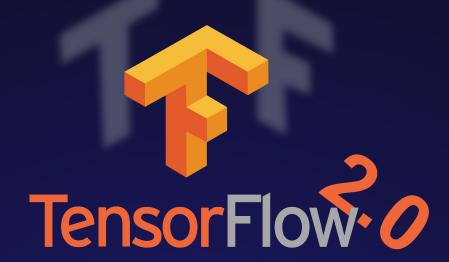
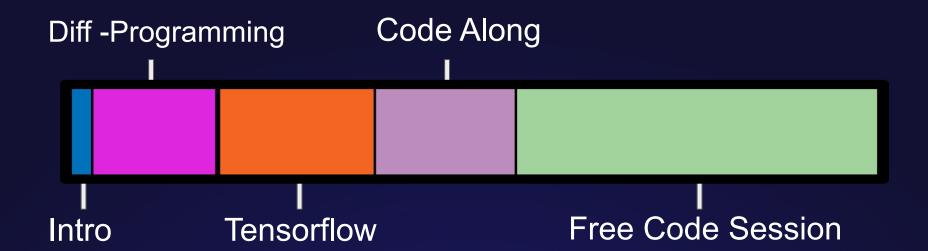
Intro — Diff Prog — TF 2.0 — Code — Summary

Differentiable Programming With

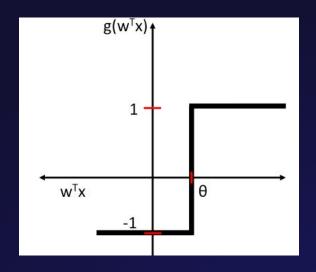


Agenda



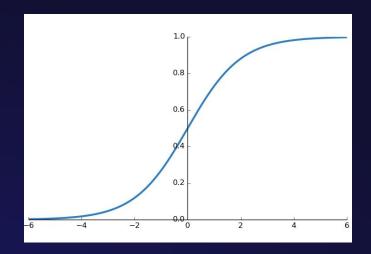
Differentiable Programming

Discrete



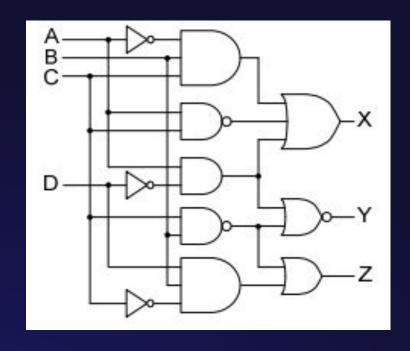
VS

Continuous



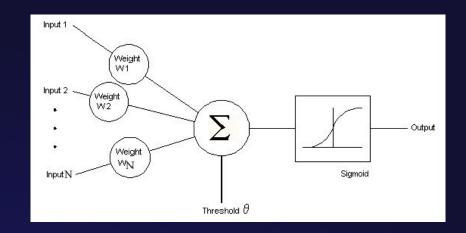
Discrete Circuits

- Discrete circuits are NOT differentiable
- "Butterfly effect": Minor weight adjustments can have major output ramifications
- Early Neural Networks used discrete functions, but were hard to train effectively



Continuous Circuits

- Allows for differentiation
- Weight adjustments yield foreseeable changes
- Current training algorithms for continuous circuits are orders of magnitude faster than for discrete circuits



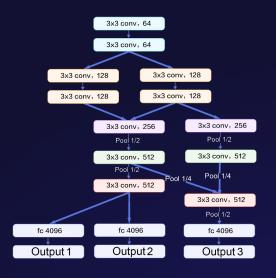
Differentiable Programming

Surprising amount of inherently discrete tasks can be approximately differentiated, for example:

Searching and selecting files from a file storage

Selecting what move to play in chess

Differentiable Programming

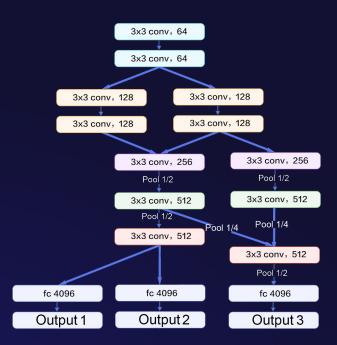


Model Architecture

Loss Function

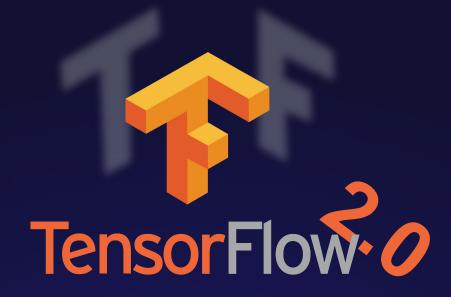
Model Architecture

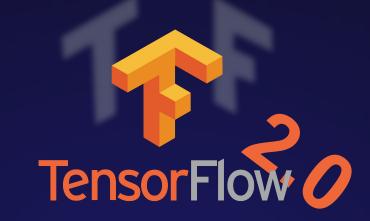
- Determines the expressibility of the function approximation
- Training and inference speed can vary widely between different model architectures
- Vast amount of different model possibilities can lead to protracted hyperparameter search



Loss Function

- The loss function acts as the learning target
- The loss must be defined so that a function that minimizes the loss also solves the desired problem
- A clever loss function is worth much more than a clever model architecture





Tensorflow

Inference Engine

Heavy Optimization

Auto Differentiation

Distribution Strategies

Multi-Platform Support

etc...

Library

Optimizers

Layers | Activations

Standard Datasets

Pre-trained Models

etc...

Inference Engine

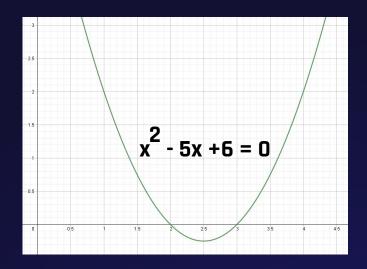
Eager Execution

- Express computations in pure Python
- Integrates nicely with your dynamic data structures
- Great for debugging and experimentation

Declarative Graphs

- Pre-define computations in form of a graph
- Allows for heavy optimizations
- Platform independent model structure

Eager Execution Example



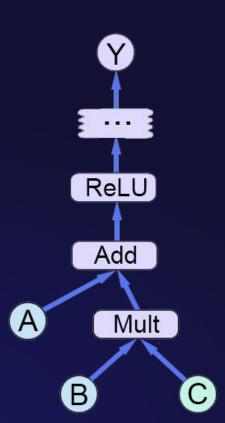
```
def func(x):
    return x**2 - 5*x + 6

x = tf.Variable(1.0)
with tf.GradientTape() as tape:
    loss = tf.abs(func(x))

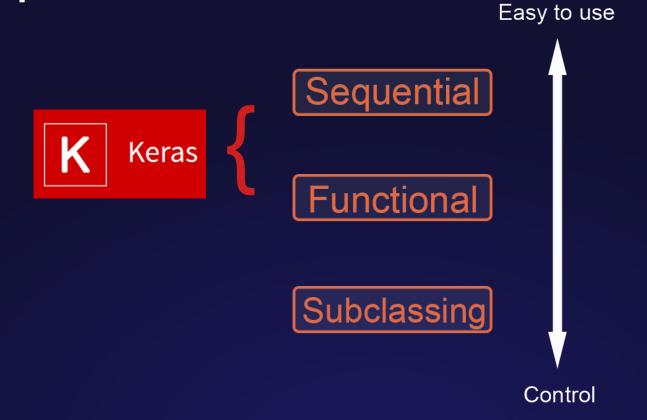
grad = tape.gradient(loss, x)
print(grad.numpy(), x.numpy())
```

Computation Graphs

- Predefine computation in the form of graph
- Gives compiler apriori information, allowing for optimization:
 common subexpression elimination, constant folding, etc...
- Hardware agnostic, allowing for easy deployment
- Intuitive for large models

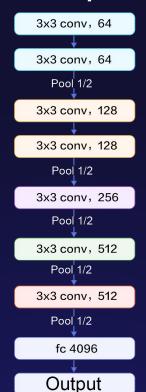


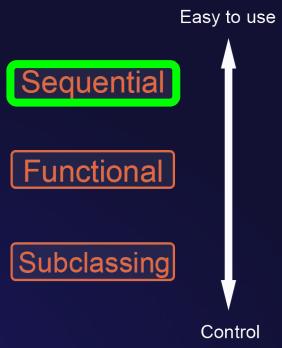
Graph API Overview



Graph API Overview - Sequential

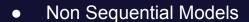
- Define sequentially stacked models
- Minimal code
- Great Overview



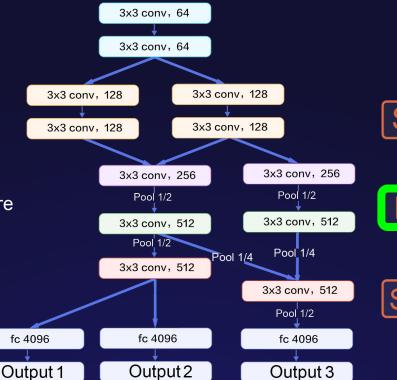


Graph API Overview - Functional

Easy to use



- Layer-based Connections
- Good for simple architecture experimentation



Subclassing

Control

Graph API Overview - Subclassing

Easy to use

- Write everything from scratch

Custom Optimizers

Custom Losses

Custom Activations

```
class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__(name='my_model')
        self.dense_1 = layers.Dense(32, activation='relu')
        self.dense_2 = layers.Dense(num_classes,activation='softmax')

    def call(self, inputs):
        # Define your forward pass here
        x = self.dense_1(inputs)
        return self.dense_2(x)
```

Sequential

Functional

Subclassing

Control

Code Session

Banknote Authentication Classification

- Binary classification problem
- 1372 data samples with 4 features
- *** Download Link ***

Words of Wisdom