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Course Objective

» This course has a system-based focus.

» Learn the theory of machine learning and deep learning.

> Learn the practical aspects of building machine learning and deep learning algorithms
using data parallel programming platforms, such as Spark and TensorFlow.
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Intended Learning Outcomes (ILOs)

» ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve
problems.

» ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how
to build and train such networks.

» [LO3: explain the principles of distributed learning.

» ILO4: implement ML/DL algorithms using Spark and TensorFlow.



"THOMEWORK" -
WHAT ABOUT MY
SOCIAL LIFEZ




The Course Assessment

» Taskl: the review questions (P/F)




The Course Assessment

» Taskl: the review questions (P/F)

» Task2: the lab assignments (A-F)
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» Taskl: the review questions (P/F)

» Task2: the lab assignments (A-F)

» Task3: the final project (A-F)




How Each ILO is Assessed?

Taskl | Task2 | Task3
ILO1 X
ILO2 X
ILO3 X
ILO4 X X X




Taskl: The Review Questions (A-F)

» One review question per week.

» Questions about the lectures.

» The review questions are graded (A-F).
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>

Two lab assignments: source code and oral presentation.
» E: source code

» C: source code + basic questions

» A: source code + advanced questions
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One final project: source code and oral presentation.
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Proposed by students and confirmed by the teacher: A-level or C-level proposals.
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Task3: The Final Project (A-D)

» One final project: source code and oral presentation.

» Proposed by students and confirmed by the teacher: A-level or C-level proposals.
» D: source code C-level proposal

» C: source code C-level proposal + questions

» B: source code A-level proposal

» A: source code A-level proposal + questions
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The Final Grade

The final grade is the average of the two labs, the project, and the review questions.
To compute it, map A-F to 5-1, and take the average.

The floating values are rounded up, if they are more than half, otherwise they are
rounded down.

e E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.

The half grades will be rounded up, if you submit the assignments before their
deadlines, otherwise they will be rounded down.




How to Submit the Assignments?

» Through the Canvas site.

» Students will work in groups of two on all the Tasks 1-4.




The Course Material

» Hands-on machine learning with Scikit-Learn and TensorFlow, 2nd Edition, A. Geron,
O'Reilly Media, 2019

» Deep learning, |. Goodfellow et al., Cambridge: MIT press, 2016
» Spark - The Definitive Guide, M. Zaharia et al., O'Reilly Media, 2018.
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The Course Web Page

https://id2223kth.github.io


https://id2223kth.github.io

The Questions-Answers Page

https://tinyurl.com/y6kcpmzy


https://tinyurl.com/y6kcpmzy

The Course Overview
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Artificial Intelligence Challenge

» Artificial intelligence (Al) can solve problems that can be described by a list of formal
mathematical rules.

» The challenge is to solve the tasks that are hard for people to describe formally.

» Let computers to learn from experience.




History of Al



» A science fiction play by Karel Capek, in 1920.

» A factory that creates artificial people named robots.

|-
| 4
]
i

[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]




1950: Turing Test

» In 1950, Turing introduced the Turing test.

» An attempt to define machine intelligence.

B

Computer Human Human
respondent questioner respondent

[https://searchenterpriseai.techtarget.com/definition/Turing-test]




1956: The Dartmouth Workshop

» Probably the first workshop of Al.
» Researchers from CMU, MIT, IBM met together and founded the Al research.

[https://twitter.com/lordsaicom/status/898139880441696257]




1958: Perceptron

» A supervised learning algorithm for binary classifiers.

» Implemented in custom-built hardware as the Mark 1 perceptron.

[https://en.wikipedia.org/wiki/Perceptron]




1974-1980: The First Al Winter

» The over optimistic settings, which were not occurred
» The problems:

e Limited computer power
e Lack of data
e Intractability and the combinatorial explosion
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1980's: Expert systems

» The programs that solve problems in a specific domain.

» Two engines:
» Knowledge engine: represents the facts and rules about a specific topic.
 Inference engine: applies the facts and rules from the knowledge engine to new facts.

Knowledge
Nomepert | atTiTTIITIIIISI . from an expert
it : Expert System PRy
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User Interface
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[https://www.igcseict.info/theory/7_2/expert]




1987-1993: The Second Al Winter

» After a series of financial setbacks.

» The fall of expert systems and hardware companies.
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1997: IBM Deep Blue

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]




2012: AlexNet - Image Recognition

» The ImageNet competition in image classification.

» The AlexNet Convolutional Neural Network (CNN) won the challenge by a large
margin.

IMJAGENET



2016: DeepMind AlphaGo

> DeepMind AlphaGo won Lee Sedol, one of the best players at Go.

» In 2017, DeepMind published AlphaGo Zero.

e The next generation of AlphaGo.
e It learned Go by playing against itself.

[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]




2018: Google Duplex

» An Al system for accomplishing real-world tasks over the phone.

» A Recurrent Neural Network (RNN) built using TensorFlow.
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Al Generations

> Rule-based Al
» Machine learning

> Deep learning

Artificial Machine Deep
Intelligence Learning Learning

</
Engineering Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012s 2017's

[https://bit.1ly/2woLEzs]




Al Generations - Rule-based Al

» Hard-code knowledge

» Computers reason using logical inference rules

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]




Al Generations - Machine Learning

» If Al systems acquire their own knowledge

» Learn from data without being explicitly programmed

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]




Al Generations - Deep Learning

» For many tasks, it is difficult to know what features should be extracted

» Use machine learning to discover the mapping from representation to output

Artificial Machine Deep
Intelligence Learning Learning
5 ;
Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017’s

[https://bit.ly/2woLEzs]




Why Does Deep Learning Work Now?

» Huge quantity of data
» Tremendous increase in computing power

> Better training algorithms

GPUs

Weight Initialization Non-Linearity




Machine Learning and Deep Learning



Learning Algorithms

» A ML algorithm is an algorithm that is able to learn from data.
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Learning Algorithms

» A ML algorithm is an algorithm that is able to learn from data.

» What is learning?

» A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Tom M. Mitchell)
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Learning Algorithms - Example 1

> A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

' o e ;
l_[ Good Emails Bad Emails

[https://bit.1ly/20iplYM]




Learning Algorithms - Example 1

>

A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

v

Task T: flag spam for new emails

v

Experience E: the training data

v

Performance measure P: the ratio of correctly classified emails

EmailLists

' i ;
l_[ Good Emails Bad Emails

[https://bit.1ly/20iplYM]




Learning Algorithms - Example 2

> Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

[https://bit.ly/2MyiJuy]




Learning Algorithms - Example 2

>

Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

v

Task T: predict the price

v

Experience E: the dataset of living areas and prices

v

Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJuy]




Types of Machine Learning Algorithms

» Supervised learning

» Unsupervised learning




Types of Machine Learning Algorithms

» Supervised learning

e Input data is labeled, e.g., spam/not-spam or a stock price at a time.
» Regression vs. classification

» Unsupervised learning

 Input data is unlabeled.
e Find hidden structures in data.




From Machine Learning to Deep Learning

» Deep Learning (DL) is part of ML methods based on learning data representations.

» Mimic the neural networks of our brain.

Cell body

/Z\\ Synaptic terminals

Golgi apparatus
Endoplasmic

reticulum

Mitochondrion \\ Dendrite

/ ‘\;Dendmm branches
\

[A. Geron, 0’Reilly Media, 2017]
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Artificial Neural Networks

» Artificial Neural Network (ANN) is inspired by biological neurons.
» One or more binary inputs and one binary output

» Activates its output when more than a certain number of its inputs are active.

C=A C=AAB C=AVB

[A. Geron, 0’Reilly Media, 2017]
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The Linear Threshold Unit (LTU)

>

Inputs of a LTU are numbers (not binary).

v

Each input connection is associated with a weight.

v

Computes a weighted sum of its inputs and applies a step function to that sum.

> Z = WXy + WoXo + -+ WpXp = WIX

v

§ = step(z) = step(wTx)




The Perceptron

» The perceptron is a single layer of LTUs.
» The input neurons output whatever input they are fed.

» A bias neuron, which just outputs 1 all the time.

Outputs
Output
\
LTU o ! layer
Bias Neuron v Input
(always outputs 1) ! layer

Input Neuron’
(passthrough)




Deep Learning Models

>

Deep Neural Network (DNN)

v

Convolutional Neural Network (CNN)

v

Recurrent Neural Network (RNN)

Autoencoders

v

v

Generative Adversarial Network (GAN)



Deep Neural Networks

» Multi-Layer Perceptron (MLP)
e One input layer.
¢ One or more layers of LTUs (hidden layers).
e One final layer of LTUs (output layer).
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Deep Neural Networks

» Multi-Layer Perceptron (MLP)

e One input layer.
¢ One or more layers of LTUs (hidden layers).
e One final layer of LTUs (output layer).

» Deep Neural Network (DNN) is an ANN with two or more hidden layers.

» Backpropagation training algorithm.







Convolutional Neural Networks

» Many neurons in the visual cortex react only to a limited region of the visual field.

» The higher-level neurons are based on the outputs of neighboring lower-level neurons.




Recurrent Neural Networks

» The output depends on the input and the previous computations.

Yoo Yoy Ve Y
Xtz Xez Xen

P Time




Recurrent Neural Networks

» The output depends on the input and the previous computations.

Yy Yo Ve Y
Xt-3) Xt-2) X1
- Time

» Analyze time series data, e.g., stock market, and autonomous driving systems.

» Work on sequences of arbitrary lengths, rather than on fixed-sized inputs.




Autoencoders and Generative Models

» Learn efficient representations of the input data, without any supervision.
e With a lower dimensionality than the input data.

» Generative model: generate new data that looks very similar to the training data.

j| Decoder
Internal

representation
Encoder

» Preserve as much information as possible.
Outputs X, X, Xy
(= Inputs)

Inputs X.

[A. Geron, 0’Reilly Media, 2017]




Linear Algebra Review



Vector

» A vector is an array of numbers.

» Notation:

e Denoted by bold lowercase letters, e.g., x.
e x; denotes the ith entry.

X1

X2




Matrix and Tensor

> A matrix is a 2-D array of numbers.

» A tensor is an array with more than two axes.

» Notation:

e Denoted by bold uppercase letters, e.g., A.
* a;j denotes the entry in ith row and jth column.
e If Aism X n, it has m rows and n columns.

ag1 A12 A13 ... Ain
dAz1 QA22 QA23 ... QA2n

am,1 am,2 Am3 ... 2amn

)




Matrix Addition and Subtraction

» The matrices must have the same dimensions.

a b e f at+e b+~
A_L d}+{g h}_LJrg d+h]




Matrix Product

» The matrix product of matrices A and B is a third matrix C, where C = AB.

> If A is of shape m x n and B is of shape n X p, then C is of shape m x p.

Cij = E aixbykj
K

B
i1 |byz|by 5
Do [Py [y

el B

aii|ay, > O
A azifaz, A 4
as:]as, > ©

a1 (s,

[https://en.wikipedia.org/wiki/Matrix multiplication]




Matrix Product

» The matrix product of matrices A and B is a third matrix C, where C = AB.

> If A is of shape m x n and B is of shape n X p, then C is of shape m x p.

Cij = E aixbykj
K

. ~ B _

> Properties b [baa by
« Associative: (AB)C = A(BC) B i e

* Not commutative: AB # BA P _;(1) al

A a: a: > ‘

[https://en.wikipedia.org/wiki/Matrix multiplication]







Matrix Transpose

» Swap the rows and columns of a matrix.

» Properties
* Ay = AJTi
e If AismXxn, then ATisnxm
e (A+B)T =AT+BT
e (AB)T = BTAT




Inverse of a Matrix

» If A is a square matrix, its inverse is called A=1,

AAT=AA=1

» Where |, the identity matrix, is a diagonal matrix with all 1's on the diagonal.

1 0
N S

O = O

0
0
1

O O =




LP Norm for Vectors

» We can measure the size of vectors using a norm function.

» Norms are functions mapping vectors to non-negative values.
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>

We can measure the size of vectors using a norm function.
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Norms are functions mapping vectors to non-negative values.
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» L2 norm
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LP Norm for Vectors

>

We can measure the size of vectors using a norm function.

v

Norms are functions mapping vectors to non-negative values.

Il =3 Jxl
i

» L' norm

» L2 norm

1
HXHQ = (Z|Xi|2)§ = \/X%+X%+"'+Xg

LP norm

v

ellp = (3 lal?)?




Probability Review
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Random Variables

» Random variable: a variable that can take on different values randomly.

» Random variables may be discrete or continuous.

» Discrete random variable: finite or countably infinite number of states
e Continuous random variable: real value

» Notation:

e Denoted by an upper case letter, e.g., X
¢ Values of a random variable X are denoted by lower case letters, e.g., x and y.
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Probability Distributions

» Probability distribution: how likely a random variable is to take on each of its possible
states.

e E.g., the random variable X denotes the outcome of a coin toss.
e The probability distribution of X would take the value 0.5 for X = head, and 0.5 for
Y = tail (assuming the coin is fair).

» The way we describe probability distributions depends on whether the variables are
discrete or continuous.




Discrete Variables

» Probability mass function (PMF): the probability distribution of a discrete random
variable X.

> Notation: denoted by a lowercase p.
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Discrete Variables

» Probability mass function (PMF): the probability distribution of a discrete random
variable X.

> Notation: denoted by a lowercase p.

e E.g., p(x) = 1 indicates that X = x is certain
e E.g., p(x) = 0 indicates that X = x is impossible

» Properties:

e The domain D of p must be the set of all possible states of X
e Vx€D(X),0<p(x)<1
° erD(x) p(X) =1




Independence

» Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

Vx € D(X),y € D(Y),p(X =x,Y=7) =p(X =x)p(Y = y)
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Independence

» Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

Vx € D(X),y € D(Y),pX=x,Y=y) =p(X=x)p(Y =y)

» E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of
landing on the head side of the coin and rolling a 3 on the die is:

p(X = head,Y = 3) = p(X = head)p(Y = 3)
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Conditional Probability

» Conditional probability: the probability of an event given that another event has
occurred.

p(Y =y |X=x)=

» E.g., if 60% of the class passed both labs and 80% of the class passed the first labs,
then what percent of those who passed the first lab also passed the second lab?

e E.g., X and Y random variables for the first and the second labs, respectively.

Y =1ab2,X = 1abl) 06 3
p(Yzlabeleam):p( 2 abl) _ 0.6 _

p(X = 1ab1) 08 4




Expectation

» The expected value of a random variable X with respect to a probability distribution
p(X) is the average value that X takes on when it is drawn from p(X).
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Expectation

» The expected value of a random variable X with respect to a probability distribution
p(X) is the average value that X takes on when it is drawn from p(X).

Ex~p [X] - Z p(X)X

» Eg, IfX:{1,2,3}, and p(X=1) = 0.3, p(X=2) = 0.5, p(X =3) = 0.2
*« EX]=03x1+05x2+02x3=1.9




Variance and Standard Deviation

» The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X — E[X])?]
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Variance and Standard Deviation

» The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X — E[X])?]

Var(X) = Z p(x)(x — E[X])*
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Variance and Standard Deviation

» The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X — E[X])?]
Var(X) = Z p(x)(x — E[X])*
» Eg, If X:{1,2,3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

* EX] =03x1+05x2+0.2x3=1.9
* Var(X) = 0.3(1 — 1.9)2 + 0.5(2 — 1.9)? + 0.2(3 — 1.9)? = 0.49

» The standard deviation, shown by o, is the square root of the variance.




Covariance (1/2)

» The covariance gives some sense of how much two values are linearly related to each
other.

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

Cov(X,Y) ZZ p(x,y)(x — E[X])(y — E[Y])



Covariance (2/2)

Y
pX, Y) 1 2 3 | pX
1 1/4 | 1/4 ] 0 1/2
X 2 0 | 1/4 1] 1/4| 1/2
p(Y) 1/4 | 1/2 | 1/4 1




Covariance (2/2)

Y
pX, Y) 1 2 3 | pX
1 1/4 | 1/4 ] 0 1/2
X 2 0 | 1/4 1] 1/4| 1/2
p(Y) 1/4 | 1/2 | 1/4 1

1 1 3 1 1 1
EX] == X1+ =-Xx2=— E[Y]=—-x14+—-Xx2+ - =
1X] 2 +2 2 [¥] 4X Jr2>< +4><3 2




Covariance (2/2)

Y
pX, Y) 1 2 3 | pX
1 1/4 | 1/4 ] 0 1/2
X 2 0 | 1/4 1] 1/4| 1/2
p(Y) 1/4 | 1/2 | 1/4 1

1
E[Y] = 7x1+7x2+7x3—2

1
E[X] = f><1+7><2—

Cov(X,Y) E:E: p(x,y)(x — E[X])(y — E[Y])

l\)\w




Y
pX, V) 1 2 3 | p(X)
1 1/4 | 1/4 0 1/2
X 2 0 1/4 | 1/4 | 1/2
p(Y) 1/4 | 1/2 | 1/4 1

1
E[Y] = f><1+f><2+7><3—2

2
Cov(X,Y) Z (%, y)(x = E[X])(y — E[Y])

(1-2)2-2)+0(1->)3-2)

H0(2- 2)(1-2)+ 72— 2)(2-2) + 4(2- 2)(3 ~2) =1




Correlation Coefficient

» The Correlation coefficient is a quantity that measures the strength of the association
(or dependence) between two random variables, e.g., X and Y.

_ Cov(X,Y)
PR = ®)o()




Probability and Likelihood (1/2)

» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.
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» Let X: {x(1) x(® ... %1} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.
e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.
¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

> p(X | 6 = 2) is the probability of X given 6 = 2.
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Probability and Likelihood (1/2)

Let X : {x(1), x(® ... %} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter 6.

e For six tosses of a coin, X : {h,t,t,t,h,t}, h: head, and t: tail.

¢ Suppose you have a coin with probability 6 to land heads and (1 — #) to land tails.

>

v

p(X | 6 = 2) is the probability of X given 6 = 2.

v

p(X =h | 0) is the likelihood of # given X = h.

v

Likelihood (L): a function of the parameters () of a probability model, given specific
observed data, e.g., X = h.

L0 [ X) =p(X[0)




Probability and Likelihood (2/2)

>

The likelihood differs from that of a probability.

v

A probability p(X | 6) refers to the occurrence of future events.

v

A likelihood L(6 | X) refers to past events with known outcomes.



Maximum Likelihood Estimator

» If samples in X are independent we have:

L(g ’ X) f p(X | 9) = p(X(l),X(Q), “ e ’X(m) ‘ 9)

m

=p(x" [ O)p(x® | 6)---p(x™ | 6) = [[ p(x™) | 6)

i=1



Maximum Likelihood Estimator

» If samples in X are independent we have:

L(g ’ X) f p(X | 9) = p(X(l),X(Q), “ e ’X(m) ‘ 9)

m

=p(x" [ O)p(x® | 6)---p(x™ | 6) = [[ p(x™) | 6)

i=1

» The maximum likelihood estimator (MLE): what is the most likely value of 6 given
the training set?

Oue = arg m@ax L(O | X)=arg meax H p(x(i) | )

i=1



Maximum Likelihood Estimator - Example

» Six tosses of a coin, with the following model:

e Possible outcomes: h with probability of #, and t with probability (1 — @).
» Results of coin tosses are independent of one another.

» Data: X: {h,t,t,t,h,t}




Maximum Likelihood Estimator - Example

» Six tosses of a coin, with the following model:

e Possible outcomes: h with probability of #, and t with probability (1 — @).
» Results of coin tosses are independent of one another.

» Data: X: {h,t,t,t,h,t}

» The likelihood is
L(O | X) =

1-0)(1—0)(1—0)0(1 — 0)
(1-0)*

p(X [ 0)
(X=n[fpX=t|O)p(X=1t[fp(X=1t|O)p(X=n[0O)p(X=1]0)
(

P
0
0




Maximum Likelihood Estimator - Example

>

Six tosses of a coin, with the following model:

e Possible outcomes: h with probability of #, and t with probability (1 — @).
» Results of coin tosses are independent of one another.

v

Data: X: {h,t,t,t,h,t}

The likelihood is

v

0 is the value of # that maximizes the likelihood:

v

Oue = L0 ] X)= ——
e = argmaxL(f | X) = 5=




Log-Likelihood

» The MLE product is prone to numerical underflow.

Oue = arg mée\x L(O | X) = arg mﬁaxil_[lp(X(l) | 6)




Log-Likelihood

» The MLE product is prone to numerical underflow.

Oue = arg mée\x L(O | X) = arg mﬁaxil_[lp(X(l) | 6)

» To overcome this problem we can use the logarithm of the likelihood.
* It does not change its arg max, but transforms a product into a sum.

i) — 1 (1) 9
Ouee argmgaX; ogp(x) | )




Negative Log-Likelihood

» Likelihood: L(0 | X) = [[*_, p(x(¥) | 0)




Negative Log-Likelihood

» Likelihood: L(0 | X) = [[*_, p(x(¥) | 0)

> Log-Likelihood: 1ogL(f | X) = log T_, p(x®) | ) = 3°7_, Logp(x() | 0)



Negative Log-Likelihood

» Likelihood: L(0 | X) = [[*_, p(x(¥) | 0)
> Log-Likelihood: 1ogL(f | X) = log T_, p(x®) | ) = 3°7_, Logp(x() | 0)

> Negative Log-Likelihood: —logL(f | X) = — °°_, Togp(x(*) | 0)



Negative Log-Likelihood

>

Likelihood: L(# | X) = [Tr_, p(x®) | 0)

v

Log-Likelihood: 1ogL(6 | X) = Log [[_, p(x™® | ) = 3°7_, 1ogp(x() | 0)

v

Negative Log-Likelihood: —logL(f | X) = — -"_, Togp(x(!) | 0)

v

Negative log-likelihood is also called the cross-entropy



Cross-Entropy

» Coss-entropy: quantify the difference (error) between two probability distributions.

» How close is the predicted distribution to the true distribution?

Zp x)1og(q(x))

> Where p is the true distribution, and q the predicted distribution.




Cross-Entropy - Example

» Six tosses of a coin: X: {h,t,t,t,h,t}

» The true distribution p: p(h) = 2 and p(t) = §

» The predicted distribution q: h with probability of #, and t with probability (1 — 6).
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Cross-Entropy - Example

>

Six tosses of a coin: X: {h,t,t,t,h,t}

v

The true distribution p: p(h) = 2 and p(t) = §

v

The predicted distribution q: h with probability of #, and t with probability (1 — 6).

v

Cross entropy: H(p,q) = —>_, p(x)log(q(x))
= —p(h)log(q(h)) — p(t)log(q(t)) = —31og(d) — tlog(1 — 0)

Likelihood: 6%(1 — 6)*

v



Cross-Entropy - Example

>

Six tosses of a coin: X: {h,t,t,t,h,t}

v

The true distribution p: p(h) = 2 and p(t) = §

v

The predicted distribution q: h with probability of #, and t with probability (1 — 6).

v

Cross entropy: H(p,q) = —>_, p(x)log(q(x))
= —p(h)log(q(h)) — p(t)log(q(t)) = —31og(d) — tlog(1 — 0)

Likelihood: 6%(1 — 6)*

v

v

Negative log likelihood: —log(6?(1 — 0)*) = —21og(f) — 41log(1 — 0)



Summary




Summary

> Logic-based Al, Machine Learning, Deep Learning

» Deep Learning models

e Deep Feed Forward

o Convolutional Neural Network (CNN)
¢ Recurrent Neural Network (RNN)

* Autoencoders

> Linear algebra and probability

* Random variables

* Probability distribution

e Likelihood

* Negative log-likelihood and cross-entropy
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