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Training Deep Neural Networks

I Computationally intensive

I Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]
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Why?

I Massive amount of training dataset

I Large number of parameters
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Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]
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Scale Matters
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Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (2/4)

I k devices

I Ji(w) = 1
|βi|
∑

x∈βi l(x,w), ∀i = 1, 2, · · · , k

I Gi(w, βi) = 1
|βi|
∑

x∈βi ∇l(w, x)

I Gi(w, βi): the local estimate of the gradient of the loss function ∇Ji(w).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (3/4)

I Compute the gradients aggregation (e.g., mean of the gradients).

I F(G1, · · · , Gk) = 1
k

∑k
i=1 Gi(w, βi)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization (4/4)

I Update the model.

I w := w − ηF(G1, · · · , Gk)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Data Parallelization Design Issues

I The aggregation algorithm

I Communication synchronization and frequency

I Communication compression

I Parallelism of computations and communications
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The Aggregation Algorithm
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The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip
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Aggregation - Centralized - Parameter Server

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Aggregation - Distributed - All-Reduce

I Mirror all the model parameters across all workers (no PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

19 / 72



Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

19 / 72



Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

19 / 72



Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]
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AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce
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AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

24 / 72



AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

24 / 72



AllReduce Implementation - Master-Worker AllReduce

I Selecting one process as a master, gather all arrays into the master.

I Perform reduction operations locally in the master.

I Distribute the result to the other processes.

I The master becomes a bottleneck (not scalable).

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Other implementations

I Some try to minimize bandwidth.

I Some try to minimize latency.

[Zhao H. et al., arXiv:1312.3020, 2013]
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AllReduce Implementation - Ring-AllReduce (1/6)

I The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase
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AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1)%m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (3/6)

I In the first share-reduce step, process A sends a0 to process B.

I Process B sends b1 to process C, etc.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (5/6)

I The share-reduce phase finishes when each process holds the complete reduction of
chunk i.

I At this point each process holds a part of the end result.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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AllReduce Implementation - Ring-AllReduce (6/6)

I The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

I This consolidates the result of each chunk in every process.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]
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Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce

• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2( N
m
× (m− 1)).
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Communication Synchronization and Frequency
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Synchronization

I When to synchronize the parameters among the parallel workers?
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Communication Synchronization (1/2)

I Synchronizing the model replicas in data-parallel training requires communication
• between workers, in allreduce
• between workers and parameter servers, in the centralized architecture

I The communication synchronization decides how frequently all local models are syn-
chronized with others.
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Communication Synchronization (2/2)

I It will influence:
• The communication traffic
• The performance
• The convergence of model training

I There is a trade-off between the communication traffic and the convergence.
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Reducing Synchronization Overhead

I Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.
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Communication Synchronization Models

I Synchronous

I Stale-synchronous

I Asynchronous

I Local SGD

39 / 72



Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Synchronization - Stale Synchronous (1/2)

I Alleviate the straggler problem without losing synchronization.

I The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

I Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Synchronization - Asynchronous (1/2)

I It completely eliminates the synchronization.

I Each work transmits its gradients to the PS after it calculates the gradients.

I The PS updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Synchronization - Asynchronous (2/2)

I wt+1 := wt − η
∑n

i=1 Gi,t−τk,i

I τk,i is the time delay between the moment when worker i calculates the gradient at
the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Synchronization - Local SGD

I All workers run several iterations, and then averages all local models into the newest
global model.

I If IT represents the synchronization timestamps, then:

wi,t+1 =

{
wi,t − ηGi,t if t + 1 /∈ IT
wi,t − η 1n

∑n
i=1 Gi,t if t + 1 ∈ IT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Compression
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Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

47 / 72



Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

47 / 72



Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

47 / 72



Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

47 / 72



Communication Compression - Quantization

I Useing lower bits to represent the data.

I The gradients are of low precision.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Compression - Sparsification

I Reducing the number of elements that are transmitted at each iteration.

I Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

I E.g., the zero-valued elements are no need to transmit.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Parallelism of Computations and Communications
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Parallelism of Computations and Communications (1/3)

I The layer-wise structure of deep models makes it possible to parallels the communi-
cation and computing tasks.

I Optimizing the order of computation and communication such that the communica-
tion cost can be minimized
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Parallelism of Computations and Communications (2/3)

I Wait-free backward propagation (WFBP)

I Merged-gradient WFBP (MG-WFBP)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Parallelism of Computations and Communications (3/3)

Wait-free backward propagation (WFBP)

Merged-gradient WFBP (MG-WFBP)
[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]
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Distributed SGD and Batch Size
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Batch Size vs. Number of GPUs

I w← w − η 1
|β|
∑

x∈β∇l(x,w)

I The more samples processed during each batch, the faster a training job will complete.

I E.g., ImageNet + ResNet-50

[https://medium.com/@emwatz/lessons-for-improving-training-performance-part-1-b5efd0f0dcea]
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Batch Size vs. Time to Accuracy

I ResNet-32 on Titan X GPU

[Peter Pietzuch - Imperial College London]
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Batch Size vs. Validation Error

[Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018]
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CROSSBOW: Scaling Deep Learning with
Small Batch Sizes on Multi-GPU Servers
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I How to design a deep learning system that scales training with multiple GPUs, even
when the preferred batch size is small?
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Crossbow

[Peter Pietzuch - Imperial College London]
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Problem: Small Batches

I Small batch sizes underutilise GPUs.

I One batch per GPU: not enough data and instruction parallelism for every operator.

[Peter Pietzuch - Imperial College London]
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Idea: Multiple Replicas Per GPU

I Train multiple model replicas per GPU.

I A learner is an entity that trains a single model replica independently with a given
batch size.

[Peter Pietzuch - Imperial College London]

I But, now we must synchronise a large number of model replicas.
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Problem: Similiar Starting Point

I All learners always start from the same point.

I Limited exploration of parameter space.

[Peter Pietzuch - Imperial College London]
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Idea: Independent Replicas

I Maintain independent model replicas.

I Increased exploration of space through parallelism.

I Each model replica uses small batch size.

[Peter Pietzuch - Imperial College London]
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Crossbow: Synchronous Model Averaging

I Allow learners to diverge, but correct trajectories based on average model.

I Accelerate average model trajectory with momentum to find minima faster.

[Peter Pietzuch - Imperial College London]
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GPUs with Synchronous Model Averaging

I Synchronously apply corrections to model replicas.

[Peter Pietzuch - Imperial College London]
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GPUs with Synchronous Model Averaging

I Ensures consistent view of average model.

I Takes GPU bandwidth into account during synchronisation.

[Peter Pietzuch - Imperial College London]

67 / 72



Crossbow

[Peter Pietzuch - Imperial College London]
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Summary
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Summary

I Data-parallel

I The aggregation algorithm

I Communication synchronization

I Communication compression

I Parallelism of computations and communications

I Batch Size
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Questions?
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