
Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ Transformers and Attention:
ID2223 Scalable Machine 
Learning and Deep Learning

Karl Fredrik Erliksson
Industrial PhD Candidate,
KTH and Peltarion

November 25, 2020

1



Peltarion - the operational AI platform

Roadmap

2

05

Distillation and 
Practical Example

04

BERT

03

Transformers
Step-by-Step

02

From RNNs to 
Transformers

01

Contextualized 
Embeddings



Peltarion - the operational AI platform

Material based on:

● Christoffer Manning’s NLP Lectures at Stanford

● The Illustrated Transformer by Jay Alammar 

● Slides from Jacob Devlin

● Self-attention Video from Peltarion

Acknowledgements

3

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture12.pdf
http://jalammar.github.io/illustrated-transformer/
http://web.stanford.edu/class/cs224n/slides/Jacob_Devlin_BERT.pdf
https://peltarion.com/blog/data-science/self-attention-video


Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ Contextualized
Embeddings

01

4



Peltarion - the operational AI platform

● Word embeddings are
the basis of NLP

● Popular embeddings like
GloVe and Word2Vec are 
pre-trained on large text 
corpuses based on 
co-occurrence statistics

● “A word is characterized by the 
company it keeps” [Firth, 1957]

Background to Natural Language Processing (NLP)

5

[Peltarion, 2020]



Peltarion - the operational AI platform

Word Embeddings

6[Peltarion, 2020]



Peltarion - the operational AI platform

Word Embeddings

7

Problem: Word embeddings are context-free

[Peltarion, 2020]



Peltarion - the operational AI platform

Word Embeddings

8

Problem: Word embeddings are context-free

[Peltarion, 2020]



Peltarion - the operational AI platform

Word Embeddings

9

Problem: Word embeddings are context-free
Solution: Create contextualized representation

[Peltarion, 2020]



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ From RNNs to
Transformers

02

10



Peltarion - the operational AI platform

● Sequential computations prevents parallelization
● Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal 

with long range dependencies
● Attention gives us access to any state… Maybe we don’t need the costly 

recursion? 🤔
● Then NLP can have deep models, solves our computer vision envy!

Problems with RNNs - Motivation for Transformers

11



Peltarion - the operational AI platform

● Sequence-to-sequence model for 
Machine Translation

● Encoder-decoder architecture

● Multi-headed self-attention
○ Models context and no

locality bias

Attention is all you need! [Vaswani, 2017]

12[Vaswani et al., 2017]



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ Transformers
Step-by-Step

03

13



Peltarion - the operational AI platform

Understanding the Transformer: Step-by-Step

14[Alammar, 2018]



Peltarion - the operational AI platform

Understanding the Transformer: Step-by-Step

15

No recursion, instead 
stacking encoder and 
decoder blocks

● Originally: 6 layers
● BERT base: 12 layers
● BERT large: 24 layers
● GPT2-XL: 48 layers
● GPT3: 96 layers

[Alammar, 2018]



Peltarion - the operational AI platform

The Encoder Block

16[Alammar, 2018]



Peltarion - the operational AI platform

The Encoder and Decoder Blocks

17[Alammar, 2018]



Peltarion - the operational AI platform

Mimics the retrieval of a value vi for a query q based on a key ki in a database, but in 
a probabilistic fashion

Attention Preliminaries

18

Query q Value vi

Database



Peltarion - the operational AI platform

● Queries, keys and values are vectors
● Output is a weighted sum of the values
● Weights are are computed as the scaled dot-product (similarity) between 

the query and the keys

Dot-Product Attention

19

● Self-attention: Let the word embeddings be the queries, keys and values, i.e. 
let the words select each other 

● Can stack multiple queries into a matrix Q

Output is a 
row-vector

Output is again 
a matrix



Peltarion - the operational AI platform

Self-Attention Mechanism

20[Alammar, 2018]



Peltarion - the operational AI platform

Self-Attention Mechanism

21[Alammar, 2018]



Peltarion - the operational AI platform

Self-Attention Mechanism in Matrix Notation

22[Alammar, 2018]



Peltarion - the operational AI platform

Multi-Headed Self-Attention

23[Alammar, 2018]



Peltarion - the operational AI platform

Multi-Headed Self-Attention

24[Alammar, 2018]



Peltarion - the operational AI platform

Self-Attention: Putting It All Together

25[Alammar, 2018]



Peltarion - the operational AI platform

Attention visualized

26



Peltarion - the operational AI platform

The Full Encoder Block

27

Encoder block consisting of:

● Multi-headed self-attention

● Feedforward NN (FC 2 layers)

● Skip connections

● Layer normalization - Similar to 
batch normalization but 
computed over features 
(words/tokens) for a single 
sample

[Alammar, 2018]



Peltarion - the operational AI platform

Encoder-Decoder Architecture - Small Example

28[Alammar, 2018]



Peltarion - the operational AI platform

Positional Encodings

29

● Attention mechanism has no 
locality bias - no notion of 
word order

● Add positional encodings to 
input embeddings to let 
model learn relative 
positioning 

[Alammar, 2018]



Peltarion - the operational AI platform

Positional Encodings

30[Kazemnejad, 2019]



Peltarion - the operational AI platform

Let’s start the encoding!

31[Alammar, 2018]



Peltarion - the operational AI platform

Decoding procedure

32[Alammar, 2018]



Peltarion - the operational AI platform

● The output from the decoder is 
passed through a final fully 
connected linear layer with a 
softmax activation function

● Produces a probability distribution 
over the pre-defined vocabulary 
of output words (tokens)

● Greedy decoding picks the word 
with the highest probability at 
each time step

Producing the output text

33[Alammar, 2018]



Peltarion - the operational AI platform

Training Objective

34[Alammar, 2018]



Peltarion - the operational AI platform

Complexity Comparison

35[Vaswani et al., 2017]



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ BERT04

36



Peltarion - the operational AI platform

Bidirectional Encoder Representations 
from Transformers

● Self-supervised pre-training of 
Transformers encoder for language 
understanding

● Fine-tuning for specific downstream 
task 

BERT

37



Peltarion - the operational AI platform

BERT Training Procedure

38[Devlin et al., 2018]



Peltarion - the operational AI platform

Masked Language Modelling

Next Sentence Prediction

BERT Training Objectives

39[Devlin et al., 2018]



Peltarion - the operational AI platform

BERT Fine-Tuning Examples

40[Devlin et al., 2018]

Sentence
Classification

Question
Answering

Named Entity
Recognition



Peltarion - the operational AI platform

● Scaling up models size and amount of training data helps a lot
● Best model is 11B (!!) parameters
● Exact pre-training objective (MLM, NSP, corruption) doesn’t matter too much
● SuperGLUE benchmark:

Exploring the Limits of Transfer Learning (T5)

41[Raffel et al., 2019]



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ Practical Examples05

42



Peltarion - the operational AI platform

BERT in low-latency production settings

43[Devlin, 2020]



Peltarion - the operational AI platform

Distillation

44

[Turc, 2020]

[Devlin, 2020]

● Modern pre-trained language models are huge and very computationally 
expensive

● How are these companies applying them to low-latency applications?
● Distillation!

○ Train SOTA teacher model
(pre-training + fine-tuning)

○ Train smaller student model that
mimics the teacher’s output on a
large dataset on unlabeled data

● Why does it work so well?



Peltarion - the operational AI platform

● The HuggingFace Library contains a 
majority of the recent pre-trained 
State-of-the-art NLP models, as well as 
over 4 000 community uploaded 
models

● Works with both TensorFlow and 
PyTorch

Transformers in TensorFlow using HuggingFace 🤗

45



Peltarion - the operational AI platform

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

Transformers in TensorFlow using HuggingFace 🤗

46



Peltarion - the operational AI platform

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

Transformers in TensorFlow using HuggingFace 🤗

47



Peltarion - the operational AI platform

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

Transformers in TensorFlow using HuggingFace 🤗

48



Peltarion - the operational AI platform

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

Transformers in TensorFlow using HuggingFace 🤗

49



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

/ Wrap Up06

50



Peltarion - the operational AI platform

● Transformers have blown other 
architectures out of the water for NLP

● Get rid of recurrence and rely on 
self-attention

● NLP pre-training using Masked 
Language Modelling

● Most recent improvements using 
larger models and more data

● Distillation can make model serving 
and inference more tractable

Summary

51



Peltarion
Holländargatan 17
SE-111 60 Stockholm
Sweden

Thanks
/November 25, 2020

Karl Fredrik Erliksson
PhD Candidate, KTH and Peltarion
kferl@kth.se

52

Questions?


