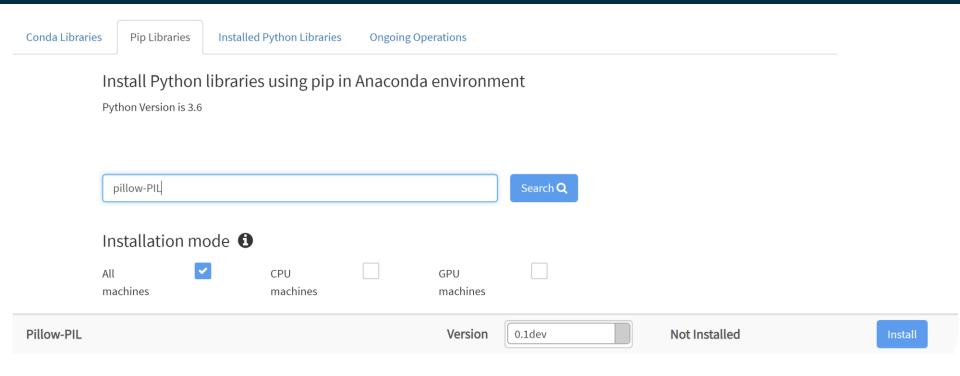
Ongoing Operations

Uninstall/Upgrade Python Libraries

Export Environment

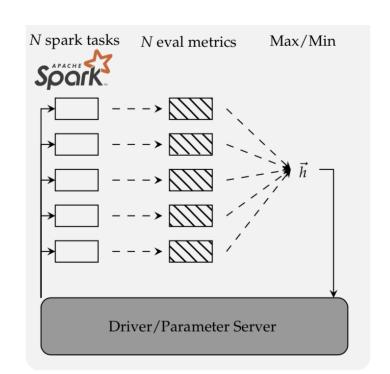
Url	Library	Version	Package Manager	MachineType	Status	User-Installed ▼
РуРі	hopsfacets	0.0.3	PIP	ALL	SUCCESS	Uninstall
РуРі	pandas	0.23.1	PIP	ALL	SUCCESS	Uninstall
РуРі	mmlspark	0.13	PIP	ALL	SUCCESS	Uninstall
РуРі	numpy	1.15.3	PIP	ALL	SUCCESS	Uninstall
РуРі	hops	0.6.0.1	PIP	ALL	SUCCESS	Uninstall
PyPi	pydoop	2.0a3	PIP	ALL	SUCCESS	Pre-installed
PyPi	tensorboard	1.11.0	PIP	ALL	SUCCESS	Pre-installed
РуРі	tensorflow	1.11.0	PIP	CPU	SUCCESS	Pre-installed
PyPi	tensorflow-gpu	1.11.0	PIP	GPU	SUCCESS	Pre-installed

Use Pip or Conda to install Python libraries



TensorFlow Distributed Training with PySpark

```
def train():
  # Separate shard of dataset per worker
  # create Estimator w/ DistribStrategy
  # as CollectiveAllReduce
  # train model, evaluate
  return loss
# Driver code below here
# builds TF_CONFIG and shares to workers
from hops import experiment
experiment.collective_allreduce(train)
```



Undirected Hyperparam Search with PySpark

```
def train(dropout):
  # Same dataset for all workers
   create model and optimizer
   add this worker's value of dropout
   train model and evaluate
  return loss
 Driver code below here
from hops import experiment
args={"dropout":[0.1, 0.4, 0.8]}
experiment.grid_search(train,args)
```

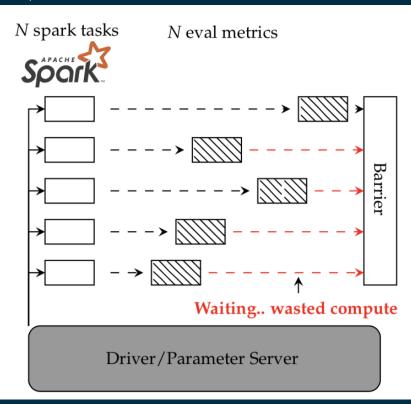
Un-directed search N spark tasks N eval metrics Max/Min Driver/Parameter Server

Directed Hyperparameter Search with PySpark

```
def train(dropout):
  # Same dataset for all
workers
  # create model and optimizer
  optimizer.apply(dropout)
  # train model and evaluate
  return loss
from hops import experiment
args={"dropout": "0.1-0.8"}
```

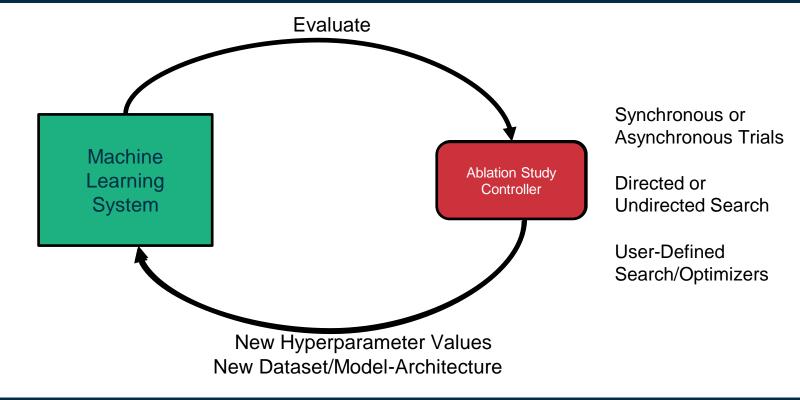
```
Synchronous directed search (2 iterations)
                                          N spark tasks N eval metrics Synchronization N spark tasks N eval metrics Synchronization
                                                Driver/Parameter Server
experiment.diff ev(train.args)
```


Wasted Compute!



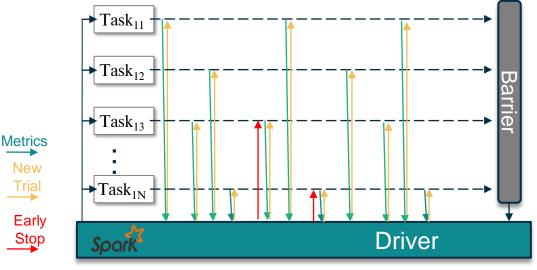
Parallel ML Trials with Maggy

Maggy: Unified Hparam Opt & Ablation Programming



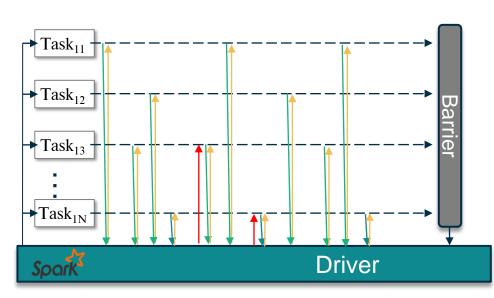
Directed Hyperparameter Search with Maggy

```
def train(dropout, reporter):
from maggy import experiment,
Searchspace
sp =
SearchSpace(dropout=('INTEGER',
[2, 8]))
experiment.lagom(train, sp)
```



Parallel Ablation Studies with Maggy

```
def train(dataset_function,
model_function):
from maggy import experiment
ablation_study=...
experiment.lagom(train,
experiment_type='ablation',
ablation_study=ablation_study,
ablator='loco')
```

/Experiments

```
• Executions add entries in /Experiments: /
experiment.launch(...)
experiment.grid_search(...)
experiment.collective_allreduce(...)
experiment.lagom(...)
```

- /Experiments contains:
 - logs (application, tensorboard)
 - executed notebook file
 - conda environment used
 - checkpoints

```
/Projects/MyProj

L Experiments

L <app_id>
L <type>
L checkpoints
L tensorboard_logs
L logfile
L versioned_resources
L notebook.ipynb
L conda_env.yml
```


/Models

- Named/versioned model management for: TensorFlow/Keras Scikit Learn
- A Models dataset can be securely shared with other projects or the whole cluster
- The provenance API returns the conda.yml and execution used to train a given model

```
/Projects/MyProj

L Models
L <name>
L <version>
L saved_model.pb
L variables/
...
```


That was Hopsworks

Efficiency & Performance

Feature Store

Data warehouse for ML

Distributed Deep Learning

Faster with more GPUs

HopsFS

NVMe speed with Big Data

Horizontally Scalable

Ingestion, DataPrep, Training, Serving

Development & Operations

Development Environment

First-class Python Support

Version Everything

Code, Infrastructure, Data

Model Serving on Kubernetes

TF Serving, SkLearn

End-to-End ML Pipelines

Orchestrated by Airflow

Security & Governance

Secure Multi-Tenancy

Project-based restricted access

Encryption At-Rest, In-Motion

TLS/SSL everywhere

Al-Asset Governance

Models, experiments, data, GPUs

Data/Model/Feature Lineage

Discover/track dependencies

Acknowledgements and References

Slides and Diagrams from colleagues:

- Maggy: Moritz Meister and Sina Sheikholeslami
- Feature Store: Kim Hammar
- Beam/Flink on Hopsworks: Theofilos Kakantousis

References

- HopsFS: Scaling hierarchical file system metadata ..., USENIX FAST 2017.
- Size matters: Improving the performance of small files ..., ACM Middleware 2018.
- ePipe: Near Real-Time Polyglot Persistence of HopsFS Metadata, CCGrid, 2019.
- Hopsworks Demo, SysML 2019.

Thank you!

470 Ramona St
Palo Alto
https://www.logicalclocks.com
Register for a free account at

www.hops.site

@logicalclocks

@hopsworks

https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

