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Feedforward Neural Network Architecture

I A feedforward neural network is composed of:
• One input layer
• One or more hidden layers
• One final output layer
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Feedforward Network in TensorFlow

n_output = 3

n_hidden = 4

n_features = 2

model = keras.models.Sequential()

model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))

model.add(keras.layers.Dense(n_output, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])

model.fit(X_train, y_train, epochs=30)
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Challenges of Training Feedforward Neural Networks

I Challenges ...

I Overfitting: risk of overfitting a model with large number of parameters.

I Vanishing/exploding gradients: hard to train lower layers.

I Training speed: slow training with large networks.
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Overfitting
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High Degree of Freedom and Overfitting Problem

I With large number of parameters, a network has a high degree of freedom.

I It can fit a huge variety of complex datasets.

I This flexibility also means that it is prone to overfitting on training set.

I Let’s reduce the degree of freedom a model.
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Early Stopping (1/2)

I As the training steps go by, its prediction error on the training/validation set naturally
goes down.

I After a while the validation error stops decreasing and starts to go back up.
• The model has started to overfit the training data.

I In the early stopping, we stop training when the validation error reaches a minimum.
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Early Stopping (2/2)

from tensorflow.keras.callbacks import EarlyStopping

model = tf.keras.models.Sequential(...)

model.compile(optimizer=’sgd’, loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’])

earlystop_callback = EarlyStopping(monitor=’accuracy’, min_delta=0.05, patience=1)

model.fit(x_train, y_train, epochs=500, callbacks=[earlystop_callback])
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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l1 and l2 Regularization (1/3)

I Penalize large values of weights wj.

~J(w) = J(w) + λR(w)

I Two questions:

1. How should we define R(w)?
2. How do we determine λ?
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l1 and l2 Regularization (2/3)

I l1 regression: R(w) = λ
∑n

i=1 |wi| is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

|wi|

keras.layers.Dense(100, activation="relu", kernel_regularizer=keras.regularizers.l1(0.1))
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l1 and l2 Regularization (3/3)

I l2 regression: R(w) = λ
∑n

i=1 w
2
i is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

w2i

keras.layers.Dense(100, activation="relu", kernel_regularizer=keras.regularizers.l2(0.01))
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation

17 / 73



Max-Norm Regularization

I Max-norm regularization: constrains the weights wj of the incoming connections for
each neuron j.

• Prevents them from getting too large.

I After each training step, clip wj as below, if ||wj||2 > r:

wj ← wj
r

||wj||2
• r is the max-norm hyperparameter

• ||wj||2 = (
∑

i w
2
i,j)

1
2 =

√
w21,j + w22,j + · · ·+ w2n,j

keras.layers.Dense(100, activation="relu", kernel_constraint=keras.constraints.max_norm(1.))
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation

19 / 73



Dropout (1/4)

I Would a company perform better if its employees were told to toss a coin every
morning to decide whether or not to go to work?
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Dropout (2/4)

I At each training step, each neuron drops out temporarily with a probability p.

• The hyperparameter p is called the dropout rate.
• A neuron will be entirely ignored during this training step.
• It may be active during the next step.
• Exclude the output neurons.

I After training, neurons don’t get dropped anymore.
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Dropout (3/4)

I Each neuron can be either present or absent.

I 2N possible networks, where N is the total
number of droppable neurons.

• N = 4 in this figure.
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Dropout (4/4)

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(128, activation="relu"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(10, activation="softmax")

])
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Data Augmentation

I One way to make a model generalize better is to train it on more data.

I This will reduce overfitting.

I Create fake data and add it to the training set.
• E.g., in an image classification we can slightly

shift, rotate and resize an image.
• Add the resulting pictures to the training set.
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Vanishing/Exploding Gradients
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Vanishing/Exploding Gradients Problem (1/4)

I The backpropagation goes from output to input layer, and propagates the error
gradient on the way.

w(next) = w− η∂J(w)

∂w

I Gradients often get smaller and smaller as the algorithm progresses down to the lower
layers.

I As a result, the gradient descent update leaves the lower layer connection weights
virtually unchanged.

I This is called the vanishing gradients problem.
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Vanishing/Exploding Gradients Problem (2/4)

I Assume a network with just a single neuron in each layer.

• w1, w2, · · · are the weights
• b1, b2, · · · are the biases
• C is the cost function

I The output aj from the jth neuron is σ(zj).
• σ is the sigmoid activation function
• zj = wjaj−1 + bj
• E.g., a4 = σ(z4) = sigmoid(w4a3 + b4)
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Vanishing/Exploding Gradients Problem (3/4)

I Lets compute the gradient associated to the first hidden neuron ( ∂C∂b1 ).

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
×
∂z4

∂a3
×
∂a3

∂z3
×
∂z3

∂a2
×
∂a2

∂z2
×
∂z2

∂a1
×
∂a1

∂z1
×
∂z1

∂b1

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
×
∂w4a3 + b4

∂a3
×
∂a3

∂z3
×
∂w3a2 + b3

∂a2
×
∂a2

∂z2
×
∂w2a1 + b2

∂a1
×
∂a1

∂z1
×
∂w1a0 + b1

∂b1

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
× w4 ×

∂a3

∂z3
× w3 ×

∂a2

∂z2
××w2 ×

∂a1

∂z1
× 1
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Vanishing/Exploding Gradients Problem (4/4)

I Now, consider ∂C
∂b3

.

∂C

∂b3
=

∂C

∂a4
×
∂a4

∂z4
× w4 ×

∂a3

∂z3

∂C

∂b1
=

∂C

∂a4
×
∂a4

∂z4
× w4 ×

∂a3

∂z3
× w3 ×

∂a2

∂z2
× w2 ×

∂a1

∂z1
× 1

I Assume w3 × ∂a2
∂z2

< 1
4

and w2 × ∂a1
∂z1

< 1
4

• The gradient ∂C
∂b1

be a factor of 16 (or more) smaller than ∂C
∂b3

.
• This is the essential origin of the vanishing gradient problem.
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Overcoming the Vanishing Gradient

I Parameter initialization strategies

I Nonsaturating activation function

I Batch normalization

I Gradient clipping
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Parameter Initialization Strategies (1/4)

I The non-linearity of a neural network causes the cost functions to become non-convex.

I The stochastic gradient descent on non-convex cost functions performs is sensitive
to the values of the initial parameters.

I Designing initialization strategies is a difficult task.
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Parameter Initialization Strategies (2/4)

I The initial parameters need to break symmetry between different units.

I Two hidden units with the same activation function connected to the same inputs,
must have different initial parameters.

• The goal of having each unit compute a different function.

I It motivates random initialization of the parameters.
• Typically, we set the biases to constants, and initialize only the weights randomly.
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Parameter Initialization Strategies (3/4)

I We need the signals to flow properly in both directions.

I The Glorot and Bengio initialization proposed that:

• The variance of the outputs of each layer to be equal to the variance of its inputs.
• The gradients to have equal variance before and after flowing through a layer in the

reverse direction.

I It is not possible to guarantee both unless each layer has an equal number of inputs
and neurons.

I Based on the Xavier initialization, the weights are initialized using normal distribution
with mean 0 and the following standard deviation.
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Parameter Initialization Strategies (4/4)

I fanin and fanout are the number of inputs and neurons for the layer whose weights
are being initialized.

I fanavg = 2
fanin+fanout

I Glorot initialization, for none, logistic, sigmoid, and tanh: σ2 = 1
fanavg

I He initialization, for ReLU: σ2 = 2
fanin

keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal")
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Overcoming the Vanishing Gradient

I Parameter initiazlization strategies

I Nonsaturating activation function

I Batch normalization

I Gradient clipping
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Nonsaturating Activation Functions (1/4)

I ReLU(z) = max(0, z)

I The dying ReLUs problem.

• During training, some neurons stop outputting anything other than 0.
• E.g., when the weighted sum of the neuron’s inputs is negative, it starts outputting 0.

I Use leaky ReLU instead: LeakyReLUα(z) = max(αz, z).
• α is the slope of the function for z < 0.
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Nonsaturating Activation Functions (2/4)

I Randomized Leaky ReLU (RReLU)
• α is picked randomly during training, and it is fixed during testing.

I Parametric Leaky ReLU (PReLU)
• Learn α during training (instead of being a hyperparameter).

I Exponential Linear Unit (ELU)

ELUα(z) =

{
α(exp(z)− 1) if z < 0

z if z ≥ 0
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Nonsaturating Activation Functions (3/4)

I Which activation function should we use?

I In general logistic < tanh < ReLU < leaky ReLU (and its variants) < ELU

I If you care about runtime performance, then leaky ReLUs works better than ELUs.
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Nonsaturating Activation Functions (4/4)

# elu

keras.layers.Dense(10, activation="elu")

# leaky relu

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dense(128, kernel_initializer="he_normal"),

keras.layers.LeakyReLU(),

keras.layers.Dense(10, activation="softmax")

])
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Overcoming the Vanishing Gradient

I Parameter initiazlization strategies

I Nonsaturating activation function

I Batch normalization

I Gradient clipping
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Batch Normalization (1/4)

I The gradient tells how to update each parameter, under the assumption that the
other layers do not change.

• In practice, we update all of the layers simultaneously.
• However, unexpected results can happen.

I Batch normalization makes the learning of layers in the network more independent
of each other.

• It is a technique to address the problem that the distribution of each layer’s inputs
changes during training, as the parameters of the previous layers change.

I The technique consists of adding an operation in the model just before the activation
function of each layer.
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Batch Normalization (2/4)

I It’s zero-centering and normalizing the inputs, then scaling and shifting the result.

• Estimates the inputs’ mean and standard deviation of the current mini-batch.

µB =
1

mB

mB∑
i=1

x(i)

σ2B =
1

mB

mB∑
i=1

(x(i) − µB)2

I µB: the empirical mean, evaluated over the whole mini-batch B.

I σB: the empirical standard deviation, also evaluated over the whole mini-batch.

I mB: the number of instances in the mini-batch.
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Batch Normalization (3/4)

x̂(i) =
x(i) − µB√
σ2B + ε

z(i) = γx̂(i) + β

I x̂(i): the zero-centered and normalized input.

I z(i): the output of the BN operation, which is a scaled and shifted version of the
inputs.

I γ: the scaling parameter vector for the layer.

I β: the shifting parameter (offset) vector for the layer.

I ε: a tiny number to avoid division by zero.

I ⊗: represents the element-wise multiplication.
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Batch Normalization (4/4)

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.BatchNormalization(),

keras.layers.Dense(128, activation="relu"),

keras.layers.BatchNormalization(),

keras.layers.Dense(10, activation="softmax")

])
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Overcoming the Vanishing Gradient

I Parameter initiazlization strategies

I Nonsaturating activation function

I Batch normalization

I Gradient clipping
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Gradient Clipping

I Gradient clipping: clip the gradients during backpropagation so that they never ex-
ceed some threshold.

optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

I Setting the clipvalue or clipnorm argument when creating an optimizer.

I clipvalue=1.0 and clipnorm=1.0: values between -1.0 and 1.0.

I clipvalue=1.0: [0.9, 100.0]⇒ [0.9, 1.0]

I clipnorm=1.0: [0.9, 100.0]⇒ [0.00899964, 0.9999595]
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Training Speed
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Regular Gradient Descent Optimization (1/2)

I Gradient descent optimization algorithm

I It updates the weights w
(next)
i = wi − η ∂J(w)

∂wi

I Better optimization algorithms to improve the training speed
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Regular Gradient Descent Optimization (2/2)

n_output = 3

n_hidden = 4

n_features = 2

model = keras.models.Sequential()

model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))

model.add(keras.layers.Dense(n_output, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])

model.fit(X_train, y_train, epochs=30)
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Optimization Algorithms

I Momentum

I Nesterov momentum

I AdaGrad

I RMSProp

I Adam Optimization
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Momentum (1/3)

I Momentum is a concept from physics: an object in motion will have a tendency to
keep moving.

I It measures the resistance to change in motion.
• The higher momentum an object has, the harder it is to stop it.
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Momentum (2/3)

I This is the very simple idea behind momentum optimization.

I We can see the change in the parameters w as motion: w
(next)
i = wi − η ∂J(w)

∂wi

I We can thus use the concept of momentum to give the update process a tendency
to keep moving in the same direction.

I It can help to escape from bad local minima pits.
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Momentum (3/3)

I Regular gradient descent optimization: w
(next)
i = wi − η ∂J(w)

∂wi

I Momentum optimization cares about what previous gradients were.

I At each iteration, it adds the local gradient to the momentum vector m.

mi = βmi + η
∂J(w)

∂wi

w
(next)
i = wi − mi

I β is called momentum, ans it is between 0 and 1.

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
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Optimization Algorithms

I Momentum

I Nesterov momentum

I AdaGrad

I RMSProp

I Adam optimization
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Nesterov Momentum (1/2)

I Nesterov Momentum is a small variant to Momentum optimization.

I Faster than vanilla Momentum optimization.

I ∇1 represents the gradient of the cost function measured at the starting point w,
and ∇2 represents the gradient at the point located at w + βm.
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Nesterov Momentum (2/2)

I Measure the gradient of the cost function slightly ahead in the direction of the
momentum (not at the local position).

mi = βmi + η
∂J(w + βm)

∂wi

w
(next)
i = wi − mi

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)

model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
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Optimization Algorithms

I Momentum

I Nesterov momentum

I AdaGrad

I RMSProp

I Adam optimization
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AdaGrad (1/2)

I AdaGrad keeps track of a learning rate for each parameter.

I Adapts the learning rate over time (adaptive learning rate).

I Decays the learning rate faster for steep dimensions than for dimensions with gentler
slopes.
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AdaGrad (2/2)

I For each feature wi, we do the following steps:

si = si + (
∂J(w)

∂wi
)2

w
(next)
i = wi −

η√
si + ε

∂J(w)

∂wi

optimizer = keras.optimizers.Adagrad(lr=0.001)

model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
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Optimization Algorithms

I Momentum

I Nesterov momentum

I AdaGrad

I RMSProp

I Adam optimization
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RMSProp (1/2)

I AdaGrad often stops too early when training neural networks.

I The learning rate gets scaled down so much that the algorithm ends up stopping
entirely before reaching the global optimum.

I The RMSProp fixed the AdaGrad problem.

I It is like the AdaGrad problem, but accumulates only the gradients from the most
recent iterations (not from the beginning of training).
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RMSProp (2/2)

I For each feature wi, we do the following steps:

si = βsi + (1− β)(
∂J(w)

∂wi
)2

w
(next)
i = wi −

η√
si + ε

∂J(w)

∂wi

optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)

model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
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Optimization Algorithms

I Momentum

I Nesterov momentum

I AdaGrad

I RMSProp

I Adam optimization
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Adam Optimization (1/3)

I Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.

I Like Momentum optimization, it keeps track of an exponentially decaying average of
past gradients.

I Like RMSProp, it keeps track of an exponentially decaying average of past squared
gradients.
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Adam Optimization (2/3)

1. m(next) = β1m+ (1− β1)∇wJ(w)

2. s(next) = β2s+ (1− β2)∇wJ(w)⊗∇wJ(w)

3. m(next) =
m

1− βT1
4. s(next) =

s

1− βT2
5. w(next) = w − ηm�

√
s+ ε

I ⊗ and � represent the element-wise multiplication and division.

I Steps 1, 2, and 5: similar to both Momentum optimization and RMSProp.

I Steps 3 and 4: since m and s are initialized at 0, they will be biased toward 0 at the
beginning of training, so these two steps will help boost m and s at the beginning of
training.
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Adam Optimization (3/3)

optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
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Summary
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Summary

I Overfitting
• Early stopping, l1 and l2 regularization, max-norm regularization
• Dropout, data augmentation

I Vanishing gradient
• Parameter initialization, nonsaturating activation functions
• Batch normalization, gradient clipping

I Training speed
• Momentum, nesterov momentum, AdaGrad
• RMSProp, Adam optimization
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Reference

I Ian Goodfellow et al., Deep Learning (Ch. 7, 8)

I Aurélien Géron, Hands-On Machine Learning (Ch. 11)
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Questions?
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