Autoencoders and Restricted Boltzmann Machines

Amir H. Payberah
payberah@kth.se
2020-12-01

The Course Web Page

https://id2223kth.github.io

 https://tinyurl.com/y6kcpmzy
Where Are We?

Deep Learning		
Autoencoder	GAN	Distributed Learning
CNN	RNN	Transformer
Deep Feedforward Network		Training Feedforward Network
TensorFlow		
Machine Learning		
Regression	Classification	More Supervised Learning
Spark ML		

Where Are We?

Deep Learning

Autoencoder	GAN
CNN	RNN
Deep Feedforward Network	Training Feedforward Network
TensorFlow	
Transformer	

Machine Learning	
Regression	Classification
	More Supervised Learning
Spark ML	

Let's Start With An Example

- Which of them is easier to memorize?
- Seq1: $40,27,25,36,81,57,10,73,19,68$
- Seq2: 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20

$$
\begin{gathered}
\text { Seq1 : 40, 27, 25, 36, 81, 57, 10, 73, 19, } 68 \\
\text { Seq2 : 50, } 25,76,38,19,58,29,88,44,22,11,34,17,52,26,13,40,20
\end{gathered}
$$

- Seq1 is shorter, so it should be easier.
- But, Seq2 follows two simple rules:
- Even numbers are followed by their half.
- Odd numbers are followed by their triple plus one.
- You don't need pattern if you could quickly and easily memorize very long sequences
- But, it is hard to memorize long sequences that makes it useful to recognize patterns.
- 1970, W. Chase and H. Simon
- They observed that expert chess players were able to memorize the positions of all the pieces in a game by looking at the board for just 5 seconds.

- This was only the case when the pieces were placed in realistic positions, not when the pieces were placed randomly.
- Chess experts don't have a much better memory than you and I.
- They just see chess patterns more easily due to their experience with the game.
- Patterns helps them store information efficiently.

Autoencoders

Autoencoders (1/5)

- Just like the chess players in this memory experiment.
- An autoencoder looks at the inputs, converts them to an efficient internal representation, and then spits out something that looks very close to the inputs.

Autoencoders (2/5)

- The same architecture as a Multi-Layer Perceptron (MLP).
- Except that the number of neurons in the output layer must be equal to the number of inputs.

Autoencoders (3/5)

- An autoencoder is always composed of two parts.
- An encoder (recognition network), $\mathbf{h}=f(\mathbf{x})$ Converts the inputs to an internal representation.
- A decoder (generative network), $\mathbf{r}=\mathrm{g}(\mathbf{h})$ Converts the internal representation to the outputs.
- If an autoencoder learns to set $\mathrm{g}(\mathrm{f}(\mathbf{x}))=\mathbf{x}$ everywhere, it is not especially useful, why?

Autoencoders (4/5)

- Autoencoders are designed to be unable to learn to copy perfectly.
- The models are forced to prioritize which aspects of the input should be copied, they often learn useful properties of the data.

Autoencoders (5/5)

- Autoencoders are neural networks capable of learning efficient representations of the input data (called codings) without any supervision.
- Dimension reduction: these codings typically have a much lower dimensionality than the input data.

Different Types of Autoencoders

- Stacked autoencoders
- Denoising autoencoders
- Sparse autoencoders
- Variational autoencoders
- Stacked autoencoders
- Denoising autoencoders
- Sparse autoencoders
- Variational autoencoders

Stacked Autoencoders (1/3)

- Stacked autoencoder: autoencoders with multiple hidden layers.
- Adding more layers helps the autoencoder learn more complex codings.
- The architecture is typically symmetrical with regards to the central hidden layer.

Stacked Autoencoders (2/3)

- In a symmetric architecture, we can tie the weights of the decoder layers to the weights of the encoder layers.
- In a network with N layers, the decoder layer weights can be defined as $\mathrm{W}_{\mathrm{N}-1+1}=\mathrm{W}_{1}^{\mathrm{T}}$, with $l=1,2, \cdots, \frac{N}{2}$.
- This halves the number of weights in the model, speeding up training and limiting the risk of overfitting.

Stacked Autoencoders (3/3)

```
stacked_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="relu"),
    keras.layers.Dense(30, activation="relu"),
])
stacked_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="relu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
model = keras.models.Sequential([stacked_encoder, stacked_decoder])
```


Different Types of Autoencoders

- Stacked autoencoders
- Denoising autoencoders
- Sparse autoencoders
- Variational autoencoders

Denoising Autoencoders (1/4)

- One way to force the autoencoder to learn useful features is to add noise to its inputs, training it to recover the original noise-free inputs.
- This prevents the autoencoder from trivially copying its inputs to its outputs, so it ends up having to find patterns in the data.

Denoising Autoencoders (2/4)

- The noise can be pure Gaussian noise added to the inputs, or it can be randomly switched off inputs, just like in dropout.

Denoising Autoencoders (3/4)

```
denoising_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(100, activation="relu"),
    keras.layers.Dense(30, activation="relu")
])
denoising_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="relu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
model = keras.models.Sequential([denoising_encoder, denoising_decoder])
```


Denoising Autoencoders (4/4)

```
denoising_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.GaussianNoise(0.2),
    keras.layers.Dense(100, activation="relu"),
    keras.layers.Dense(30, activation="relu")
])
denoising_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="relu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
model = keras.models.Sequential([denoising_encoder, denoising_decoder])
```

- Stacked autoencoders
- Denoising autoencoders
- Sparse autoencoders
- Variational autoencoders

Sparse Autoencoders (1/2)

- Adding an appropriate term to the cost function to push the autoencoder to reducing the number of active neurons in the coding layer.
- This forces the autoencoder to represent each input as a combination of a small number of activations.
- As a result, each neuron in the coding layer typically ends up representing a useful feature.

Sparse Autoencoders (2/2)

```
sparse_l1_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(300, activation="sigmoid", activity_regularizer=keras.regularizers.l1(1e-3))
])
sparse_l1_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[300]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
model = keras.models.Sequential([sparse_l1_encoder, sparse_l1_decoder])
```

- Stacked autoencoders
- Denoising autoencoders
- Sparse autoencoders
- Variational autoencoders

Variational Autoencoders (1/6)

- Variational autoencoders are probabilistic autoencoders.
- Their outputs are partly determined by chance, even after training.
- As opposed to denoising autoencoders, which use randomness only during training.
- They are generative autoencoders, meaning that they can generate new instances that look like they were sampled from the training set.

Variational Autoencoders (2/6)

- Instead of directly producing a coding for a given input, the encoder produces a mean coding μ and a standard deviation σ.
- The actual coding is then sampled randomly from a Gaussian distribution with mean μ and standard deviation σ.
- After that the decoder just decodes the sampled coding normally.

Variational Autoencoders (3/6)

- The cost function is composed of two parts.
- 1. the usual reconstruction loss.
- Pushes the autoencoder to reproduce its inputs.
- Using cross-entropy.
- 2. the latent loss
- Pushes the autoencoder to have codings that look as though they were sampled from a simple Gaussian distribution.
- Using the KL divergence between the target distribution (the Gaussian distribution) and the actual distribution of the codings.
- latent_loss $=-\frac{1}{2} \sum_{1}^{K}\left(1+\log \left(\sigma_{i}^{2}\right)-\sigma_{i}^{2}-\mu_{i}^{2}\right)$

Variational Autoencoders (4/6)

- Encoder part

```
inputs = keras.layers.Input(shape=[28, 28])
z = keras.layers.Flatten()(inputs)
z = keras.layers.Dense(150, activation="relu")(z)
z = keras.layers.Dense(100, activation="relu")(z)
codings_mean = keras.layers.Dense(10)(z)
codings_log_var = keras.layers.Dense(10)(z)
codings = Sampling()([codings_mean, codings_log_var]) # normal distribution
variational_encoder = keras.models.Model(inputs=[inputs], outputs=[codings])
```


Variational Autoencoders (5/6)

- Decoder part

```
decoder_inputs = keras.layers.Input(shape=[codings_size])
x = keras.layers.Dense(100, activation="relu")(decoder_inputs)
x = keras.layers.Dense(150, activation="relu")(x)
x = keras.layers.Dense(28 * 28, activation="sigmoid")(x)
outputs = keras.layers.Reshape([28, 28])(x)
variational_decoder = keras.models.Model(inputs=[decoder_inputs], outputs=[outputs])
```


Variational Autoencoders (6/6)

```
codings = variational_encoder(inputs)
reconstructions = variational_decoder(codings)
model = keras.models.Model(inputs=[inputs], outputs=[reconstructions])
latent_loss = -0.5 * K.sum(1 + codings_log_var - K.exp(codings_log_var)
    - K.square(codings_mean), axis=-1)
model.add_loss(K.mean(latent_loss) / 784.)
```


Restricted Boltzmann Machines

Restricted Boltzmann Machines

- A Restricted Boltzmann Machine (RBM) is a stochastic neural network.
- Stochastic meaning these activations have a probabilistic element, instead of deterministic functions, e.g., logistic or ReLU.
- The neurons form a bipartite graph:
- One visible layer and one hidden layer.
- A symmetric connection between the two layers.
- There are no connections between neurons within a layer.

Let's Start With An Example

RBM Example (1/11)

- We have a set of six movies, and we ask users to tell us which ones they want to watch.
- We want to learn two latent neurons (hidden neurons) underlying movie preferences, e.g., SF/fantasy and Oscar winners

RBM Example (2/11)

- Our RBM would look like the following.

RBM Example (3/11)

- Alice: $(H P=1$, Avatar $=1$, LOTR $=1$, Glad=0, Titan $=0$, Sep $=0)$, Big SF fan.
- Bob: $(H P=1$, Avatar=0, LOTR=1, Glad=0, Titan=0, Sep=0), SF fan, but not Avatar.

- David: (HP=0, Avat=0, LOTR=1, Glad=1, Titan=1, Sep=1), Big Oscar winners fan.
- Eric: $(H P=0$, Avat $=0$, LOTR $=1, G l a d=1$, Titan $=0, S e p=1)$, Oscar winners fan, but not Titanic.
- Fred: $(H P=0$, Avat $=0$, LOTR $=1$, Glad $=1$, Titan $=1$, Sep $=1)$, Big Oscar winners fan.

RBM Example (4/11)

- Assume the given input x_{i} is the 0 or 1 for each visible neuron v_{i}.
- 1: like a movie, and 0: dislike a movie
- Compute the activation energy at hidden neuron h_{j} :

$$
\mathrm{a}\left(\mathrm{~h}_{\mathrm{j}}\right)=\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}}
$$

RBM Example (5/11)

- For each hidden neuron h_{j}, we compute the probability $p\left(h_{j}\right)$.

$$
\begin{gathered}
\mathrm{a}\left(\mathrm{~h}_{\mathrm{j}}\right)=\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}} \\
\mathrm{p}\left(\mathrm{~h}_{\mathrm{j}}\right)=\operatorname{sigmoid}\left(\mathrm{a}\left(\mathrm{~h}_{\mathrm{j}}\right)\right)=\frac{1}{1+\mathrm{e}^{-\mathrm{a}\left(\mathrm{~h}_{\mathrm{j}}\right)}}
\end{gathered}
$$

- We turn on the hidden neuron h_{j} with the probability $p\left(h_{j}\right)$, and turn it off with probability $1-\mathrm{p}\left(\mathrm{h}_{\mathrm{j}}\right)$.

RBM Example (6/11)

- Declaring that you like Harry Potter, Avatar, and LOTR, doesn't guarantee that the SF/fantasy hidden neuron will turn on.
- But it will turn on with a high probability.
- In reality, if you want to watch all three of those movies makes us highly suspect you like SF/fantasy in general.
- But there's a small chance you like them for other reasons.

RBM Example (7/11)

- Conversely, if we know that one person likes SF/fantasy (so that the SF/fantasy neuron is on)
- We can ask the RBM to generate a set of movie recommendations.
- The hidden neurons send messages to the visible (movie) neurons, telling them to update their states.

$$
\begin{gathered}
\mathrm{a}\left(\mathrm{v}_{\mathrm{i}}\right)=\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{ij}} \mathrm{~h}_{\mathrm{j}} \\
\mathrm{p}\left(\mathrm{v}_{\mathrm{i}}\right)=\operatorname{sigmoid}\left(\mathrm{a}\left(\mathrm{v}_{\mathrm{i}}\right)\right)=\frac{1}{1+\mathrm{e}^{-\mathrm{a}\left(\mathrm{v}_{\mathrm{i}}\right)}}
\end{gathered}
$$

- Being on the SF/fantasy neuron doesn't guarantee that we'll always recommend all three of Harry Potter, Avatar, and LOTR.
- For example not everyone who likes science fiction liked Avatar.

RBM Example (8/11)

- How do we learn the connection weights w_{ij} in our network?
- Assume, as an input we have a bunch of binary vectors \mathbf{x} with six elements corresponding to a user's movie preferences.
- We do the following steps in each epoch:
- 1. Take a training instance \mathbf{x} and set the states of the visible neurons to these preferences.

RBM Example (9/11)

- 2. Update the states of the hidden neurons.
- Compute $a\left(h_{j}\right)=\sum_{i} W_{i j} v_{i}$ for each hidden neuron h_{j}.
- Set h_{j} to 1 with probability $p\left(h_{j}\right)=\operatorname{sigmoid}\left(a\left(h_{j}\right)\right)=\frac{1}{1+e^{-2\left(h_{j}\right)}}$
- 3. For each edge $e_{i j}$, compute positive $\left(e_{i j}\right)=v_{i} \times h_{j}$
- I.e., for each pair of neurons, measure whether they are both on.

RBM Example (10/11)

- 4. Update the state of the visible neurons in a similar manner.
- We denote the updated visible neurons with $\mathrm{v}_{\mathrm{i}}^{\prime}$.
- Compute $a\left(v_{i}^{\prime}\right)=\sum_{j} w_{i j} h_{j}$ for each visible neuron v_{i}^{\prime}.
- Set $\mathrm{v}_{\mathrm{i}}^{\prime}$ to 1 with probability $\mathrm{p}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)=\operatorname{sigmoid}\left(\mathrm{a}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)\right)=\frac{1}{1+\mathrm{e}^{-\mathrm{ag}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)}}$
- 5. Update the hidden neurons again similar to step 2. We denote the updated hidden neurons with $\mathrm{h}_{\mathrm{j}}^{\prime}$.
- 6. For each edge $e_{i j}$, compute negative $\left(e_{i j}\right)=v_{i}^{\prime} \times h_{j}^{\prime}$

RBM Example (11/11)

- 7. Update the weight of each edge e_{ij}.

$$
\mathrm{w}_{\mathrm{ij}}=\mathrm{w}_{\mathrm{ij}}+\eta\left(\text { positive }\left(\mathrm{e}_{\mathrm{ij}}\right)-\text { negative }\left(\mathrm{e}_{\mathrm{ij}}\right)\right)
$$

- 8. Repeat over all training examples.
- 9. Continue until the error between the training examples and their reconstructions falls below some threshold or we reach some maximum number of epochs.

RBM Training (1/2)

- Step 1, Gibbs sampling: what we have done in steps 1-6.
- Given an input vector \mathbf{v}, compute $\mathrm{p}(\mathbf{h} \mid \mathbf{v})$.
- Knowing the hidden values \mathbf{h}, we use $\mathrm{p}(\mathbf{v} \mid \mathbf{h})$ for prediction of new input values \mathbf{v}.
- This process is repeated k times.

RBM Training (2/2)

- Step 2, contrastive divergence: what we have done in step 7.
- Just a fancy name for approximate gradient descent.

$$
\mathbf{w}=\mathbf{w}+\eta(\text { positive }(\mathbf{e})-\text { negative }(\mathbf{e}))
$$

More Details about RBM

Energy-based Model (1/3)

- Energy a quantitative property of physics.
- E.g., gravitational energy describes the potential energy a body with mass has in relation to another massive object due to gravity.

Energy-based Model (2/3)

- One purpose of deep learning models is to encode dependencies between variables.
- The capturing of dependencies happen through associating of a scalar energy to each state of the variables.
- Serves as a measure of compatibility.
- A high energy means a bad compatibility.
- An energy based model tries always to minimize a predefined energy function.

Energy-based Model (3/3)

- The energy function for the RBMs is defined as:

$$
E(\mathbf{v}, \mathbf{h})=-\left(\sum_{i j} W_{i j} v_{i} h_{j}+\sum_{i} b_{i} v_{i}+\sum_{j} c_{j} h_{j}\right)
$$

- \mathbf{v} and \mathbf{h} represent the visible and hidden units, respectively.
- w represents the weights connecting visible and hidden units.
- \mathbf{b} and \mathbf{c} are the biases of the visible and hidden layers, respectively.

RBM is a Probabilistic Model $(1 / 2)$

- The probability of a certain state of \mathbf{v} and \mathbf{h} :

$$
p(\mathbf{v}, \mathbf{h})=\frac{e^{-E(v, \mathbf{h})}}{\sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}}
$$

- In physics, the joint distribution $\mathrm{p}(\mathbf{v}, \mathbf{h})$ is known as the Boltzmann Distribution or Gibbs Distribution.
- At each point in time the RBM is in a certain state.
- The state refers to the values of neurons in the visible and hidden layers \mathbf{v} and \mathbf{h}.

RBM is a Probabilistic Model $(2 / 2)$

- It is difficult to calculate the joint probability due to the huge number of possible combination of \mathbf{v} and \mathbf{h}.

$$
p(\mathbf{v}, \mathbf{h})=\frac{e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}}
$$

- Much easier is the calculation of the conditional probabilities of state \mathbf{h} given the state \mathbf{v} and vice versa (Gibbs sampling) $p(\mathbf{h} \mid \mathbf{v})=\Pi_{i} p\left(h_{i} \mid \mathbf{v}\right)$ $p(\mathbf{v} \mid \mathbf{h})=\Pi_{j} p\left(v_{j} \mid \mathbf{h}\right)$

Learning in Boltzmann Machines (1/2)

- RBMs try to learn a probability distribution from the data they are given.
- Given a training set of state vectors \mathbf{v}, learning consists of finding parameters w of $\mathrm{p}(\mathbf{v}, \mathbf{h})$, in a way that the training vectors have high probability $\mathrm{p}(\mathbf{v})$.

$$
p(\mathbf{v} \mid \mathbf{h})=\frac{\sum_{\mathbf{h}} \mathrm{e}^{-E(v, \mathbf{h})}}{\sum_{\mathbf{v}, \mathbf{h}} \mathrm{e}^{-E(v, \mathbf{h})}}
$$

- Use the maximum-likelihood estimation.
- For a model of the form $\mathrm{p}(\mathbf{v})$ with parameters \mathbf{w}, the log-likelihood given a single training example \mathbf{v} is:

$$
\log p(\mathbf{v} \mid \mathbf{h})=\log \frac{\sum_{\mathbf{h}} e^{-E(v, \mathbf{h})}}{\sum_{\mathbf{v}, \mathbf{h}} e^{-E(v, \mathbf{h})}}=\log \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}-\log \sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}
$$

Learning in Boltzmann Machines (2/2)

- The log-likelihood gradients for an RBM with binary units:

$$
\frac{\partial \log \mathrm{p}(\mathbf{v} \mid \mathbf{h})}{\partial \mathrm{w}_{i j}}=\operatorname{positive}\left(\mathrm{e}_{\mathrm{i} j}\right)-\operatorname{negative}\left(\mathrm{e}_{\mathrm{i} j}\right)
$$

- Then, we can update the weight \mathbf{w} as follows:

$$
w_{i j}^{(\text {next })}=w_{i j}+\eta\left(\text { positive }\left(e_{i j}\right)-\text { negative }\left(e_{i j}\right)\right)
$$

Summary

Summary

- Autoencoders
- Stacked autoencoders
- Denoising autoencoders
- Variational autoencoders
- Restricted Boltzmann Machine
- Gibbs sampling
- Contrastive divergence
- Ian Goodfellow et al., Deep Learning (Ch. 14, 20)
- Aurélien Géron, Hands-On Machine Learning (Ch. 17)

Questions?

