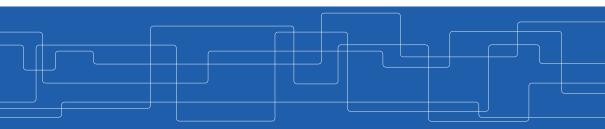


Introduction

Amir H. Payberah payberah@kth.se 2021-11-03



Course Information

• This course has a system-based focus.

- This course has a system-based focus.
- Learn the theory of machine learning and deep learning.

- This course has a system-based focus.
- Learn the theory of machine learning and deep learning.
- Learn the practical aspects of building machine learning and deep learning algorithms using data parallel programming platforms, such as Spark and TensorFlow.

Topics of Study

Deep Learning					
RL	Distributed Learning				
CNN	RNN		Transformer		
Deep Feedforward Network Training Feedforward Network					
TensorFlow					
Machine Learning					
Regression	Classification More Supervised Learning				
Spark ML					

 ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.

- ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.

- ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.
- ► ILO3: explain the principles of distributed learning.

- ILO1: explain the principles of ML/DL algorithms and apply their techniques to solve problems.
- ILO2: explain different DNN architectures, such as CNN, RNN, etc., and know how to build and train such networks.
- ► ILO3: explain the principles of distributed learning.
- ► ILO4: implement ML/DL algorithms using Spark and TensorFlow.

The Course Assessment

► Task1: the review questions (P/F)

The Course Assessment

- ► Task1: the review questions (P/F)
- ► Task2: the lab assignments (A-F)

The Course Assessment

- ► Task1: the review questions (P/F)
- ► Task2: the lab assignments (A-F)
- ► Task3: the final project (A-F)

How Each ILO is Assessed?

	Task1	Task2	Task3
ILO1	Х		
ILO2	Х		
ILO3	Х		
ILO4	Х	Х	Х

Task1: The Review Questions (A-F)

- One review question per week.
- Questions about the lectures.
- ► The review questions are graded (A-F).

► Two lab assignments: source code and oral presentation.

- ► Two lab assignments: source code and oral presentation.
- E: source code

- ► Two lab assignments: source code and oral presentation.
- E: source code
- ► D: source code + half questions (basic)

- ► Two lab assignments: source code and oral presentation.
- E: source code
- D: source code + half questions (basic)
- ► C: source code + all questions (basic)

- ► Two lab assignments: source code and oral presentation.
- E: source code
- D: source code + half questions (basic)
- C: source code + all questions (basic)
- ▶ B: source code + half questions (basic and advanced)

- ► Two lab assignments: source code and oral presentation.
- E: source code
- D: source code + half questions (basic)
- C: source code + all questions (basic)
- ▶ B: source code + half questions (basic and advanced)
- ► A: source code + all questions (basic and advanced)

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- E: C-level source code

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- E: C-level source code
- ▶ D: C-level source code + half questions (basic and advanced)

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- E: C-level source code
- ▶ D: C-level source code + half questions (basic and advanced)
- C: C-level source code + all questions (basic and advanced) or A-level source code + all questions (basic)

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- E: C-level source code
- ▶ D: C-level source code + half questions (basic and advanced)
- C: C-level source code + all questions (basic and advanced) or A-level source code + all questions (basic)
- ▶ B: A-level source code + half questions (basic and advanced)

- ▶ One final project: source code and oral presentation.
- ▶ Proposed by students and confirmed by the teacher: A-level or C-level proposals.
- E: C-level source code
- ▶ D: C-level source code + half questions (basic and advanced)
- C: C-level source code + all questions (basic and advanced) or A-level source code + all questions (basic)
- ▶ B: A-level source code + half questions (basic and advanced)
- ► A: A-level source code + all questions (basic and advanced)

► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).

- ► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).
- ► To compute it, map A-E to 5-1, and take the average.

- ► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).
- ► To compute it, map A-E to 5-1, and take the average.
- The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.5 will be rounded to 4.

- ► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).
- ► To compute it, map A-E to 5-1, and take the average.
- The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.5 will be rounded to 4.
- ► A late submission will reduce you grade level by one. That is, A will become B, B will become C, and so on.

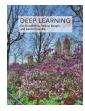
- ► The final grade is the weighted average of the review questions (0.2), two labs (0.25 each), and the final project (0.3).
- ► To compute it, map A-E to 5-1, and take the average.
- The floating values are rounded up, if they are more than half, otherwise they are rounded down.
 - E.g., 3.6 will be rounded to 4, and 4.5 will be rounded to 4.
- ► A late submission will reduce you grade level by one. That is, A will become B, B will become C, and so on.
- ▶ To pass the course, you need to take at least E in all the assignments.

How to Submit the Assignments?

- ► Through the Canvas site.
- Students will work in groups of two on all the Tasks 1-4.

The Course Material

- Hands-on machine learning with Scikit-Learn and TensorFlow, 2nd Edition, A. Geron, O'Reilly Media, 2019
- ▶ Deep learning, I. Goodfellow et al., Cambridge: MIT press, 2016
- Spark The Definitive Guide, M. Zaharia et al., O'Reilly Media, 2018.



The Course Web Page

https://id2223kth.github.io

The Questions-Answers Page

https://tinyurl.com/6s5jy46a

The Course Overview

Sheepdog or Mop

Chihuahua or Muffin

Barn Owl or Apple

Artificial Intelligence Challenge

 Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.

Artificial Intelligence Challenge

- Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.
- ► The challenge is to solve the tasks that are hard for people to describe formally.

Artificial Intelligence Challenge

- Artificial intelligence (AI) can solve problems that can be described by a list of formal mathematical rules.
- ► The challenge is to solve the tasks that are hard for people to describe formally.
- Let computers to learn from experience.

History of AI

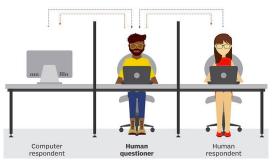
1920: Rossum's Universal Robots (R.U.R.)

- ► A science fiction play by Karel Čapek, in 1920.
- A factory that creates artificial people named robots.

[https://dev.to/lschultebraucks/a-short-history-of-artificial-intelligence-7hm]

1950: Turing Test

- ► In 1950, Turing introduced the Turing test.
- An attempt to define machine intelligence.



[https://searchenterpriseai.techtarget.com/definition/Turing-test]

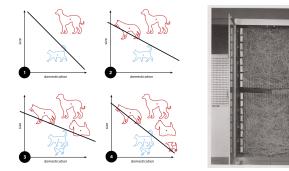
1956: The Dartmouth Workshop

- Probably the first workshop of AI.
- ▶ Researchers from CMU, MIT, IBM met together and founded the AI research.

[https://twitter.com/lordsaicom/status/898139880441696257]

1958: Perceptron

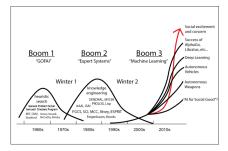
- A supervised learning algorithm for binary classifiers.
- ▶ Implemented in custom-built hardware as the Mark 1 perceptron.



[https://en.wikipedia.org/wiki/Perceptron]

1974-1980: The First Al Winter

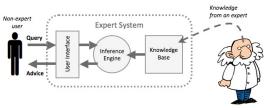
- ▶ The over optimistic settings, which were not occurred
- ► The problems:
 - Limited computer power
 - Lack of data
 - Intractability and the combinatorial explosion



[http://www.technologystories.org/ai-evolution]

1980's: Expert systems

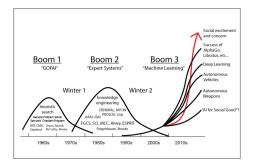
- ► The programs that solve problems in a specific domain.
- ► Two engines:
 - Knowledge engine: represents the facts and rules about a specific topic.
 - Inference engine: applies the facts and rules from the knowledge engine to new facts.



[https://www.igcseict.info/theory/7_2/expert]

1987-1993: The Second Al Winter

- After a series of financial setbacks.
- ▶ The fall of expert systems and hardware companies.



[http://www.technologystories.org/ai-evolution]

► The first chess computer to beat a world chess champion Garry Kasparov.

[http://marksist.org/icerik/Tarihte-Bugun/1757/11-Mayis-1997-Deep-Blue-adli-bilgisayar]

2012: AlexNet - Image Recognition

- ► The ImageNet competition in image classification.
- The AlexNet Convolutional Neural Network (CNN) won the challenge by a large margin.

IM GENET

2016: DeepMind AlphaGo

- ► DeepMind AlphaGo won Lee Sedol, one of the best players at Go.
- ► In 2017, DeepMind published AlphaGo Zero.
 - The next generation of AlphaGo.
 - It learned Go by playing against itself.

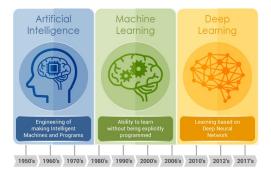
[https://www.zdnet.com/article/google-alphago-caps-victory-by-winning-final-historic-go-match]

2018: Google Duplex

- ► An AI system for accomplishing real-world tasks over the phone.
- A Recurrent Neural Network (RNN) built using TensorFlow.

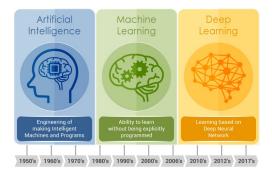
AI Generations

- Rule-based AI
- Machine learning
- Deep learning



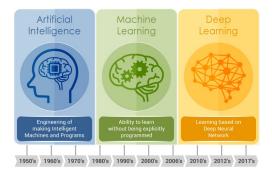
Al Generations - Rule-based Al

- Hard-code knowledge
- Computers reason using logical inference rules



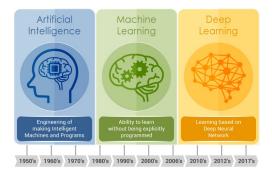
AI Generations - Machine Learning

- If AI systems acquire their own knowledge
- Learn from data without being explicitly programmed



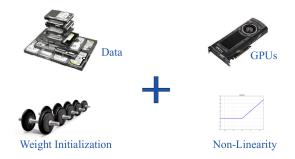
Al Generations - Deep Learning

- ► For many tasks, it is difficult to know what features should be extracted
- ► Use machine learning to discover the mapping from representation to output



Why Does Deep Learning Work Now?

- Huge quantity of data
- Tremendous increase in computing power
- Better training algorithms



Machine Learning and Deep Learning

Learning Algorithms

- A ML algorithm is an algorithm that is able to learn from data.
- ► What is learning?

Learning Algorithms

- A ML algorithm is an algorithm that is able to learn from data.
- ► What is learning?
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. (Tom M. Mitchell)

A spam filter that can learn to flag spam given examples of spam emails and examples of regular emails.

[https://bit.ly/20iplYM]

- A spam filter that can learn to flag spam given examples of spam emails and examples of regular emails.
- ► Task T: flag spam for new emails
- Experience E: the training data
- ▶ Performance measure P: the ratio of correctly classified emails

[https://bit.ly/20iplYM]

Given dataset of prices of 500 houses, how can we learn to predict the prices of other houses, as a function of the size of their living areas?

[https://bit.ly/2MyiJUy]

- Given dataset of prices of 500 houses, how can we learn to predict the prices of other houses, as a function of the size of their living areas?
- ► Task T: predict the price
- Experience E: the dataset of living areas and prices
- ► Performance measure P: the difference between the predicted price and the real price

[https://bit.ly/2MyiJUy]

Types of Machine Learning Algorithms

Supervised learning

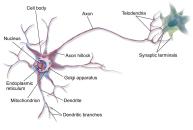
Unsupervised learning

Types of Machine Learning Algorithms

- Supervised learning
 - Input data is labeled, e.g., spam/not-spam or a stock price at a time.
 - Regression vs. classification
- Unsupervised learning
 - Input data is unlabeled.
 - Find hidden structures in data.

From Machine Learning to Deep Learning

- ▶ Deep Learning (DL) is part of ML methods based on learning data representations.
- Mimic the neural networks of our brain.



[A. Geron, O'Reilly Media, 2017]

Artificial Neural Networks

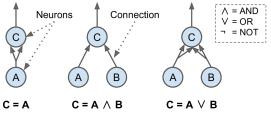
► Artificial Neural Network (ANN) is inspired by biological neurons.

Artificial Neural Networks

- ► Artificial Neural Network (ANN) is inspired by biological neurons.
- One or more binary inputs and one binary output

Artificial Neural Networks

- ► Artificial Neural Network (ANN) is inspired by biological neurons.
- One or more binary inputs and one binary output
- Activates its output when more than a certain number of its inputs are active.



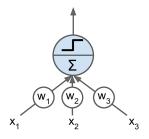
[A. Geron, O'Reilly Media, 2017]

The Linear Threshold Unit (LTU)

► Inputs of a LTU are numbers (not binary).

The Linear Threshold Unit (LTU)

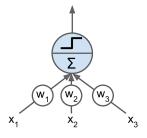
- ► Inputs of a LTU are numbers (not binary).
- Each input connection is associated with a weight.
- Computes a weighted sum of its inputs and applies a step function to that sum.



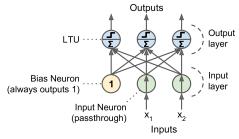
The Linear Threshold Unit (LTU)

- ► Inputs of a LTU are numbers (not binary).
- Each input connection is associated with a weight.
- Computes a weighted sum of its inputs and applies a step function to that sum.

- $\blacktriangleright \ z = \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \dots + \mathtt{w}_n \mathtt{x}_n = \mathtt{w}^\mathsf{T} \mathtt{x}$
- $\hat{y} = \text{step}(z) = \text{step}(w^T x)$



- The perceptron is a single layer of LTUs.
- ► The input neurons output whatever input they are fed.
- ► A bias neuron, which just outputs 1 all the time.

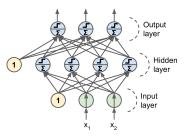


Deep Learning Models

- Deep Neural Network (DNN)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- ► Transformer
- Deep Reinforcement Learning

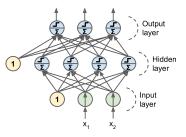
Deep Neural Networks

- Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).



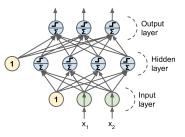
Deep Neural Networks

- Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).
- ▶ Deep Neural Network (DNN) is an ANN with two or more hidden layers.



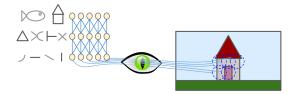
Deep Neural Networks

- Multi-Layer Perceptron (MLP)
 - One input layer.
 - One or more layers of LTUs (hidden layers).
 - One final layer of LTUs (output layer).
- ▶ Deep Neural Network (DNN) is an ANN with two or more hidden layers.
- Backpropagation training algorithm.



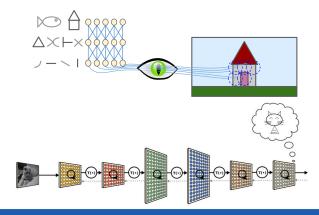
Convolutional Neural Networks

▶ Many neurons in the visual cortex react only to a limited region of the visual field.



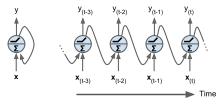
Convolutional Neural Networks

- ▶ Many neurons in the visual cortex react only to a limited region of the visual field.
- ► The higher-level neurons are based on the outputs of neighboring lower-level neurons.

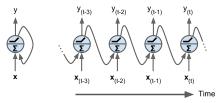


Recurrent Neural Networks

► The output depends on the input and the previous computations.



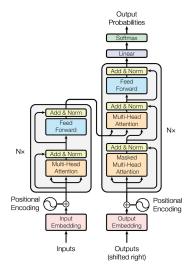
► The output depends on the input and the previous computations.



Analyze time series data, e.g., stock market, and autonomous driving systems.

▶ Work on sequences of arbitrary lengths, rather than on fixed-sized inputs.

Transformer



[A. Vaswani et al., Attention Is All You Need, 2017]

Linear Algebra Review

- A vector is an array of numbers.
- ► Notation:
 - Denoted by **bold** lowercase letters, e.g., x.
 - $\boldsymbol{x}_{\mathtt{i}}$ denotes the $\mathtt{i} \mathtt{th}$ entry.

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

Matrix and Tensor

- A matrix is a 2-D array of numbers.
- A tensor is an array with more than two axes.
- Notation:
 - Denoted by **bold** uppercase letters, e.g., A.
 - a_{ij} denotes the entry in ith row and jth column.
 - If A is $m \times n$, it has m rows and n columns.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,n} \end{bmatrix}$$

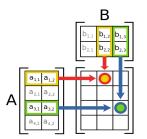
Matrix Addition and Subtraction

► The matrices must have the same dimensions.

$$\mathsf{A} = \begin{bmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{bmatrix} + \begin{bmatrix} \mathsf{e} & \mathsf{f} \\ \mathsf{g} & \mathsf{h} \end{bmatrix} = \begin{bmatrix} \mathsf{a} + \mathsf{e} & \mathsf{b} + \mathsf{f} \\ \mathsf{c} + \mathsf{g} & \mathsf{d} + \mathsf{h} \end{bmatrix}$$

- The matrix product of matrices A and B is a third matrix C, where C = AB.
- If A is of shape $m \times n$ and B is of shape $n \times p$, then C is of shape $m \times p$.

$$c_{ij} = \sum_k a_{ik} b_{kj}$$



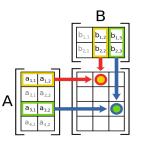
[https://en.wikipedia.org/wiki/Matrix_multiplication]

Matrix Product

- The matrix product of matrices A and B is a third matrix C, where C = AB.
- If A is of shape $m \times n$ and B is of shape $n \times p$, then C is of shape $m \times p$.

$$c_{ij} = \sum_k a_{ik} b_{kj}$$

- Properties
 - Associative: (AB)C = A(BC)
 - Not commutative: $AB \neq BA$



[https://en.wikipedia.org/wiki/Matrix_multiplication]

• Swap the rows and columns of a matrix.

$$A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \Rightarrow A^{\mathsf{T}} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$

Swap the rows and columns of a matrix.

$$A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \Rightarrow A^{\mathsf{T}} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$

- Properties
 - $A_{ij} = A_{ji}^T$
 - If A is $m \times n$, then A^T is $n \times m$
 - $(A + B)^{T} = A^{T} + B^{T}$
 - $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

Inverse of a Matrix

• If A is a square matrix, its inverse is called A^{-1} .

$$\mathsf{A}\mathsf{A}^{-1}=\mathsf{A}^{-1}\mathsf{A}=\mathsf{I}$$

▶ Where I, the identity matrix, is a diagonal matrix with all 1's on the diagonal.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$L^p\ \mbox{Norm}$ for Vectors

- We can measure the size of vectors using a norm function.
- ► Norms are functions mapping vectors to non-negative values.
- ► L¹ norm

$$||\mathbf{x}||_1 = \sum_i |\mathbf{x}_i|$$

$L^p\ \mbox{Norm}$ for Vectors

- We can measure the size of vectors using a norm function.
- ► Norms are functions mapping vectors to non-negative values.
- ► L¹ norm

$$||\mathbf{x}||_1 = \sum_{\mathbf{i}} |\mathbf{x}_{\mathbf{i}}|$$

$$||\mathbf{x}||_2 = (\sum_{i} |\mathbf{x}_i|^2)^{\frac{1}{2}} = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \dots + \mathbf{x}_n^2}$$

$L^p\ \mbox{Norm}$ for Vectors

- We can measure the size of vectors using a norm function.
- ► Norms are functions mapping vectors to non-negative values.
- ► L¹ norm

$$||\mathbf{x}||_1 = \sum_{\mathbf{i}} |\mathbf{x}_{\mathbf{i}}|$$

norm
$$||x||_2 = (\sum_i |x_i|^2)^{\frac{1}{2}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

▶ L^p norm

► L²

$$||\mathsf{x}||_{p} = (\sum_{\mathtt{i}} |\mathtt{x}_{\mathtt{i}}|^{p})^{\frac{1}{p}}$$

Probability Review

- ► Random variable: a variable that can take on different values randomly.
- ► Random variables may be discrete or continuous.

- ▶ Random variable: a variable that can take on different values randomly.
- ► Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states

Random Variables

- ▶ Random variable: a variable that can take on different values randomly.
- Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states
 - Continuous random variable: real value

- ▶ Random variable: a variable that can take on different values randomly.
- ► Random variables may be discrete or continuous.
 - Discrete random variable: finite or countably infinite number of states
 - Continuous random variable: real value
- Notation:
 - Denoted by an upper case letter, e.g., X
 - Values of a random variable X are denoted by lower case letters, e.g., x and y.

 Probability distribution: how likely a random variable is to take on each of its possible states.

- Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable X denotes the outcome of a coin toss.

- Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable ${\tt X}$ denotes the outcome of a coin toss.
 - The probability distribution of X would take the value 0.5 for X = head, and 0.5 for Y = tail (assuming the coin is fair).

- Probability distribution: how likely a random variable is to take on each of its possible states.
 - E.g., the random variable ${\tt X}$ denotes the outcome of a coin toss.
 - The probability distribution of X would take the value 0.5 for X = head, and 0.5 for Y = tail (assuming the coin is fair).
- The way we describe probability distributions depends on whether the variables are discrete or continuous.

- Probability mass function (PMF): the probability distribution of a discrete random variable X.
- ► Notation: denoted by a lowercase p.

Discrete Variables

- Probability mass function (PMF): the probability distribution of a discrete random variable X.
- Notation: denoted by a lowercase p.
 - E.g., p(x) = 1 indicates that X = x is certain
 - E.g., p(x) = 0 indicates that X = x is impossible

Discrete Variables

- Probability mass function (PMF): the probability distribution of a discrete random variable X.
- ► Notation: denoted by a lowercase p.
 - E.g., p(x) = 1 indicates that X = x is certain
 - E.g., p(x) = 0 indicates that X = x is impossible
- Properties:
 - The domain D of p must be the set of all possible states of ${\tt X}$
 - $\forall x \in D(X), 0 \le p(x) \le 1$
 - $\sum_{x \in D(X)} p(x) = 1$

Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

 $\forall \mathtt{x} \in \mathtt{D}(\mathtt{X}), \mathtt{y} \in \mathtt{D}(\mathtt{Y}), \mathtt{p}(\mathtt{X} = \mathtt{x}, \mathtt{Y} = \mathtt{y}) = \mathtt{p}(\mathtt{X} = \mathtt{x})\mathtt{p}(\mathtt{Y} = \mathtt{y})$

Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

$$\forall \mathtt{x} \in \mathtt{D}(\mathtt{X}), \mathtt{y} \in \mathtt{D}(\mathtt{Y}), \mathtt{p}(\mathtt{X} = \mathtt{x}, \mathtt{Y} = \mathtt{y}) = \mathtt{p}(\mathtt{X} = \mathtt{x})\mathtt{p}(\mathtt{Y} = \mathtt{y})$$

► E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of landing on the head side of the coin and rolling a 3 on the die is:

Two random variables X and Y are independent, if their probability distribution can be expressed as their products.

$$\forall \mathtt{x} \in \mathtt{D}(\mathtt{X}), \mathtt{y} \in \mathtt{D}(\mathtt{Y}), \mathtt{p}(\mathtt{X} = \mathtt{x}, \mathtt{Y} = \mathtt{y}) = \mathtt{p}(\mathtt{X} = \mathtt{x})\mathtt{p}(\mathtt{Y} = \mathtt{y})$$

► E.g., if a coin is tossed and a single 6-sided die is rolled, then the probability of landing on the head side of the coin and rolling a 3 on the die is:

$$\mathtt{p}(\mathtt{X}=\mathtt{head},\mathtt{Y}=\mathtt{3})=\mathtt{p}(\mathtt{X}=\mathtt{head})\mathtt{p}(\mathtt{Y}=\mathtt{3})=\frac{1}{2}\times\frac{1}{6}=\frac{1}{12}$$

Conditional Probability

Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

Conditional Probability

Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

► E.g., if 60% of the class passed both labs and 80% of the class passed the first labs, then what percent of those who passed the first lab also passed the second lab?

Conditional Probability

Conditional probability: the probability of an event given that another event has occurred.

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

- ► E.g., if 60% of the class passed both labs and 80% of the class passed the first labs, then what percent of those who passed the first lab also passed the second lab?
 - E.g., X and Y random variables for the first and the second labs, respectively.

$$p(\texttt{Y} = \texttt{lab2} \mid \texttt{X} = \texttt{lab1}) = \frac{p(\texttt{Y} = \texttt{lab2}, \texttt{X} = \texttt{lab1})}{p(\texttt{X} = \texttt{lab1})} = \frac{0.6}{0.8} = \frac{3}{4}$$

The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathbf{E}_{\mathbf{x}\sim \mathbf{p}}[\mathbf{X}] = \sum_{\mathbf{x}} \mathbf{p}(\mathbf{x})\mathbf{x}$$

The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathbf{E}_{\mathbf{x}\sim\mathbf{p}}[\mathbf{X}] = \sum_{\mathbf{x}} \mathbf{p}(\mathbf{x})\mathbf{x}$$

• E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

The expected value of a random variable X with respect to a probability distribution p(X) is the average value that X takes on when it is drawn from p(X).

$$\mathbf{E}_{\mathbf{x}\sim\mathbf{p}}[\mathbf{X}] = \sum_{\mathbf{x}} \mathbf{p}(\mathbf{x})\mathbf{x}$$

▶ E.g., If X : {1,2,3}, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2• $E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$

► The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$ext{Var}(\mathtt{X}) = \mathtt{E}[(\mathtt{X} - \mathtt{E}[\mathtt{X}])^2]$$
 $ext{Var}(\mathtt{X}) = \sum_{\mathtt{x}} \mathtt{p}(\mathtt{x})(\mathtt{x} - \mathtt{E}[\mathtt{X}])^2$

► The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$ext{Var}(ext{X}) = ext{E}[(ext{X} - ext{E}[ext{X}])^2] \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ex$$

• E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2

► The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$ext{Var}(extbf{X}) = ext{E}[(extbf{X} - extbf{E}[extbf{X}])^2] \ ext{Var}(extbf{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{var}(ext{x})(ext{x})(ext{x})(ext{x}) = \sum_{ ext{x}} ext{var}(ext{x})(ext{x})($$

- ▶ E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
 - $E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$
 - $Var(X) = 0.3(1 1.9)^2 + 0.5(2 1.9)^2 + 0.2(3 1.9)^2 = 0.49$

► The variance gives a measure of how much the values of a random variable X vary as we sample it from its probability distribution p(X).

$$ext{Var}(ext{X}) = ext{E}[(ext{X} - ext{E}[ext{X}])^2] \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{X}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{X}])^2 \ ext{Var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x} - ext{E}[ext{x}])^2 \ ext{var}(ext{x}) = \sum_{ ext{x}} ext{p}(ext{x})(ext{x})(ext{x})(ext{x})(ext{x}) = \sum_{ ext{x}} ext{var}(ext{x})(ext$$

- ▶ E.g., If $X : \{1, 2, 3\}$, and p(X = 1) = 0.3, p(X = 2) = 0.5, p(X = 3) = 0.2
 - $E[X] = 0.3 \times 1 + 0.5 \times 2 + 0.2 \times 3 = 1.9$
 - $Var(X) = 0.3(1 1.9)^2 + 0.5(2 1.9)^2 + 0.2(3 1.9)^2 = 0.49$
- The standard deviation, shown by σ , is the square root of the variance.

Covariance (1/2)

The covariance gives some sense of how much two values are linearly related to each other.

$$\begin{aligned} \mathtt{Cov}(\mathtt{X},\mathtt{Y}) &= \mathtt{E}[(\mathtt{X}-\mathtt{E}[\mathtt{X}])(\mathtt{Y}-\mathtt{E}[\mathtt{Y}])]\\ \mathtt{Cov}(\mathtt{X},\mathtt{Y}) &= \sum \sum_{(\mathtt{x},\mathtt{y})} \mathtt{p}(\mathtt{x},\mathtt{y})(\mathtt{x}-\mathtt{E}[\mathtt{X}])(\mathtt{y}-\mathtt{E}[\mathtt{Y}]) \end{aligned}$$

KTH VETENSKAP OCH KONST

Covariance (2/2)

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
Х	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

KTH VETENSKAP OCH KONST

Covariance (2/2)

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
Х	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$E[X] = \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2}$$
 $E[Y] = \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2$

KTH VETENSKAP OCH KONST

Covariance (2/2)

			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
Х	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$\begin{split} E[X] &= \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2} \qquad E[Y] = \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2 \\ Cov(X, Y) &= \sum \sum_{(x,y)} p(x, y)(x - E[X])(y - E[Y]) \end{split}$$

KTH VETENSKAP OCH KONST

Covariance (2/2)

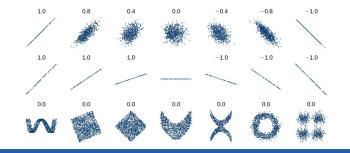
			Y		
	p(X, Y)	1	2	3	p(X)
	1	1/4	1/4	0	1/2
Х	2	0	1/4	1/4	1/2
	p(Y)	1/4	1/2	1/4	1

$$\begin{split} \mathsf{E}[\mathsf{X}] &= \frac{1}{2} \times 1 + \frac{1}{2} \times 2 = \frac{3}{2} \\ \mathsf{E}[\mathsf{Y}] &= \frac{1}{4} \times 1 + \frac{1}{2} \times 2 + \frac{1}{4} \times 3 = 2 \\ \mathsf{Cov}(\mathsf{X},\mathsf{Y}) &= \sum_{(\mathsf{x},\mathsf{y})} \mathsf{p}(\mathsf{x},\mathsf{y})(\mathsf{x} - \mathsf{E}[\mathsf{X}])(\mathsf{y} - \mathsf{E}[\mathsf{Y}]) \\ &= \frac{1}{4}(1 - \frac{3}{2})(1 - 2) + \frac{1}{4}(1 - \frac{3}{2})(2 - 2) + 0(1 - \frac{3}{2})(3 - 2) \\ &+ 0(2 - \frac{3}{2})(1 - 2) + \frac{1}{4}(2 - \frac{3}{2})(2 - 2) + \frac{1}{4}(2 - \frac{3}{2})(3 - 2) = \frac{1}{4} \end{split}$$

Correlation Coefficient

► The Correlation coefficient is a quantity that measures the strength of the association (or dependence) between two random variables, e.g., X and Y.

$$ho(\mathtt{X}, \mathtt{Y}) = rac{\mathtt{Cov}(\mathtt{X}, \mathtt{Y})}{\sigma(\mathtt{X})\sigma(\mathtt{Y})}$$



 Let X : {x⁽¹⁾, x⁽²⁾, · · · , x^(m)} be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.

- Let X : {x⁽¹⁾, x⁽²⁾, · · · , x^(m)} be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.
 - For six tosses of a coin, X : {h,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.

- Let X : {x⁽¹⁾, x⁽²⁾, · · · , x^(m)} be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.
 - For six tosses of a coin, X : {h,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.

• $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.

- Let X : {x⁽¹⁾, x⁽²⁾, · · · , x^(m)} be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.
 - For six tosses of a coin, X : {h,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.
- $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.
- $p(X = h | \theta)$ is the likelihood of θ given X = h.

- Let X : {x⁽¹⁾, x⁽²⁾, · · · , x^(m)} be a discrete random variable drawn independently from a distribution probability p depending on a parameter θ.
 - For six tosses of a coin, X : {h,t,t,h,t}, h: head, and t: tail.
 - Suppose you have a coin with probability θ to land heads and (1θ) to land tails.
- $p(X \mid \theta = \frac{2}{3})$ is the probability of X given $\theta = \frac{2}{3}$.
- $p(X = h | \theta)$ is the likelihood of θ given X = h.
- Likelihood (L): a function of the parameters (θ) of a probability model, given specific observed data, e.g., X = h.

$$L(\theta \mid X) = p(X \mid \theta)$$

- ► The likelihood differs from that of a probability.
- A probability $p(X | \theta)$ refers to the occurrence of future events.
- ► A likelihood $L(\theta \mid X)$ refers to past events with known outcomes.

Maximum Likelihood Estimator

► If samples in X are independent we have:

$$\begin{split} \mathsf{L}(\theta \mid \mathsf{X}) &= \mathsf{p}(\mathsf{X} \mid \theta) = \mathsf{p}(\mathsf{x}^{(1)}, \mathsf{x}^{(2)}, \cdots, \mathsf{x}^{(\mathsf{m})} \mid \theta) \\ &= \mathsf{p}(\mathsf{x}^{(1)} \mid \theta) \mathsf{p}(\mathsf{x}^{(2)} \mid \theta) \cdots \mathsf{p}(\mathsf{x}^{(\mathsf{m})} \mid \theta) = \prod_{i=1}^{\mathsf{m}} \mathsf{p}(\mathsf{x}^{(i)} \mid \theta) \end{split}$$

Maximum Likelihood Estimator

► If samples in X are independent we have:

$$\begin{split} \mathsf{L}(\theta \mid \mathsf{X}) &= \mathsf{p}(\mathsf{X} \mid \theta) = \mathsf{p}(\mathsf{x}^{(1)}, \mathsf{x}^{(2)}, \cdots, \mathsf{x}^{(\mathsf{m})} \mid \theta) \\ &= \mathsf{p}(\mathsf{x}^{(1)} \mid \theta) \mathsf{p}(\mathsf{x}^{(2)} \mid \theta) \cdots \mathsf{p}(\mathsf{x}^{(\mathsf{m})} \mid \theta) = \prod_{i=1}^{\mathsf{m}} \mathsf{p}(\mathsf{x}^{(i)} \mid \theta) \end{split}$$

The maximum likelihood estimator (MLE): what is the most likely value of θ given the training set?

$$\widehat{\theta}_{\texttt{MLE}} = \arg\max_{\theta} \texttt{L}(\theta \mid \texttt{X}) = \arg\max_{\theta} \prod_{\texttt{i}=1}^{\texttt{m}} \texttt{p}(\texttt{x}^{\texttt{(i)}} \mid \theta)$$

Maximum Likelihood Estimator - Example

- Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- ▶ Data: $X : \{h, t, t, t, h, t\}$

Maximum Likelihood Estimator - Example

- Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- \blacktriangleright Data: X : {h,t,t,h,t}
- The likelihood is

$$\begin{split} \mathsf{L}(\theta \mid \mathsf{X}) &= \mathsf{p}(\mathsf{X} \mid \theta) \\ &= \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \\ &= \theta(1 - \theta)(1 - \theta)(1 - \theta)\theta(1 - \theta) \\ &= \theta^2(1 - \theta)^4 \end{split}$$

Maximum Likelihood Estimator - Example

- Six tosses of a coin, with the following model:
 - Possible outcomes: h with probability of θ , and t with probability (1θ) .
 - Results of coin tosses are independent of one another.
- \blacktriangleright Data: X : {h,t,t,h,t}
- The likelihood is

$$\begin{split} \mathsf{L}(\theta \mid \mathsf{X}) &= \mathsf{p}(\mathsf{X} \mid \theta) \\ &= \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{h} \mid \theta) \mathsf{p}(\mathsf{X} = \mathsf{t} \mid \theta) \\ &= \theta(1 - \theta)(1 - \theta)(1 - \theta)\theta(1 - \theta) \\ &= \theta^2(1 - \theta)^4 \end{split}$$

• $\hat{\theta}$ is the value of θ that maximizes the likelihood:

$$\widehat{ heta}_{ extsf{MLE}} = rg\max_{ heta} \mathtt{L}(heta \mid \mathtt{X}) = rac{2}{2+4}$$

0

• The MLE product is prone to numerical underflow.

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} \mathtt{L}(\theta \mid \mathtt{X}) = \arg \max_{\theta} \prod_{\mathtt{i}=1}^{\mathtt{m}} \mathtt{p}(\mathtt{x}^{(\mathtt{i})} \mid \theta)$$

• The MLE product is prone to numerical underflow.

$$\widehat{\theta}_{\texttt{MLE}} = \arg\max_{\theta} \texttt{L}(\theta \mid \texttt{X}) = \arg\max_{\theta} \prod_{\texttt{i}=1}^{\texttt{m}} \texttt{p}(\texttt{x}^{\texttt{(i)}} \mid \theta)$$

► To overcome this problem we can use the logarithm of the likelihood.

• It does not change its arg max, but transforms a product into a sum.

$$\widehat{ heta}_{\mathtt{MLE}} = \arg\max_{ heta} \sum_{\mathtt{i}=1}^{\mathtt{m}} \mathtt{logp}(\mathtt{x}^{(\mathtt{i})} \mid heta)$$

Negative Log-Likelihood

• Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$

Negative Log-Likelihood

- Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ► Log-Likelihood: $logL(\theta \mid X) = log \prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$

Negative Log-Likelihood

- Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ▶ Log-Likelihood: $logL(\theta \mid X) = log \prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$
- ▶ Negative Log-Likelihood: $-\log L(\theta \mid X) = -\sum_{i=1}^{m} \log (x^{(i)} \mid \theta)$

Negative Log-Likelihood

- Likelihood: $L(\theta \mid X) = \prod_{i=1}^{m} p(x^{(i)} \mid \theta)$
- ► Log-Likelihood: $logL(\theta \mid X) = log\prod_{i=1}^{m} p(x^{(i)} \mid \theta) = \sum_{i=1}^{m} logp(x^{(i)} \mid \theta)$
- ▶ Negative Log-Likelihood: $-\log L(\theta \mid X) = -\sum_{i=1}^{m} \log (x^{(i)} \mid \theta)$
- Negative log-likelihood is also called the cross-entropy

- ► Coss-entropy: quantify the difference (error) between two probability distributions.
- ► How close is the predicted distribution to the true distribution?

$$\mathtt{H}(\mathtt{p},\mathtt{q}) = -\sum_{\mathtt{x}} \mathtt{p}(\mathtt{x}) \mathtt{log}(\mathtt{q}(\mathtt{x}))$$

▶ Where p is the true distribution, and q the predicted distribution.

- Six tosses of a coin: $X : \{h, t, t, t, h, t\}$
- The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- The predicted distribution q: h with probability of θ , and t with probability (1θ) .

- Six tosses of a coin: $X : \{h, t, t, t, h, t\}$
- The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_x p(x)\log(q(x))$ = $-p(h)\log(q(h)) - p(t)\log(q(t)) = -\frac{2}{6}\log(\theta) - \frac{4}{6}\log(1-\theta)$

- Six tosses of a coin: $X : \{h, t, t, t, h, t\}$
- The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_x p(x)\log(q(x))$ = $-p(h)\log(q(h)) - p(t)\log(q(t)) = -\frac{2}{6}\log(\theta) - \frac{4}{6}\log(1-\theta)$
- Likelihood: $\theta^2(1-\theta)^4$

- Six tosses of a coin: $X : \{h, t, t, t, h, t\}$
- The true distribution p: $p(h) = \frac{2}{6}$ and $p(t) = \frac{4}{6}$
- The predicted distribution q: h with probability of θ , and t with probability (1θ) .
- ► Cross entropy: $H(p,q) = -\sum_x p(x)\log(q(x))$ = $-p(h)\log(q(h)) - p(t)\log(q(t)) = -\frac{2}{6}\log(\theta) - \frac{4}{6}\log(1-\theta)$
- Likelihood: $\theta^2(1-\theta)^4$
- ▶ Negative log likelihood: $-\log(\theta^2(1-\theta)^4) = -2\log(\theta) 4\log(1-\theta)$

Summary

- Logic-based AI, Machine Learning, Deep Learning
- Deep Learning models
 - Deep Feed Forward
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - Transformer
- Linear algebra and probability
 - Random variables
 - Probability distribution
 - Likelihood
 - Negative log-likelihood and cross-entropy

▶ Ian Goodfellow et al., Deep Learning (Ch. 1, 2, 3)

Questions?

Acknowledgements

Some of the pictures were copied from the book Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurelien Geron, O'Reilly Media, 2017.

