Distributed Learning - Data Parallelization

Amir H. Payberah
payberah@kth.se
2020-12-08

The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/y6kcpmzy

https://tinyurl.com/y6kcpmzy

Where Are We?

Deep Learning

Distrbuted Learning

Deep Feedforward Network || Training Feedforward Network

Machine Learning

| Regression ” Classification IIMore Supervised Learning|

Spark ML

Where Are We?

Deep Learning

Deep Feedforward Network [Training Feedforward Network

Machine Learning

I Regression ” Classification IIMore Supervised Learningl

Spark ML

Training Deep Neural Networks

» Computationally intensive

> Time consuming

i
Convolution
AvgPool
MaxPool
Coneat
@ Dropout
@ Fully connected
& Softmax

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.pngl

» Massive amount of training dataset

» Large number of parameters

SEE, T TOLD You
THAT BIG DATA
WAS TOO SCARY

—

Jﬁ\‘ ne

\/J‘Ol’k{of(.?. Ir\novm*‘non TL\O\T ‘W’GrkS'M
KEONOS. (oM

Accuracy vs. Data/Model Size

1980s and 1990s
A

Accuracy neural networks

— other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

1980s and 1990s
A

more

Accuracy compute neural networks

other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

Now

A more

Accuracy compute neural networks

1
other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Scale Matters

Scalabill

Data Parallelization (1/4)

> Replicate a whole model on every device.

Communication
[t 1 | ([T (it [l
ke kN o <

wila
IXIXIXT IXIXIXT
M. Ao
P AR
R
XXX

_ Worker 2 Worker 3

IXIXIXIXIX]
i

% d O Update
1 i 1t D Low
T D) ﬁ)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (1/4)

> Replicate a whole model on every device.

» Train all replicas simultaneously, using a different mini-batch for each.

Communication
oo Lot [[]
ke kN o <

Worker |

Worker 2 Worker 3
I RRRR RRAR

........................ Update

1 i 1t D Low
T D) ﬁ)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices

Communication
Gmdiem Gradient 2 Gradient 3 Glﬂfﬂm
5

Worker | Worker 2 Worker 3

Worker 4

Update
Load data

& @ _fr
(Gnioaen 1) Coanibaienz) (vtmivacns) uamiaena’)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices

> Ji(w) = Iﬁill\ erﬁi 1(x,w), Vi=1,2,--- k

Communication
Gmdiem Gradient 2 Gradient 3 Glﬂfﬂm
5

Worker | Worker 2 Worker 3

Worker 4

Update
Load data

& @ _fr
(Gnioaen 1) Coanibaienz) (vtmivacns) uamiaena’)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices
> Ji(w) = I,Bli\ erﬁi 1(x,w), Vi=1,2,--- k
> Gi(w, ;) = ﬁ > xep; V1(w,x)

Communication
Gmdiem Gradient 2 Gradient 3 Gﬂd'ﬂm
r s

Worker | Worker 2 Worker 3
D [2R

Worker 4

........

£ @ _fr
(Gnioaen 1) Cotnibarenz) (vtmivaens) uamiaena’)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices
» Ji(w) = I,Bli\ D oxep, Lx,w), Vi=1,2,-- k
> Gi(w,) = ﬁ > xep; V1(w,x)
> Gi(w, fi): the local estimate of the gradient of the loss function VJ;(w).
,
Cr,"m:ﬁ}‘_l‘ - el o

Update
ad data

£ @
(Gonivaen 1) Cnanivaienz) (vamivaens) uamitaens

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (3/4)

» Compute the gradients aggregation (e.g., mean of the gradients).
> F(G17 o 7Gk) — i Z?:l Gi(w7 61)

Gradient Average

Communication

Worker | Worker 2 Worker 3
. RRRe

Worker 4

.......

X
HOKLY
IXTKTXIXIX].
O 1

1 @ 7t
(Gonioaen 1) Canibaicnz) Cvtiniaens)

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]

Data Parallelization (4/4)

» Update the model.
» w:=w —nF(Gy, - ,Gk)

Communication
o] o] [] []
T ko

Worker 2 Worker 3 Worker 4

Worker |

Update
ad data

£ @ 0t
(Gonivaen 1) Cnivarenz) (yamivaens) uamitaena

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization Design Issues

>

» Communication synchronization and frequency

The aggregation algorithm

» Communication compression

v

Parallelism of computations and communications

The Aggregation Algorithm

The Aggregation Algorithm

» How to aggregate gradients (compute the mean of the gradients)?

The Aggregation Algorithm

» How to aggregate gradients (compute the mean of the gradients)?

» Centralized - parameter server

The Aggregation Algorithm

» How to aggregate gradients (compute the mean of the gradients)?

» Centralized - parameter server

» Decentralized - all-reduce

The Aggregation Algorithm

>

How to aggregate gradients (compute the mean of the gradients)?

v

Centralized - parameter server

Decentralized - all-reduce

v

v

Decentralized - gossip

Aggregation - Centralized - Parameter Server

» Store the model parameters outside of the workers.

Aggregation - Centralized - Parameter Server

» Store the model parameters outside of the workers.

» Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

Local Local Local Local
Model 1 Model 2 Model n-1 Model n
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Aggregation - Distributed - All-Reduce

» Mirror all the model parameters across all workers (no PS).

Aggregation - Distributed - All-Reduce

» Mirror all the model parameters across all workers (no PS).

» Workers exchange parameter updates directly via an allreduce operation.

Worker 1 Worker n

W

Workern-1

e
s e &

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]

Aggregation - Distributed - Gossip

» No PS, and no global model.

Worker 1 Worker n

S 8%

Worker 2 Worker n-1

8 s e B

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Aggregation - Distributed - Gossip

» No PS, and no global model.
» Every worker communicates updates with their neighbors.

Worker 1 Worker n

S 8%

Worker n-1

R
8 s e B

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]

Aggregation - Distributed - Gossip

» No PS, and no global model.
» Every worker communicates updates with their neighbors.

» The consistency of parameters across all workers only at the end of the algorithm.

Worker 1 Worker n

S 8%

8 s e B

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.

» E.g., sum([1, 2, 3, 4, 5]) = 15

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Allreduce

oluolslouulofe

S|
®|18|14| ®|18|14| @|18|14|

UM
[18]14|

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

VETENSKAP

AllReduce Example

Initial state After AllReduce operation

Worker A Worker B Worker A Worker B

SEAne [l EleEz

Worker C Worker D Worker C Worker D

[ol (N el

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation

>

» Master-worker allreduce

All-to-all allreduce

v

Tree allreduce

v

Round-robin allreduce

v

Butterfly allreduce

v

Ring allreduce

AllReduce Implementation - All-to-All AllIReduce

» Send the array of data to each other.

» Apply the reduction operation on each process.

Worker A Worker B

cooD

Worker C Worker D

aoon

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - All-to-All AllIReduce

» Send the array of data to each other.
» Apply the reduction operation on each process.

» Too many unnecessary messages.

Worker A Worker B

cooD

Worker C Worker D

aoon

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Master-Worker AllReduce

» Selecting one process as a master, gather all arrays into the master.
» Perform reduction operations locally in the master.

» Distribute the result to the other processes.

Worker A Worker B

SR ==

Worker C Worker D

sallailL e =

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Master-Worker AllReduce

» Selecting one process as a master, gather all arrays into the master.
» Perform reduction operations locally in the master.

» Distribute the result to the other processes.

>

The master becomes a bottleneck (not scalable).

Worker A Worker B

SR ==

Worker C Worker D

sallailL e =

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Other implementations

» Some try to minimize bandwidth.

» Some try to minimize latency.

oo oo oo o oo RO
ONORONO \PD ARG NG (VNG Q) Py
I\;:D f:;:) P f"\ o o X
DRORONRO NGO
o N ey AN
W 7 () () () (>
- o (.z\ sy — S
Q/,\ uj\ip;) &Y) _P7/ A -
e N o NS . P /’) N
NN NS N D A O O N O AN,
(a) Tree AllReduce (b) Round-robin AllReduce (c) Butterfly AllReduce

[Zhao H. et al., arXiv:1312.3020, 2013]

AllReduce Implementation - Ring-AllReduce (1/6)

» The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase

AllReduce Implementation - Ring-AllReduce (2/6)

In the share-reduce phase, each process p sends data to the process (p+1)%m
e m is the number of processes, and % is the modulo operator.

Worker A

.

Worker D

(o [« 1ol]

Worker B

Worker C

B EEEN

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

AllReduce Implementation - Ring-AllReduce (2/6)

In the share-reduce phase, each process p sends data to the process (p+1)%m
e m is the number of processes, and % is the modulo operator.

» The array of data on each process is divided to m chunks (m=4 here).

Worker A

.

Worker D

(o [« 1ol]

Worker B

Worker C

B EEEN

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

AllReduce Implementation - Ring-AllReduce (2/6)

> In the share-reduce phase, each process p sends data to the process (p+1)%m
e m is the number of processes, and % is the modulo operator.

» The array of data on each process is divided to m chunks (m=4 here).

» Each one of these chunks will be indexed by i going forward.

Worker A

.

Worker D

(o [« 1ol]

Worker B

Worker C

B EEEN

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

AllReduce Implementation - Ring-AllReduce (3/6)

» In the first share-reduce step, process A sends ag to process B.

Worker A

Worker D Worker B

(& o e N
\]
\ Worker C /,“

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911dal

» In the first share-reduce step, process A sends ag to process B.

» Process B sends by to process C, etc.

Worker D

anan
;

Worker B

A
Ji

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911dal

AllReduce Implementation - Ring-AllReduce (4/6)

» When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

Worker A

s
/ \

Worker D Worker B

aaEs N

\ /
n *k\lw Worker C o 4 b
(= | o)

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation - Ring-AllReduce (4/6)

» When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)
e The reduce operator should be associative and commutative.

Worker A

s
/ \

Worker D

Worker B
(o o] | N
k: /

N oo [
CINES

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation - Ring-AllReduce (4/6)

» When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)
e The reduce operator should be associative and commutative.

» |t then proceeds to send it to the next process in the ring.

Worker A

s
/ \

Worker D

Worker B
(o o] | N
k: /

N oo [
CINES

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation - Ring-AllReduce (5/6)

» The share-reduce phase finishes when each process holds the complete reduction of
chunk 1.

Worker A
s)
/

Worker D

Worker B

\\ra\ Worker C e /2
L[

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491ida]

n=ag+by+opdy

AllReduce Implementation - Ring-AllReduce (5/6)

» The share-reduce phase finishes when each process holds the complete reduction of
chunk 1.

» At this point each process holds a part of the end result.

Worker A

Worker D Worker B

t /

n=ag+by+opdy

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Ring-AllReduce (6/6)

» The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

Worker A

Worker D Worker B

ﬂ

Worker C

T=agtbtotd;

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation - Ring-AllReduce (6/6)

» The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

» This consolidates the result of each chunk in every process.

Worker A

Worker D Worker B

ﬂ

Worker C

T=agtbtotd;

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce
o First each process sends N elements to the master: N x (m — 1) messages.

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce

o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce

o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce
o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce

o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

N

* In the share-reduce step each process sends _ elements, and it does it m — 1 times:
¥'x (m — 1) messages.

m

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce

o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

N

* In the share-reduce step each process sends _ elements, and it does it m — 1 times:
¥'x (m — 1) messages.

m
¢ On the share-only step, each process sends the result for the chunk it calculated: another

¥ % (m — 1) messages.

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce
o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

N

* In the share-reduce step each process sends _ elements, and it does it m — 1 times:
¥'x (m — 1) messages.

m
¢ On the share-only step, each process sends the result for the chunk it calculated: another
¥ % (m — 1) messages.

« Total network traffic is 2(X x (m — 1)).

Communication Synchronization and Frequency

Synchronization

» When to synchronize the parameters among the parallel workers?

Communication Synchronization (1/2)

» Synchronizing the model replicas in data-parallel training requires communication

* between workers, in allreduce
e between workers and parameter servers, in the centralized architecture

Communication Synchronization (1/2)

» Synchronizing the model replicas in data-parallel training requires communication

* between workers, in allreduce
e between workers and parameter servers, in the centralized architecture

» The communication synchronization decides how frequently all local models are syn-
chronized with others.

Communication Synchronization (2/2)

» It will influence:

e The communication traffic
e The performance
e The convergence of model training

Communication Synchronization (2/2)

> It will influence:
e The communication traffic
e The performance
e The convergence of model training

» There is a trade-off between the communication traffic and the convergence.

Reducing Synchronization Overhead

» Two directions for improvement:

Reducing Synchronization Overhead

» Two directions for improvement:

1. To relax the synchronization among all workers.

Reducing Synchronization Overhead

» Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

Communication Synchronization Models

>

Synchronous

v

Stale-synchronous

v

Asynchronous

v

Local SGD

Communication Synchronization - Synchronous

» After each iteration, the workers synchronize their parameter updates.

[Fecd-Forward
Multi-device Barrier Em&mm Propagation
BSP 8 R Updae
&
L
Single-device
©

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Synchronous

» After each iteration, the workers synchronize their parameter updates.

» Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

[Fecd-Forward
Multi-device Barrier Em&mm Propagation
BSP 8 R Updae
&
L
Single-device
©

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Synchronous

» After each iteration, the workers synchronize their parameter updates.

» Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

» Stragglers can influence the overall system throughput.

[Fecd-Forward

[Backwand Propagation

Barrier

(]
[upie

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Synchronous

>

After each iteration, the workers synchronize their parameter updates.

v

Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

v

Stragglers can influence the overall system throughput.

v

High communication cost that limits the system scalability.

[Fecd-Forward

[Backwand Propagation

Barrier

(]
[upie

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (1/2)

> Alleviate the straggler problem without losing synchronization.

Staleness bounded Barrier

I3
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (1/2)

> Alleviate the straggler problem without losing synchronization.

» The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

Staleness bounded Barrier

I3
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (1/2)

> Alleviate the straggler problem without losing synchronization.

» The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

» Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

Staleness bounded Barrier

I3
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

> Wi e = Wo — (D Do Gk + Do s Gik T Do (s k)ess vas Gik)

[Feed-Forward
B ackv ard Propagation
L] GradientMods| A ggregation)

Staleness bounded Barrier

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

t t
> Wigi = Wo — (X oy Z?:l Gy 2 x—t—s Gix T Z(j,k)esi,tﬂ Gy x)
» The update has three parts:

[Feed-Forward
oward Propagation
L] GradientMods| A ggregation)

Staleness bounded Barrier

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

> Wi e = Wo — (D Do Gk + Do s Gik T Do (s k)ess vas Gik)

» The update has three parts:
1. Guaranteed pre-window updates from clock 1 to t over all workers.

[Feed-Forward
B ackv ard Propagation
L] GradientMods| A ggregation)

Staleness bounded Barrier

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

> Wi e = Wo — (D Do Gk + Do s Gik T Do (s k)ess vas Gik)

» The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.

Staleness bounded Barrier

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

t t
> Wigi = Wo — (X oy Z?:l Gy 2 x—t—s Gix T Z(j,k)esi,tﬂ Gy x)
» The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.

3. Best-effort in-window updates. S; t11 is some subset of the updates from other workers
during period [t — s].

Staleness bounded Barrier

t
A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:

Communication Synchronization - Asynchronous (1/2)

> It completely eliminates the synchronization.

Multi-device

Q@

ASP g
@

Si ~devi
ingle- eneeo
I3

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Asynchronous (1/2)

> It completely eliminates the synchronization.

» Each work transmits its gradients to the PS after it calculates the gradients.

[Fecd-Farward
[Backwand Propagation
GiradienuModel A ggregation

[}
U

Multi-device

Q@

ASP g
@

Si ~devi
ingle- eneeO
I3

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Asynchronous (1/2)

> It completely eliminates the synchronization.
» Each work transmits its gradients to the PS after it calculates the gradients.

» The PS updates the global model without waiting for the other workers.

[Fecd-Farward
[Backwand Propagation
[GradicnuModel A ggregation

U

Multi-device

Q@

ASP g
@

Si ~devi
ingle- eneeO
I3

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Asynchronous (2/2)

L n
> Wity 1= W —7) Ei:l Gi:t_Tk,i

cd-Farward
‘ovard Propagation

[GmdienuModel Aggregation|
Multi-device [updae

Q

ASP g

Ll
Single-devies

13
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Asynchronous (2/2)

L n
> Wity 1= W —7) Ei:l Gi:t_Tk,i

» Ty ; is the time delay between the moment when worker i calculates the gradient at

the current iteration.

B ackwand Propagation

[GmdienuModel Aggregation|

Multi-device I Upare

S

ASP

@

@
Single-device

©

13

A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:

Communication Synchronization - Local SGD

> All workers run several iterations, and then averages all local models into the newest
global model.

[Feed-Forward
[Backwand Propagation
rdicntModel A ggregation

r

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Local SGD

> All workers run several iterations, and then averages all local models into the newest
global model.

> If Zt represents the synchronization timestamps, then:

Wi _) Wie —NGig if t+1¢ T,
VT wig — M5 i1 Gie if t+1€Ty

[Feed-Forward
[Backwand Propagation
[GrdicntModel A geregation|

R Updae

r

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Compression

Communication Compression

» Reduce the communication traffic with little impact on the model convergence.

Communication Compression

» Reduce the communication traffic with little impact on the model convergence.

» Compress the exchanged gradients or models before transmitting across the network.

Communication Compression

» Reduce the communication traffic with little impact on the model convergence.

» Compress the exchanged gradients or models before transmitting across the network.

» Quantization

Communication Compression

>

Reduce the communication traffic with little impact on the model convergence.

v

Compress the exchanged gradients or models before transmitting across the network.

» Quantization

v

Sparsification

Communication Compression - Quantization

» Useing lower bits to represent the data.

by |/l||||||||II||||||||||||||||IIII|
EEEN

LR LTI
osssne [T LT -T LT LT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Original § | | | |
Gradient

Communication Compression - Quantization

» Useing lower bits to represent the data.

» The gradients are of low precision.

by |/l||||||||II||||||||||||||||IIII|
EEEN

LR LTI
osssne [T LT -T LT LT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Original § | | | |
Gradient

Communication Compression - Sparsification

» Reducing the number of elements that are transmitted at each iteration.

v QT
/

/

Original ’ | ‘ ‘ |
Gradient

7

Sparsification .ee

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Compression - Sparsification

» Reducing the number of elements that are transmitted at each iteration.

» Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

One element
(32 bits)

/
Gradient

s I T T - T T]

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Compression - Sparsification

» Reducing the number of elements that are transmitted at each iteration.

» Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

» E.g., the zero-valued elements are no need to transmit.

One element
(32 bits)

/
Gradient

|

A Comprehensive Survey, 2020]

Sparsification . | . .ee

[Tang et al., Communication-Efficient Distributed Deep Learning:

Parallelism of Computations and Communications

Parallelism of Computations and Communications (1/3)

» The layer-wise structure of deep models makes it possible to parallels the communi-
cation and computing tasks.

Parallelism of Computations and Communications (1/3)

» The layer-wise structure of deep models makes it possible to parallels the communi-
cation and computing tasks.

» Optimizing the order of computation and communication such that the communica-
tion cost can be minimized

Parallelism of Computations and Communications (2/3)

» Wait-free backward propagation (WFBP)

Gradient/Model
Aggregation

» Merged-gradient WFBP (MG-WFBP)

-— - [
WFBP E ¢
<

-]
EMG-WFBP t

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Parallelism of Computations and Communications (3/3)

forors RIS
Backward
‘Communication

rorward (AR T]
Backward
Communication

t

Wait-free backward propagation (WFBP)

Parallelism of Computations and Communications (3/3)

Forward (LN 2 0]
Backward
Communication

|
L
t

rorward (AR T]
Backward
Communication

Wait-free backward propagation (WFBP)

t

Forward
Backward

Communication

opecomn VDl .

Merged-gradient WFBP (MG-WFBP)

[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

Distributed SGD and Batch Size

Batch Size vs. Number of GPUs

> W — W — nﬁ > xep V1(x,w)

Batch size 64 v. 256

(FP16)
25000 ' gatch size
= 64
20000 mmm 256
o
QU
2 15000
[
8\
£ 10000
5000 I I
0 | — -- .. I
1
GPUS

[https://medium.com/Q@emwatz/lessons-for-improving-training-performance-part-1-b5efd0fOdceal

Batch Size vs. Number of GPUs

> W — W — nﬁ > xep V1(x,w)

» The more samples processed during each batch, the faster a training job will complete.

Batch size 64 v. 256
(FP16)

25000 Batch size
= 64
20000 - 256

15000

10000

5000 I I
O | — -- .. I

1

Images/Sec

GPUS

[https://medium.com/Q@emwatz/lessons-for-improving-training-performance-part-1-b5efd0fOdceal

Batch Size vs. Number of GPUs

> W — W — nﬁ > xep V1(x,w)
» The more samples processed during each batch, the faster a training job will complete.
» E.g., ImageNet + ResNet-50

Batch size 64 v. 256

(FP16)

25000 Batch size
= 64
20000 . 256

15000

10000

5000 I I
O | — -- .. I

1

Images/Sec

GPUS

[https://medium.com/Q@emwatz/lessons-for-improving-training-performance-part-1-b5efd0fOdceal

Batch Size vs. Time to Accuracy

» ResNet-32 on Titan X GPU

< 1200 A

$ 1000 = TensorFlow
§ 800

5 600

8 400
HITIT

g 0

= 64 128 256 512 1024

Batch size, b

[Peter Pietzuch - Imperial College London]

Batch Size vs. Validation Error

B
o
1

w
o
T

[5]
o
T

N
w
T

ImageNet top-1 validation error

N
o

128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size
[Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018]

2]
=

CROSSBOW: Scaling Deep Learning with
Small Batch Sizes on Multi-GPU Servers

> How to design a deep learning system that scales training with multiple GPUs, even
when the preferred batch size is small?

Crossbow

(1) How to increase (2) How to synchronise
efficiency with small model replicas?
batches?

mocel GPU-1 GPU-2

GPU

. J .

[Peter Pietzuch - Imperial College London]

Problem: Small Batches

» Small batch sizes underutilise GPUs.

Problem: Small Batches

» Small batch sizes underutilise GPUs.

» One batch per GPU: not enough data and instruction parallelism for every operator.

One per GPU Operations
[Peter Pietzuch - Imperial College London]

|dea: Multiple Replicas Per GPU

» Train multiple model replicas per GPU.

» A learner is an entity that trains a single model replica independently with a given
batch size.

[Peter Pietzuch - Imperial College London]

|dea: Multiple Replicas Per GPU

» Train multiple model replicas per GPU.

» A learner is an entity that trains a single model replica independently with a given
batch size.

[Peter Pietzuch - Imperial College London]

» But, now we must synchronise a large number of model replicas.

Problem: Similiar Starting Point

> All learners always start from the same point

» Limited exploration of parameter space.

o

\
\
\
\
[]

[Peter Pietzuch - Imperial College London]

|dea: Independent Replicas

» Maintain independent model replicas.
» Increased exploration of space through parallelism.

» Each model replica uses small batch size.

Replica X’s trajectory

Initial

weights Average model trajectory

Replica Y’s trajector

[Peter Pietzuch - Imperial College London]

Crossbow: Synchronous Model Averaging

» Allow learners to diverge, but correct trajectories based on average model.

> Accelerate average model trajectory with momentum to find minima faster.

* r@ correction
o/*\
o

Momentum-accelerated
N

correction @—7‘

‘\H.

[Peter Pietzuch - Imperial College London]

GPUs with Synchronous Model Averaging

» Synchronously apply corrections to model replicas.

Reference Average Reference
Model Model Model
7’ \\ /’ N /' AY
v v v v v v
| Replica | | Replica | | Replica | | Replica | Replica | | Replica |

Learner Learner Learner Learner Learner Learner

[Peter Pietzuch - Imperial College London]

GPUs with Synchronous Model Averaging

» Ensures consistent view of average model.

» Takes GPU bandwidth into account during synchronisation.

Synchronous
Reference Model Averaging Average Reference
Model Model Model
’ \ I’ ~\ 4 Ay
v v v v v v
| Replica | I Replica | | Replica | | Replica | | Replica | I Replica |

GPU1 GPU 2 GPU 3

[Peter Pietzuch - Imperial College London]

Crossbow

(1) How to increase (2) How to synchronise
efficiency with small model replicas?
batches?

(~\ 'd N

o i

5 M —
==l==

model GPU-1 GPU-2
GPU
\ J/ (. 7
Train multiple Use synchronous
model replicas model averaging
per GPU

[Peter Pietzuch - Imperial College London]

Summary

Summary

>

Data-parallel

v

The aggregation algorithm
» Communication synchronization

» Communication compression

v

Parallelism of computations and communications

Batch Size

v

Reference

>

Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive
Survey, 2020

v

P. Goyal et al., Accurate, large minibatch sgd: Training imagenet in 1 hour, 2017

v

C. Shallue et al., Measuring the effects of data parallelism on neural network training,
2018

v

A. Koliousis et al. CROSSBOW: scaling deep learning with small batch sizes on
multi-gpu servers, 2019

Questions?

