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Course Objective

I This course has a system-based focus.

I Learn the theory of machine learning and deep learning.

I Learn the practical aspects of building machine learning and deep learning algorithms
using data parallel programming platforms, such as Spark and TensorFlow.
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Topics of Study
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Intended Learning Outcomes (ILOs)

I ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve
problems.

I ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how
to build and train such networks.

I ILO3: explain the principles of distributed learning.

I ILO4: implement ML/DL algorithms using Spark and TensorFlow.
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The Course Assessment

I Task1: the review questions (P/F)

I Task2: the lab assignments (A-F)

I Task3: the final project (A-F)
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How Each ILO is Assessed?

Task1 Task2 Task3
ILO1 x

ILO2 x

ILO3 x

ILO4 x x x
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Task1: The Review Questions (A-F)

I One review question per week.

I Questions about the lectures.

I The review questions are graded (A-F).
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Task2: The Lab Assignments (A-C-E)

I Two lab assignments: source code and oral presentation.

I E: source code

I C: source code + basic questions

I A: source code + advanced questions
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Task3: The Final Project (A-D)

I One final project: source code and oral presentation.

I Proposed by students and confirmed by the teacher: A-level or C-level proposals.

I D: source code C-level proposal

I C: source code C-level proposal + questions

I B: source code A-level proposal

I A: source code A-level proposal + questions
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The Final Grade

I The final grade is the average of the two labs, the project, and the review questions.

I To compute it, map A-F to 5-1, and take the average.

I The floating values are rounded up, if they are more than half, otherwise they are
rounded down.

• E.g., 3.6 will be rounded to 4, and 4.2 will be rounded to 4.

I The half grades will be rounded up, if you submit the assignments before their
deadlines, otherwise they will be rounded down.
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How to Submit the Assignments?

I Through the Canvas site.

I Students will work in groups of two on all the Tasks 1-4.
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The Course Material

I Hands-on machine learning with Scikit-Learn and TensorFlow, 2nd Edition, A. Geron,
O’Reilly Media, 2019

I Deep learning, I. Goodfellow et al., Cambridge: MIT press, 2016

I Spark - The Definitive Guide, M. Zaharia et al., O’Reilly Media, 2018.
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The Course Web Page

https://id2223kth.github.io
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The Questions-Answers Page

https://tinyurl.com/y6kcpmzy
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The Course Overview
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Sheepdog or Mop
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Chihuahua or Muffin
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Barn Owl or Apple
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Raw Chicken or Donald Trump
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Artificial Intelligence Challenge

I Artificial intelligence (AI) can solve problems that can be described by a list of formal
mathematical rules.

I The challenge is to solve the tasks that are hard for people to describe formally.

I Let computers to learn from experience.
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History of AI
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1920: Rossum’s Universal Robots (R.U.R.)

I A science fiction play by Karel Čapek, in 1920.

I A factory that creates artificial people named robots.

[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]
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1950: Turing Test

I In 1950, Turing introduced the Turing test.

I An attempt to define machine intelligence.

[https://searchenterpriseai.techtarget.com/definition/Turing-test]
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1956: The Dartmouth Workshop

I Probably the first workshop of AI.

I Researchers from CMU, MIT, IBM met together and founded the AI research.

[https://twitter.com/lordsaicom/status/898139880441696257]
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1958: Perceptron

I A supervised learning algorithm for binary classifiers.

I Implemented in custom-built hardware as the Mark 1 perceptron.

[https://en.wikipedia.org/wiki/Perceptron]
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1974–1980: The First AI Winter

I The over optimistic settings, which were not occurred

I The problems:
• Limited computer power
• Lack of data
• Intractability and the combinatorial explosion

[http://www.technologystories.org/ai-evolution]
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1980’s: Expert systems

I The programs that solve problems in a specific domain.

I Two engines:
• Knowledge engine: represents the facts and rules about a specific topic.
• Inference engine: applies the facts and rules from the knowledge engine to new facts.

[https://www.igcseict.info/theory/7 2/expert]
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1987–1993: The Second AI Winter

I After a series of financial setbacks.

I The fall of expert systems and hardware companies.

[http://www.technologystories.org/ai-evolution]
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1997: IBM Deep Blue

I The first chess computer to beat a world chess champion Garry Kasparov.

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]
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2012: AlexNet - Image Recognition

I The ImageNet competition in image classification.

I The AlexNet Convolutional Neural Network (CNN) won the challenge by a large
margin.

31 / 83



2016: DeepMind AlphaGo

I DeepMind AlphaGo won Lee Sedol, one of the best players at Go.

I In 2017, DeepMind published AlphaGo Zero.
• The next generation of AlphaGo.
• It learned Go by playing against itself.

[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]
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2018: Google Duplex

I An AI system for accomplishing real-world tasks over the phone.

I A Recurrent Neural Network (RNN) built using TensorFlow.
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AI Generations

I Rule-based AI

I Machine learning

I Deep learning

[https://bit.ly/2woLEzs]
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AI Generations - Rule-based AI

I Hard-code knowledge

I Computers reason using logical inference rules

[https://bit.ly/2woLEzs]
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AI Generations - Machine Learning

I If AI systems acquire their own knowledge

I Learn from data without being explicitly programmed

[https://bit.ly/2woLEzs]
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AI Generations - Deep Learning

I For many tasks, it is difficult to know what features should be extracted

I Use machine learning to discover the mapping from representation to output

[https://bit.ly/2woLEzs]
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Why Does Deep Learning Work Now?

I Huge quantity of data

I Tremendous increase in computing power

I Better training algorithms
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Machine Learning and Deep Learning
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Learning Algorithms

I A ML algorithm is an algorithm that is able to learn from data.

I What is learning?

I A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Tom M. Mitchell)
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Learning Algorithms - Example 1

I A spam filter that can learn to flag spam given examples of spam emails and examples
of regular emails.

I Task T: flag spam for new emails

I Experience E: the training data

I Performance measure P: the ratio of correctly classified emails

[https://bit.ly/2oiplYM]
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Learning Algorithms - Example 2

I Given dataset of prices of 500 houses, how can we learn to predict the prices of other
houses, as a function of the size of their living areas?

I Task T: predict the price

I Experience E: the dataset of living areas and prices

I Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJUy]
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Types of Machine Learning Algorithms

I Supervised learning

• Input data is labeled, e.g., spam/not-spam or a stock price at a time.
• Regression vs. classification

I Unsupervised learning

• Input data is unlabeled.
• Find hidden structures in data.
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From Machine Learning to Deep Learning

I Deep Learning (DL) is part of ML methods based on learning data representations.

I Mimic the neural networks of our brain.

[A. Geron, O’Reilly Media, 2017]
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Artificial Neural Networks

I Artificial Neural Network (ANN) is inspired by biological neurons.

I One or more binary inputs and one binary output

I Activates its output when more than a certain number of its inputs are active.

[A. Geron, O’Reilly Media, 2017]
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The Linear Threshold Unit (LTU)

I Inputs of a LTU are numbers (not binary).

I Each input connection is associated with a weight.

I Computes a weighted sum of its inputs and applies a step function to that sum.

I z = w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I ŷ = step(z) = step(wᵀx)
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The Perceptron

I The perceptron is a single layer of LTUs.

I The input neurons output whatever input they are fed.

I A bias neuron, which just outputs 1 all the time.
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Deep Learning Models

I Deep Neural Network (DNN)

I Convolutional Neural Network (CNN)

I Recurrent Neural Network (RNN)

I Autoencoders

I Generative Adversarial Network (GAN)
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Deep Neural Networks

I Multi-Layer Perceptron (MLP)
• One input layer.
• One or more layers of LTUs (hidden layers).
• One final layer of LTUs (output layer).

I Deep Neural Network (DNN) is an ANN with two or more hidden layers.

I Backpropagation training algorithm.
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Convolutional Neural Networks

I Many neurons in the visual cortex react only to a limited region of the visual field.

I The higher-level neurons are based on the outputs of neighboring lower-level neurons.
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Recurrent Neural Networks

I The output depends on the input and the previous computations.

I Analyze time series data, e.g., stock market, and autonomous driving systems.

I Work on sequences of arbitrary lengths, rather than on fixed-sized inputs.
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Autoencoders and Generative Models

I Learn efficient representations of the input data, without any supervision.
• With a lower dimensionality than the input data.

I Generative model: generate new data that looks very similar to the training data.

I Preserve as much information as possible.

[A. Geron, O’Reilly Media, 2017]
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Linear Algebra Review
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Vector

I A vector is an array of numbers.

I Notation:
• Denoted by bold lowercase letters, e.g., x.
• xi denotes the ith entry.

x =


x1
x2
...
xn


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Matrix and Tensor

I A matrix is a 2-D array of numbers.

I A tensor is an array with more than two axes.

I Notation:
• Denoted by bold uppercase letters, e.g., A.
• aij denotes the entry in ith row and jth column.
• If A is m× n, it has m rows and n columns.

A =


a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n

...
...

...
. . .

...
am,1 am,2 am,3 . . . am,n



55 / 83



Matrix Addition and Subtraction

I The matrices must have the same dimensions.

A =

[
a b

c d

]
+

[
e f

g h

]
=

[
a + e b + f

c + g d + h

]
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Matrix Product

I The matrix product of matrices A and B is a third matrix C, where C = AB.

I If A is of shape m× n and B is of shape n× p, then C is of shape m× p.

cij =
∑
k

aikbkj

I Properties

• Associative: (AB)C = A(BC)

• Not commutative: AB 6= BA

[https://en.wikipedia.org/wiki/Matrix multiplication]
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Matrix Transpose

I Swap the rows and columns of a matrix.

A =

a b

c d

e f

⇒ Aᵀ =

[
a c e

b d f

]

I Properties

• Aij = Aᵀ
ji

• If A is m× n, then Aᵀ is n× m

• (A + B)ᵀ = Aᵀ + Bᵀ

• (AB)ᵀ = BᵀAᵀ
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Inverse of a Matrix

I If A is a square matrix, its inverse is called A−1.

AA−1 = A−1A = I

I Where I, the identity matrix, is a diagonal matrix with all 1’s on the diagonal.

I2 =

[
1 0

0 1

]
I3 =

1 0 0

0 1 0

0 0 1


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Lp Norm for Vectors

I We can measure the size of vectors using a norm function.

I Norms are functions mapping vectors to non-negative values.

I L1 norm
||x||1 =

∑
i

|xi|

I L2 norm

||x||2 = (
∑
i

|xi|2)
1
2 =

√
x21 + x22 + · · ·+ x2n

I Lp norm
||x||p = (

∑
i

|xi|p)
1
p
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Probability Review
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Random Variables

I Random variable: a variable that can take on different values randomly.

I Random variables may be discrete or continuous.

• Discrete random variable: finite or countably infinite number of states
• Continuous random variable: real value

I Notation:
• Denoted by an upper case letter, e.g., X
• Values of a random variable X are denoted by lower case letters, e.g., x and y.
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Probability Distributions

I Probability distribution: how likely a random variable is to take on each of its possible
states.

• E.g., the random variable X denotes the outcome of a coin toss.
• The probability distribution of X would take the value 0.5 for X = head, and 0.5 for
Y = tail (assuming the coin is fair).

I The way we describe probability distributions depends on whether the variables are
discrete or continuous.
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Discrete Variables

I Probability mass function (PMF): the probability distribution of a discrete random
variable X.

I Notation: denoted by a lowercase p.

• E.g., p(x) = 1 indicates that X = x is certain
• E.g., p(x) = 0 indicates that X = x is impossible

I Properties:
• The domain D of p must be the set of all possible states of X
• ∀x ∈ D(X), 0 ≤ p(x) ≤ 1
•
∑

x∈D(X) p(x) = 1
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Independence

I Two random variables X and Y are independent, if their probability distribution can
be expressed as their products.

∀x ∈ D(X), y ∈ D(Y), p(X = x, Y = y) = p(X = x)p(Y = y)

I E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of
landing on the head side of the coin and rolling a 3 on the die is:

p(X = head, Y = 3) = p(X = head)p(Y = 3) =
1

2
× 1

6
=

1

12
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Conditional Probability

I Conditional probability: the probability of an event given that another event has
occurred.

p(Y = y | X = x) =
p(Y = y, X = x)

p(X = x)

I E.g., if 60% of the class passed both labs and 80% of the class passed the first labs,
then what percent of those who passed the first lab also passed the second lab?

• E.g., X and Y random variables for the first and the second labs, respectively.

p(Y = lab2 | X = lab1) =
p(Y = lab2, X = lab1)

p(X = lab1)
=

0.6

0.8
=

3

4
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Expectation

I The expected value of a random variable X with respect to a probability distribution
p(X) is the average value that X takes on when it is drawn from p(X).

Ex∼p[X] =
∑
x

p(x)x

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
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Variance and Standard Deviation

I The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X− E[X])2]

Var(X) =
∑
x

p(x)(x− E[X])2

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
• Var(X) = 0.3(1− 1.9)2 + 0.5(2− 1.9)2 + 0.2(3− 1.9)2 = 0.49

I The standard deviation, shown by σ, is the square root of the variance.

68 / 83



Variance and Standard Deviation

I The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X− E[X])2]

Var(X) =
∑
x

p(x)(x− E[X])2

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
• Var(X) = 0.3(1− 1.9)2 + 0.5(2− 1.9)2 + 0.2(3− 1.9)2 = 0.49

I The standard deviation, shown by σ, is the square root of the variance.

68 / 83



Variance and Standard Deviation

I The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X− E[X])2]

Var(X) =
∑
x

p(x)(x− E[X])2

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
• Var(X) = 0.3(1− 1.9)2 + 0.5(2− 1.9)2 + 0.2(3− 1.9)2 = 0.49

I The standard deviation, shown by σ, is the square root of the variance.

68 / 83



Variance and Standard Deviation

I The variance gives a measure of how much the values of a random variable X vary
as we sample it from its probability distribution p(X).

Var(X) = E[(X− E[X])2]

Var(X) =
∑
x

p(x)(x− E[X])2

I E.g., If X : {1, 2, 3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
• E[X] = 0.3× 1 + 0.5× 2 + 0.2× 3 = 1.9
• Var(X) = 0.3(1− 1.9)2 + 0.5(2− 1.9)2 + 0.2(3− 1.9)2 = 0.49

I The standard deviation, shown by σ, is the square root of the variance.

68 / 83



Covariance (1/2)

I The covariance gives some sense of how much two values are linearly related to each
other.

Cov(X, Y) = E[(X− E[X])(Y− E[Y])]

Cov(X, Y) =
∑∑

(x,y)

p(x, y)(x− E[X])(y− E[Y])
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Covariance (2/2)

Y

p(X, Y) 1 2 3 p(X)

1 1/4 1/4 0 1/2

X 2 0 1/4 1/4 1/2

p(Y) 1/4 1/2 1/4 1

E[X] =
1

2
× 1 +

1

2
× 2 =

3

2
E[Y] =

1

4
× 1 +

1

2
× 2 +

1

4
× 3 = 2

Cov(X, Y) =
∑∑

(x,y)

p(x, y)(x− E[X])(y− E[Y])

=
1

4
(1− 3

2
)(1− 2) +

1

4
(1− 3

2
)(2− 2) + 0(1− 3

2
)(3− 2)

+0(2− 3

2
)(1− 2) +

1

4
(2− 3

2
)(2− 2) +

1

4
(2− 3

2
)(3− 2) =

1

4
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Correlation Coefficient

I The Correlation coefficient is a quantity that measures the strength of the association
(or dependence) between two random variables, e.g., X and Y.

ρ(X, Y) =
Cov(X, Y)

σ(X)σ(Y)
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Probability and Likelihood (1/2)

I Let X : {x(1), x(2), · · · , x(m)} be a discrete random variable drawn independently from
a distribution probability p depending on a parameter θ.

• For six tosses of a coin, X : {h, t, t, t, h, t}, h: head, and t: tail.
• Suppose you have a coin with probability θ to land heads and (1− θ) to land tails.

I p(X | θ = 2
3

) is the probability of X given θ = 2
3

.

I p(X = h | θ) is the likelihood of θ given X = h.

I Likelihood (L): a function of the parameters (θ) of a probability model, given specific
observed data, e.g., X = h.

L(θ | X) = p(X | θ)
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Probability and Likelihood (2/2)

I The likelihood differs from that of a probability.

I A probability p(X | θ) refers to the occurrence of future events.

I A likelihood L(θ | X) refers to past events with known outcomes.
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Maximum Likelihood Estimator

I If samples in X are independent we have:

L(θ | X) = p(X | θ) = p(x(1), x(2), · · · , x(m) | θ)

= p(x(1) | θ)p(x(2) | θ) · · · p(x(m) | θ) =
m∏

i=1

p(x(i) | θ)

I The maximum likelihood estimator (MLE): what is the most likely value of θ given
the training set?

θ̂MLE = arg max
θ

L(θ | X) = arg max
θ

m∏
i=1

p(x(i) | θ)
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Maximum Likelihood Estimator - Example

I Six tosses of a coin, with the following model:
• Possible outcomes: h with probability of θ, and t with probability (1− θ).
• Results of coin tosses are independent of one another.

I Data: X : {h, t, t, t, h, t}

I The likelihood is

L(θ | X) = p(X | θ)

= p(X = h | θ)p(X = t | θ)p(X = t | θ)p(X = t | θ)p(X = h | θ)p(X = t | θ)

= θ(1− θ)(1− θ)(1− θ)θ(1− θ)

= θ2(1− θ)4

I θ̂ is the value of θ that maximizes the likelihood:

θ̂MLE = arg max
θ

L(θ | X) =
2

2 + 4
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Log-Likelihood

I The MLE product is prone to numerical underflow.

θ̂MLE = arg max
θ

L(θ | X) = arg max
θ

m∏
i=1

p(x(i) | θ)

I To overcome this problem we can use the logarithm of the likelihood.
• It does not change its arg max, but transforms a product into a sum.

θ̂MLE = arg max
θ

m∑
i=1

logp(x(i) | θ)
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Negative Log-Likelihood

I Likelihood: L(θ | X) =
∏m

i=1 p(x(i) | θ)

I Log-Likelihood: logL(θ | X) = log
∏m

i=1 p(x(i) | θ) =
∑m

i=1 logp(x(i) | θ)

I Negative Log-Likelihood: −logL(θ | X) = −
∑m

i=1 logp(x(i) | θ)

I Negative log-likelihood is also called the cross-entropy
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Cross-Entropy

I Coss-entropy: quantify the difference (error) between two probability distributions.

I How close is the predicted distribution to the true distribution?

H(p, q) = −
∑
x

p(x)log(q(x))

I Where p is the true distribution, and q the predicted distribution.
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Cross-Entropy - Example

I Six tosses of a coin: X : {h, t, t, t, h, t}

I The true distribution p: p(h) = 2
6

and p(t) = 4
6

I The predicted distribution q: h with probability of θ, and t with probability (1− θ).

I Cross entropy: H(p, q) = −
∑

x p(x)log(q(x))
= −p(h)log(q(h))− p(t)log(q(t)) = −2

6
log(θ)− 4

6
log(1− θ)

I Likelihood: θ2(1− θ)4

I Negative log likelihood: −log(θ2(1− θ)4) = −2log(θ)− 4log(1− θ)
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I The predicted distribution q: h with probability of θ, and t with probability (1− θ).

I Cross entropy: H(p, q) = −
∑

x p(x)log(q(x))
= −p(h)log(q(h))− p(t)log(q(t)) = −2

6
log(θ)− 4

6
log(1− θ)

I Likelihood: θ2(1− θ)4

I Negative log likelihood: −log(θ2(1− θ)4) = −2log(θ)− 4log(1− θ)
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Summary
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Summary

I Logic-based AI, Machine Learning, Deep Learning

I Deep Learning models
• Deep Feed Forward
• Convolutional Neural Network (CNN)
• Recurrent Neural Network (RNN)
• Autoencoders

I Linear algebra and probability
• Random variables
• Probability distribution
• Likelihood
• Negative log-likelihood and cross-entropy
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