

Convolutional Neural Networks

Amir H. Payberah payberah@kth.se 2020-11-18

The Course Web Page

https://id2223kth.github.io https://tinyurl.com/y6kcpmzy

Where Are We?

Deep Learning			
Autoencoder	GAN	Distributed Learning	
CNN	RNN	Transformer	
Deep Feedforward Network Training Feedforward Network			
TensorFlow			
Machine Learning			
Regression	Classification Mor	e Supervised Learning	
Spark ML			

Where Are We?

	Deep Learning			
Autoencoder	GAN	Distributed Learning		
CNN	RNN	Transformer		
Deep Feedforward Network Training Feedforward Network				
TensorFlow				
Machine Learning				
Regression	Classification Mor	e Supervised Learning		
Spark ML				

Let's Start With An Example

► Handwritten digits in the MNIST dataset are 28x28 pixel greyscale images.

/ | | | | | / | / | VA444444444

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

• Let's make a one-layer neural network for classifying digits.

- ► Let's make a one-layer neural network for classifying digits.
- Each neuron in a neural network:
 - Does a weighted sum of all of its inputs
 - Adds a bias
 - Feeds the result through some non-linear activation function, e.g., softmax.

Assume we have a batch of 100 images as the input.

- Assume we have a batch of 100 images as the input.
- ► Using the first column of the weights matrix **W**, we compute the weighted sum of all the pixels of the first image.

- Assume we have a batch of 100 images as the input.
- ► Using the first column of the weights matrix **W**, we compute the weighted sum of all the pixels of the first image.
 - The first neuron: $L_{0,0} = \mathtt{w}_{0,0} \mathtt{x}_0^{(1)} + \mathtt{w}_{1,0} \mathtt{x}_1^{(1)} + \dots + \mathtt{w}_{783,0} \mathtt{x}_{783}^{(1)}$

- ► Assume we have a batch of 100 images as the input.
- ► Using the first column of the weights matrix **W**, we compute the weighted sum of all the pixels of the first image.
 - The first neuron: $L_{0,0} = \mathtt{w}_{0,0} \mathtt{x}_0^{(1)} + \mathtt{w}_{1,0} \mathtt{x}_1^{(1)} + \dots + \mathtt{w}_{783,0} \mathtt{x}_{783}^{(1)}$
 - The 2nd neuron until the 10th: $L_{0,1} = w_{0,1}x_0^{(1)} + w_{1,1}x_1^{(1)} + \dots + w_{783,1}x_{783}^{(1)}$ \dots $L_{0,9} = w_{0,9}x_0^{(1)} + w_{1,9}x_1^{(1)} + \dots + w_{783,9}x_{792}^{(1)}$

- Assume we have a batch of 100 images as the input.
- ► Using the first column of the weights matrix **W**, we compute the weighted sum of all the pixels of the first image.
 - The first neuron: $L_{0,0} = \mathtt{w}_{0,0} \mathtt{x}_0^{(1)} + \mathtt{w}_{1,0} \mathtt{x}_1^{(1)} + \dots + \mathtt{w}_{783,0} \mathtt{x}_{783}^{(1)}$
 - The 2nd neuron until the 10th: $L_{0,1} = w_{0,1}x_0^{(1)} + w_{1,1}x_1^{(1)} + \dots + w_{783,1}x_{783}^{(1)}$ \dots $L_{0,9} = w_{0,9}x_0^{(1)} + w_{1,9}x_1^{(1)} + \dots + w_{783,9}x_{782}^{(1)}$
 - Repeat the operation for the other 99 images, i.e., $\mathbf{x}^{(2)}\cdots\mathbf{x}^{(100)}$

L_{i,0} L_{i,1}

L_{i.9}

- Each neuron must now add its bias.
- Apply the softmax activation function for each instance x⁽ⁱ⁾.

► For each input instance x⁽ⁱ⁾: L_i =

 $L_{i,1}$

 $\mathtt{L}_{\mathtt{i},9}$

- Each neuron must now add its bias.
- Apply the softmax activation function for each instance $\mathbf{x}^{(i)}$.

• For each input instance
$$\mathbf{x}^{(i)}$$
: $\mathbf{L}_{i} = \begin{bmatrix} \mathbf{L}_{i,0} \\ \mathbf{L}_{i,1} \\ \vdots \end{bmatrix}$

• $\hat{\mathbf{y}}_{i} = \text{softmax}(\mathbf{L}_{i} + \mathbf{b})$

L_{i.0}

L_{i.1}

 $\mathtt{L}_{\mathtt{i},9}$

- Each neuron must now add its bias.
- Apply the softmax activation function for each instance x⁽ⁱ⁾.

•
$$\hat{\mathbf{y}}_{i} = \texttt{softmax}(\mathbf{L}_{i} + \mathbf{b})$$

How Good the Predictions Are?

▶ Define the cost function J(W) as the cross-entropy of what the network tells us (ŷ_i) and what we know to be the truth (y_i), for each instance x⁽ⁱ⁾.

How Good the Predictions Are?

- ▶ Define the cost function J(W) as the cross-entropy of what the network tells us (ŷ_i) and what we know to be the truth (y_i), for each instance x⁽ⁱ⁾.
- ► Compute the partial derivatives of the cross-entropy with respect to all the weights and all the biases, \(\nabla_W J(W)\).

How Good the Predictions Are?

- ▶ Define the cost function J(W) as the cross-entropy of what the network tells us (ŷ_i) and what we know to be the truth (y_i), for each instance x⁽ⁱ⁾.
- ► Compute the partial derivatives of the cross-entropy with respect to all the weights and all the biases, \(\nabla_W J(W)\).
- Update weights and biases by a fraction of the gradient $W^{(next)} = W \eta \nabla_W J(W)$

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()


```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

```
model = tf.keras.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(10, activation='softmax')
])
```



```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

```
model = tf.keras.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])


```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

```
model = tf.keras.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

```
model.fit(x_train, y_train, batch_size=100, epochs=10)
model.evaluate(x_test, y_test)
```


Some Improvement (1/5)

- Add more layers to improve the accuracy.
- ► On intermediate layers we will use the the sigmoid activation function.
- ► We keep softmax as the activation function on the last layer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement (2/5)

- ▶ Network initialization. e.g., using He initialization.
- Better optimizer, e.g., using Adam optimizer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

• Better activation function, e.g., using ReLU(z) = max(0, z).

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement (4/5)

• Overcome overfitting, e.g., using dropout.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement (5/5)

- Start fast and decay the learning rate exponentially.
- ► You can do this with the tf.keras.callbacks.LearningRateScheduler callback.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]


```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
   tf.keras.layers.Dropout(0.2),
   tf.keras.layers.Dense(10, activation='softmax')
])
```



```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
   tf.keras.layers.Dropout(0.2),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

```
# lr decay function
def lr_decay(epoch):
    return 0.01 * math.pow(0.6, epoch)
# lr schedule callback
lr_decay_callback = tf.keras.callbacks.LearningRateScheduler(lr_decay, verbose=True)
```



```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
   tf.keras.layers.Dropout(0.2),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

```
# lr decay function
def lr_decay(epoch):
    return 0.01 * math.pow(0.6, epoch)
# lr schedule callback
```

```
lr_decay_callback = tf.keras.callbacks.LearningRateScheduler(lr_decay, verbose=True)
```

model.fit(x_train, y_train, batch_size=100, epochs=10)
model.evaluate(x_test, y_test)

Vanilla Deep Neural Networks Challenges (1/2)

▶ Pixels of each image were flattened into a single vector (really bad idea).

Vanilla Deep Neural Networks Challenges (1/2)

▶ Pixels of each image were flattened into a single vector (really bad idea).

- ► Vanilla deep neural networks do not scale.
 - In MNIST, images are black-and-white 28x28 pixel images: $28 \times 28 = 784$ weights.

▶ Pixels of each image were flattened into a single vector (really bad idea).

- ► Vanilla deep neural networks do not scale.
 - In MNIST, images are black-and-white 28x28 pixel images: $28 \times 28 = 784$ weights.
- Handwritten digits are made of shapes and we discarded the shape information when we flattened the pixels.

Vanilla Deep Neural Networks Challenges (2/2)

• Difficult to recognize objects.

Vanilla Deep Neural Networks Challenges (2/2)

- Difficult to recognize objects.
- Rotation
- ► Lighting: objects may look different depending on the level of external lighting.
- Deformation: objects can be deformed in a variety of non-affine ways.
- ► Scale variation: visual classes often exhibit variation in their size.
- Viewpoint invariance.

Tackle the Challenges

- ► Convolutional neural networks (CNN) can tackle the vanilla model challenges.
- ► CNN is a type of neural network that can take advantage of shape information.

Tackle the Challenges

- ► Convolutional neural networks (CNN) can tackle the vanilla model challenges.
- ► CNN is a type of neural network that can take advantage of shape information.
- ► It applies a series of filters to the raw pixel data of an image to extract and learn higher-level features, which the model can then use for classification.

Filters and Convolution Operations

Brain Visual Cortex Inspired CNNs

- ▶ 1959, David H. Hubel and Torsten Wiesel.
- ► Many neurons in the visual cortex have a small local receptive field.

Brain Visual Cortex Inspired CNNs

- ▶ 1959, David H. Hubel and Torsten Wiesel.
- ► Many neurons in the visual cortex have a small local receptive field.
- ► They react only to visual stimuli located in a limited region of the visual field.

Receptive Fields and Filters

Imagine a flashlight that is shining over the top left of the image.

Receptive Fields and Filters

- Imagine a flashlight that is shining over the top left of the image.
- ► The region that it is shining over is called the receptive field.
- This flashlight is called a filter.

Receptive Fields and Filters

- Imagine a flashlight that is shining over the top left of the image.
- ► The region that it is shining over is called the receptive field.
- This flashlight is called a filter.
- A filter is a set of weights.
- ► A filter is a feature detector, e.g., straight edges, simple colors, and curves.

Filters Example (1/3)

_								
0	0	0	0	0	30	0		
0	0	0	0	30	0	0		
0	0	0	30	0	0	0		
0	0	0	30	0	0	0		
0	0	0	30	0	0	0		
0	0	0	30	0	0	0		
0	0	0	0	0	0	0		

Pixel representation of filter

Visualization of a curve detector filter

Filters Example (1/3)

Filters Example (2/3)

Filters Example (3/3)

Convolution Operation

- Convolution takes a filter and multiplying it over the entire area of an input image.
- Imagine this flashlight (filter) sliding across all the areas of the input image.

[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

Convolution Operation - 2D Example

Convolutional Neural Network (CNN)

► Convolutional layers: apply a specified number of convolution filters to the image.

CNN Components (1/2)

- ► Convolutional layers: apply a specified number of convolution filters to the image.
- Pooling layers: downsample the image data extracted by the convolutional layers to reduce the dimensionality of the feature map in order to decrease processing time.

CNN Components (1/2)

- ► Convolutional layers: apply a specified number of convolution filters to the image.
- Pooling layers: downsample the image data extracted by the convolutional layers to reduce the dimensionality of the feature map in order to decrease processing time.
- Dense layers: a fully connected layer that performs classification on the features extracted by the convolutional layers and downsampled by the pooling layers.

► A CNN is composed of a stack of convolutional modules.

- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.

CNN Components (2/2)

- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.
- ► The last module is followed by one or more dense layers that perform classification.

CNN Components (2/2)

- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.
- ► The last module is followed by one or more dense layers that perform classification.
- ► The final dense layer contains a single node for each target class in the model, with a softmax activation function.

Convolutional Layer

Sparse interactions

Each neuron in the convolutional layers is only connected to pixels in its receptive field (not every single pixel).

• Each neuron applies filters on its receptive field.

- Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.

- Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.
- ► Adds a bias, and feeds the result through its activation function to the next layer.

- Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.
- ► Adds a bias, and feeds the result through its activation function to the next layer.
- The output of this layer is a feature map (activation map)

- Parameter sharing
- ► All neurons of a convolutional layer reuse the same weights.

- Parameter sharing
- ► All neurons of a convolutional layer reuse the same weights.
- They apply the same filter in different positions.
- ► Whereas in a fully-connected network, each neuron had its own set of weights.

- Assume the filter size (kernel size) is $f_w \times f_h$.
 - ${\tt f}_{\tt h}$ and ${\tt f}_{\tt w}$ are the height and width of the receptive field, respectively.
- ► A neuron in row i and column j of a given layer is connected to the outputs of the neurons in the previous layer in rows i to $i + f_h 1$, and columns j to $j + f_w 1$.

- ▶ What will happen if you apply a 5x5 filter to a 32x32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.

- ► What will happen if you apply a 5×5 filter to a 32×32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.
- Zero padding: in order for a layer to have the same height and width as the previous layer, it is common to add zeros around the inputs.

- ▶ What will happen if you apply a 5x5 filter to a 32x32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.
- Zero padding: in order for a layer to have the same height and width as the previous layer, it is common to add zeros around the inputs.
- ► In TensorFlow, padding can be either SAME or VALID to have zero padding or not.

► The distance between two consecutive receptive fields is called the stride.

- ► The distance between two consecutive receptive fields is called the stride.
- ► The stride controls how the filter convolves around the input volume.

- ► The distance between two consecutive receptive fields is called the stride.
- ▶ The stride controls how the filter convolves around the input volume.
- ▶ Assume \mathbf{s}_h and \mathbf{s}_w are the vertical and horizontal strides, then, a neuron located in row i and column j in a layer is connected to the outputs of the neurons in the previous layer located in rows $\mathbf{i} \times \mathbf{s}_h$ to $\mathbf{i} \times \mathbf{s}_h + \mathbf{f}_h 1$, and columns $\mathbf{j} \times \mathbf{s}_w$ to $\mathbf{j} \times \mathbf{s}_w + \mathbf{f}_w 1$.

Stacking Multiple Feature Maps

- ▶ Up to now, we represented each convolutional layer with a single feature map.
- ► Each convolutional layer can be composed of several feature maps of equal sizes.
- ► Input images are also composed of multiple sublayers: one per color channel.
- ► A convolutional layer simultaneously applies multiple filters to its inputs.

Activation Function

- After calculating a weighted sum of the input pixels in the receptive fields, and adding biases, each neuron feeds the result through its ReLU activation function to the next layer.
- ► The purpose of this activation function is to add non linearity to the system.

Pooling Layer

Pooling Layer (1/2)

- ► After the activation functions, we can apply a pooling layer.
- ► Its goal is to subsample (shrink) the input image.

Pooling Layer (1/2)

- After the activation functions, we can apply a **pooling layer**.
- ► Its goal is to subsample (shrink) the input image.
 - To reduce the computational load, the memory usage, and the number of parameters.

Pooling Layer (2/2)

- Each neuron in a pooling layer is connected to the outputs of a receptive field in the previous layer.
- A pooling neuron has no weights.
- ► It aggregates the inputs using an aggregation function such as the max or mean.

Example of Maxpool with a 2x2 filter and a stride of 2

Fully Connected Layer

- This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.

- This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.
- ► For example, if you wanted a digit classification model, N would be 10.

- This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.
- ► For example, if you wanted a digit classification model, N would be 10.
- ► Each number in this N dimensional vector represents the probability of a certain class.

- We need to convert the output of the convolutional part of the CNN into a 1D feature vector.
- ► This operation is called flattening.

- We need to convert the output of the convolutional part of the CNN into a 1D feature vector.
- ► This operation is called flattening.
- It gets the output of the convolutional layers, flattens all its structure to create a single long feature vector to be used by the dense layer for the final classification.

Example

A Toy ConvNet: X's and O's

For Example

Trickier Cases

translation

scaling

rotation

weight

Deciding is Hard

What Computers See

What Computers See

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	Х	-1	-1	-1	-1	Х	Х	-1
-1	Х	Х	-1	-1	Х	Х	-1	-1
-1	-1	Х	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	Х	-1	-1
-1	-1	Х	Х	-1	-1	Х	Х	-1
-1	Х	Х	-1	-1	-1	-1	Х	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Computers are Literal

ConvNets Match Pieces of the Image

-1 1

Convolution: Trying Every Possible Match

Three Filters Here, So Three Images Out

Convolution Layer

• One image becomes a stack of filtered images.

► A stack of images becomes a stack of images with no negative values.

0.77	0	0.11	0.33	0.55	0	0.33	
	1.00		0.33		0.11		
		1.00		0.11		0.55	
0.33	0.33		0.55		0.33	0.33	
0.55				1.00			
			0.33		1.00		
0.33		0.55	0.33			0.77	

	1.00	0.33	0.55	0.33
max pooling	0.33	1.00	0.33	0.55
	0.55	0.33	1.00	0.11
	0.33	0.55	0.11	0.77

Repeat For All the Filtered Images

▶ The output of one becomes the input of the next.

Deep Stacking

► Flattening the outputs before giving them to the fully connected layer.

97 / 124

Putting It All Together

One more example

- A conv layer.
- Computes 2 feature maps.
- ► Filters: 3x3 with stride of 2.
- ▶ Input tensor shape: [7,7,3].
- Output tensor shape: [3, 3, 2].

[http://cs231n.github.io/convolutional-networks]

CNN in TensorFlow

► A CNN for the MNIST dataset with the following network.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ► Dense layer: densely connected layer with 1024 neurons.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ► Dense layer: densely connected layer with 1024 neurons.
- Softmax layer

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- Padding same is added to preserve width and height.

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Padding same is added to preserve width and height.
- Input tensor shape: [batch_size, 28, 28, 1]

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- Padding same is added to preserve width and height.
- Input tensor shape: [batch_size, 28, 28, 1]
- Output tensor shape: [batch_size, 28, 28, 32]

MNIST images are 28x28 pixels, and have one color channel: [28, 28, 1]

▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- Input tensor shape: [batch_size, 28, 28, 32]

- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- Input tensor shape: [batch_size, 28, 28, 32]
- Output tensor shape: [batch_size, 14, 14, 32]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

- Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Padding same is added to preserve width and height.

- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ► Padding same is added to preserve width and height.
- Input tensor shape: [batch_size, 14, 14, 32]

- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Padding same is added to preserve width and height.
- Input tensor shape: [batch_size, 14, 14, 32]
- Output tensor shape: [batch_size, 14, 14, 64]

tf.keras.layers.Conv2D(kernel_size=5, filters=64, activation='relu', padding='same')

▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- Input tensor shape: [batch_size, 14, 14, 64]

- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- Input tensor shape: [batch_size, 14, 14, 64]
- Output tensor shape: [batch_size, 7, 7, 64]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

Flatten tensor into a batch of vectors.

- **Flatten** tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]

- **Flatten** tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- **Flatten** tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

► Dense layer: densely connected layer with 1024 neurons.

- Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ► Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]

- **Flatten** tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ► Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ► Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

► Softmax layer: softmax layer with 10 neurons.

- Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size,7,7,64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ► Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- ► Softmax layer: softmax layer with 10 neurons.
 - Input tensor shape: [batch_size, 1024]

- Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size,7,7,64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ► Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- ► Softmax layer: softmax layer with 10 neurons.
 - Input tensor shape: [batch_size, 1024]
 - Output tensor shape: [batch_size, 10]

tf.keras.layers.Dense(10, activation='softmax')

Training CNNs

Training CNN (1/4)

► Let's see how to use backpropagation on a single convolutional layer.

- ► Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3x3 and a single filter W of size 2x2.

- ► Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3×3 and a single filter W of size 2×2.
- No padding and stride = 1.

- ► Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3×3 and a single filter W of size 2×2.
- ▶ No padding and stride = 1.
- ▶ It generates an output H of size 2x2.

► Forward pass

► Forward pass

 $\mathtt{h_{11}} = \mathtt{W_{11}}\mathtt{X_{11}} + \mathtt{W_{12}}\mathtt{X_{12}} + \mathtt{W_{21}}\mathtt{X_{21}} + \mathtt{W_{22}}\mathtt{X_{22}}$

► Forward pass

$$\begin{split} h_{11} &= \mathtt{W}_{11}\mathtt{X}_{11} + \mathtt{W}_{12}\mathtt{X}_{12} + \mathtt{W}_{21}\mathtt{X}_{21} + \mathtt{W}_{22}\mathtt{X}_{22} \\ h_{12} &= \mathtt{W}_{11}\mathtt{X}_{12} + \mathtt{W}_{12}\mathtt{X}_{13} + \mathtt{W}_{21}\mathtt{X}_{22} + \mathtt{W}_{22}\mathtt{X}_{23} \end{split}$$

► Forward pass

$$\begin{split} h_{11} &= \mathtt{W}_{11}\mathtt{X}_{11} + \mathtt{W}_{12}\mathtt{X}_{12} + \mathtt{W}_{21}\mathtt{X}_{21} + \mathtt{W}_{22}\mathtt{X}_{22} \\ h_{12} &= \mathtt{W}_{11}\mathtt{X}_{12} + \mathtt{W}_{12}\mathtt{X}_{13} + \mathtt{W}_{21}\mathtt{X}_{22} + \mathtt{W}_{22}\mathtt{X}_{23} \\ h_{21} &= \mathtt{W}_{11}\mathtt{X}_{21} + \mathtt{W}_{12}\mathtt{X}_{22} + \mathtt{W}_{21}\mathtt{X}_{31} + \mathtt{W}_{22}\mathtt{X}_{32} \end{split}$$

► Forward pass

$$\begin{split} h_{11} &= \mathtt{W}_{11}\mathtt{X}_{11} + \mathtt{W}_{12}\mathtt{X}_{12} + \mathtt{W}_{21}\mathtt{X}_{21} + \mathtt{W}_{22}\mathtt{X}_{22} \\ h_{12} &= \mathtt{W}_{11}\mathtt{X}_{12} + \mathtt{W}_{12}\mathtt{X}_{13} + \mathtt{W}_{21}\mathtt{X}_{22} + \mathtt{W}_{22}\mathtt{X}_{23} \\ h_{21} &= \mathtt{W}_{11}\mathtt{X}_{21} + \mathtt{W}_{12}\mathtt{X}_{22} + \mathtt{W}_{21}\mathtt{X}_{31} + \mathtt{W}_{22}\mathtt{X}_{32} \\ h_{22} &= \mathtt{W}_{11}\mathtt{X}_{22} + \mathtt{W}_{12}\mathtt{X}_{23} + \mathtt{W}_{21}\mathtt{X}_{32} + \mathtt{W}_{22}\mathtt{X}_{33} \end{split}$$

- Backward pass
- E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

<i>X</i> ₁₁	X ₁₂	X ₁₃				
11	12	13	w,,	W_12	h ₁₁	h ₁₂
X ₂₁	X ₂₂	X ₂₃				
v	X ₃₂	v	<i>W</i> ₂₁	W_22	h ₂₁	h ₂₂
X ₃₁	A 32	X ₃₃				

- Backward pass
- \blacktriangleright E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

<i>X</i> ₁₁	X ₁₂	X ₁₃				
			w _u	W ₁₂	h ₁₁	h ₁₂
X ₂₁	X ₂₂	X ₂₃	W ₂₁	W_22		
X ₃₁	X ₃₂	X ₃₃	21	22	h ₂₁	h ₂₂

$$\frac{\partial E}{\partial W_{11}} = \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{11}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{11}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{11}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{11}}$$

- Backward pass
- \blacktriangleright E is the error: $E=E_{h_{11}}+E_{h_{12}}+E_{h_{21}}+E_{h_{22}}$

	$\frac{\partial \mathtt{E}_{\mathtt{h}_{12}}}{\partial \mathtt{h}_{12}} \frac{\partial \mathtt{h}_{12}}{\partial \mathtt{W}_{11}} + \\$	
	$\frac{\partial E_{h_{12}}}{\partial h_{12}}\frac{\partial h_{12}}{\partial \mathtt{W}_{12}} + \\$	

- Backward pass
- \blacktriangleright E is the error: $E=E_{h_{11}}+E_{h_{12}}+E_{h_{21}}+E_{h_{22}}$

x ₁₁	X ₁₂	X ₁₃				
	12	13	w _u	W ₁₂	h ₁₁	h ₁₂
X ₂₁	X ₂₂	X ₂₃				
	v		<i>W</i> ₂₁	W_22	h ₂₁	h ₂₂
X ₃₁	X ₃₂	X ₃₃				

$\frac{\partial E}{\partial W_{11}} =$		$-\frac{\partial \mathtt{E}_{\mathtt{h}_{12}}}{\partial \mathtt{h}_{12}}\frac{\partial \mathtt{h}_{12}}{\partial \mathtt{W}_{11}}+$	$-rac{\partial E_{h_{21}}}{\partial h_{21}}rac{\partial h_{21}}{\partial W_{11}}+$	
$\frac{\partial E}{\partial W_{12}} =$	$= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{12}} +$		$-rac{\partial E_{h_{21}}}{\partial h_{21}}rac{\partial h_{21}}{\partial W_{12}}+$	
$\frac{\partial E}{\partial W_{21}} =$		$-rac{\partial E_{h_{12}}}{\partial h_{12}}rac{\partial h_{12}}{\partial W_{21}}+$	$-rac{\partial E_{h_{21}}}{\partial h_{21}}rac{\partial h_{21}}{\partial W_{21}}+$	

- Backward pass
- \blacktriangleright E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X ₁₁	X ₁₂	X ₁₃				
~""	12	*13	w _u	W_12	h ₁₁	h ₁₂
X ₂₁	X ₂₂	X ₂₃	"			
			<i>W</i> ₂₁	W_22	h ₂₁	h ₂₂
X ₃₁	X ₃₂	X ₃₃			21	22

∂e	$\partial E_{h_{11}} \partial h_{11}$	$\partial E_{h_{12}} \partial h_{12}$	$\partial E_{h_{21}} \partial h_{21}$	$\partial E_{h_{22}} \; \partial h_{22}$
∂W_{11}	$\partial h_{11} \partial W_{11}$	$\partial h_{12} \ \partial W_{11}$	$\partial h_{21} \ \partial W_{11}$	$\partial h_{22} \ \partial W_{11}$
∂E	$\partial E_{h_{11}} \partial h_{11}$	$\partial E_{h_{12}} \partial h_{12}$	$\partial E_{h_{21}} \partial h_{21}$	$\partial E_{h_{22}} \; \partial h_{22}$
∂W_{12}	$\partial h_{11} \partial W_{12}$	$\partial h_{12} \ \partial W_{12}$	$\partial \mathbf{h}_{21} \ \partial \mathbf{W}_{12}$	$\partial h_{22} \ \partial W_{12}$
∂e	$\frac{\partial E_{h_{11}}}{\partial h_{11}}$	$\frac{\partial E_{h_{12}}}{\partial h_{12}}$	$\partial E_{h_{21}} \partial h_{21}$	$\partial E_{h_{22}} \; \partial h_{22}$
-				
∂W_{21}	$\partial h_{11} \partial W_{21}$	$\partial h_{12} \partial W_{21}$	$\partial \mathbf{h}_{21} \partial \mathbf{W}_{21}$	$\partial h_{22} \ \partial W_{21}$
$\frac{\partial W_{21}}{\partial E} =$	$\frac{\partial \mathbf{h}_{11}}{\partial \mathbf{E}_{\mathbf{h}_{11}}} \frac{\partial \mathbf{W}_{21}}{\partial \mathbf{h}_{11}} +$	$\frac{\partial h_{12}}{\partial E_{h_{12}}} \frac{\partial W_{21}}{\partial h_{12}} +$	$\frac{\partial \mathbf{h}_{21}}{\partial \mathbf{E}_{\mathbf{h}_{21}}} \frac{\partial \mathbf{W}_{21}}{\partial \mathbf{h}_{21}} + \frac{\partial \mathbf{E}_{\mathbf{h}_{21}}}{\partial \mathbf{h}_{21}} + \frac{\partial \mathbf{E}_{\mathbf{h}_{21$	$\frac{\partial h_{22}}{\partial E_{h_{22}}} \frac{\partial W_{21}}{\partial h_{22}}$

► Update the wights W

$$\begin{split} \mathbb{W}_{11}^{(\text{next})} &= \mathbb{W}_{11} - \eta \frac{\partial \mathbb{E}}{\partial \mathbb{W}_{11}} \\ \mathbb{W}_{12}^{(\text{next})} &= \mathbb{W}_{12} - \eta \frac{\partial \mathbb{E}}{\partial \mathbb{W}_{12}} \\ \mathbb{W}_{21}^{(\text{next})} &= \mathbb{W}_{21} - \eta \frac{\partial \mathbb{E}}{\partial \mathbb{W}_{21}} \\ \mathbb{W}_{22}^{(\text{next})} &= \mathbb{W}_{22} - \eta \frac{\partial \mathbb{E}}{\partial \mathbb{W}_{22}} \end{split}$$

Summary

- Receptive fields and filters
- Convolution operation
- Padding and strides
- Pooling layer
- ► Flattening, dropout, dense

- Tensorflow and Deep Learning without a PhD https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
- ► Ian Goodfellow et al., Deep Learning (Ch. 9)
- ► Aurélien Géron, Hands-On Machine Learning (Ch. 14)

Questions?