iﬁéﬁm B éi}
"“%3;4’:‘.?“ ©

More on Supervised Learning

Amir H. Payberah
payberah@kth.se
2021-11-17

The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/6s5jy46a

https://tinyurl.com/6s5jy46a

Where Are We?

Deep Learning

Distributed Learning

Deep Feedforward Network || Training Feedforward Network

Machine Learning

I Regression ” Classification IIMore Supervised Learningl

I Spark ML |

Where Are We?

Deep Learning

Distributed Learning

Deep Feedforward Network | Training Feedforward Network

Machine Learning

| Regression ” Classification kEEore Supervised Learnina

| Spark ML I

Let's Start with an Example

Buying Computer Example (1/3)

» Given the dataset of m people.

id age income | student | credit rating | buys computer
1 youth high no fair no
2 youth high no excellent no
3 | middleage | high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes

» Predict if a new person buys a computer?

(1) (1) (1) (1) _

» Given an instance x(i), e.g., x; ~ = senior, x5’ = medium, x5’ =no, and x5’ =
fair, then y(t) =2

Buying Computer Example (2/3)

id age income | student | credit rating | buys computer
1 youth high no fair no
2 youth high no excellent no
3 | middleage high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes

middle_aged

yes

youth

senior

credit_rating?
ir

fa

excellent

Buying Computer Example (3/3)

Given an input instance x(1) for which the class label y(i) is unknown.

>

» The attribute values of the input (e.g., age or income) are tested.

> A path is traced from the root to a leaf node, which holds the class prediction for
that input.

» E.g., input x(!) with xgi) = senior, xgi) = medium, xgi) =no, and xgi) = fair.

middle__aged

yes

senior

credit_rating?

excellent

youth

fair

Decision Tree

Decision Tree

» A decision tree is a flowchart-like tree structure.
e The topmost node: represents the root
e Each internal node: denotes a test on an attribute

e Each branch: represents an outcome of the test
e Each leaf: holds a class label

middle__aged

yes

youth

senior

credit_rating?

fair

excellent

Training Algorithm (1/2)

» Decision trees are constructed in a top-down recursive divide-and-conquer manner.

> The algorithm is called with the following parameters.

o Data partition D: initially the complete set of training data and labels D = (X, y).

e Feature list: list of features {x(li)7 e ,xfli)} of each data instance x(),

e Feature selection method: determines the splitting criterion.

Training Algorithm (2/2)

» 1. The tree starts as a single node, N, representing the training data instances D.

» 2. If all instances x in D are all of the same class, then node N becomes a leaf.

» 3. The algorithm calls feature selection method to determine the splitting criterion.
e Indicates (i) the splitting feature x, and (ii) a split-point or a splitting subset.
e The instances in D are partitioned accordingly.

» 4. The algorithm repeats the same process recursively to form a decision tree.

Training Algorithm - Termination Conditions

>

The training algorithm stops only when any one of the following conditions is true.

v

1. All the instances in partition D at a node N belong to the same class.
e It is labeled with that class.

» 2. No remaining features on which the instances may be further partitioned.

» 3. There are no instances for a given branch, that is, a partition Dj is empty.

In conditions 2 and 3:
e Convert node N into a leaf.
e Label it either with the most common class in D.
¢ Or, the class distribution of the node tuples may be stored.

v

Training Algorithm - Partitioning Instances (1/3)

» Assume A is the splitting feature

» Three possibilities to partition instances in D based on the feature A.

» 1. A is discrete-valued

e Assume A has v distinct values {aj,as, -+ ,ay}
* A branch is created for each known value a; of A and labeled with that value.

* Partition Dj is the subset of tuples in D having value aj of A.

Fiant &

Ipa

a ay .. a,
/

/LN

— wnIpay
K3

&
~

Training Algorithm - Partitioning Instances (2/3)

» 2. A is discrete-valued

e A binary tree must be produced.

e The test at node N is of the form A € S,7, where S, is the splitting subset for A.

e The left branch out of N corresponds to the instances in D that satisfy the test.

e The right branch out of N corresponds to the instances in D that do not satisfy the test.

color € {red, green }?

yes no yes no

/ N/ A\

Training Algorithm - Partitioning Instances (3/3)

» 3. A is continuous-valued
e A test at node N has two possible outcomes: corresponds to A < s or A > s, with s as
the split point.
e The instances are partitioned such that D; holds the instances in D for which A < s,
while Dy holds the rest.
e Two branches are labeled according to the previous outcomes.

A< split_point A> splir_point =42,000 > 42,000

/ N\ / \

Training Algorithm - Feature Selection Measures (1/2)

» Feature selection measure: how to split instances at a node N.

» Pure partition: if all instances in a partition belong to the same class.

» The best splitting criterion is the one that most closely results in a pure scenario.

Training Algorithm - Feature Selection Measures (2/2)

» It provides a ranking for each feature describing the given training instances.

» The feature having the best score for the measure is chosen as the splitting feature

for the given instances.

» Two popular feature selection measures are:

¢ Information gain (ID3)
e Gini index (CART)

Information Gain (Entropy)

ID3 (1/7)

» ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.

» The feature with the highest information gain is chosen as the splitting feature for
node N.

» The information gain is based on the decrease in entropy after a dataset is split on
a feature.

ID3 (2/7)

>

What's entropy?

v

The average information needed to identify the class label of an instance in D.

entropy(D) = — > pi logy(ps)
i=1

>

» D's entropy is zero when it contains instances of only one class (pure partition).

pi is the probability that an instance in D belongs to class i, with m distinct classes.

ID3 (3/7)

RID age income student _credit_rating _ Class: buys_computer
T youth high o fair no
2 youth high no excellent no
3 middle.aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middleaged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes

1 youth medium yes excellent yes

12 middleaged medium no excellent yes

13 middleaged high yes fair yes

14 senior medium no excellent no

entropy(D) = — > ps log,(ps)
i=1

label = buys_computer = m = 2

5
entropy(D) = ogQ(ﬁ) R Iogz(ﬁ) =0.94

9|
14

ID3 (4/7)

>

Suppose we want to partition instances in D on some feature A with v distinct values,

{a17a27 T 7av}-

v

A can split D into v partitions {Dy,Da, -+ ,Dy}.

v

The expected information required to classify an instance from D based on the par-
titioning by A is:

entropy(A,D) = Z |DJ|entropy(Dj)
j=1

> @ is the weight of the jth partition.
» The smaller the expected information required, the greater the purity of the partitions.

ID3 (5/7)

middle_aged_ senior
income student credit_rating class income student | credit_rating class
high no fair no medium | no fair yes
high no excellent no low yes fair yes
medium | no fair no low Yes excellent no
Tow yes fair es medium | yes fair yes
medium | yes excellent Yes medium | no excellent 1o

income | student | credit_rating | class

high no fair yes

low yes excellent yes

medium | no excellent Yes

high yes fair yes

entropy(A,D) = Z |—Jentropy(Dj)

5 4 5
entropy(age,D) = ﬁentropy(Dyouth) + entropy(Dmlddle aged) + ﬁentropy(Dsenior)

2 (2 loga(2) — 2 108s(0)) o5 (5 1oga(5)) + 2 (2 loga(2) — = logy(5)) = 0694

entropy(age,D) =

ID3 (6/7)

» The information gain Gain(A,D) is defined as:

Gain(A,D) = entropy(D) — entropy(A,D)

> It shows how much would be gained by branching on A.

» The feature A with the highest Gain(A,D) is chosen as the splitting feature at node
N.

ID3 (7/7)

» Now, we can compute the information gain Gain(A) for the feature A = age.

Gain(age,D) = entropy(D) — entropy(age,D) = 0.940 — 0.694 = 0.246

> Similarly we have:
¢ Gain(income,D) = 0.029
e Gain(student,D) = 0.151
e Gain(credit_rating,D) = 0.048

> The age has the highest information gain among the attributes, it is selected as the
splitting feature.

Gini Impurity

CART (1/8)

>
» It uses the Gini index to measure the misclassification (impurity of D).
m
Gini(D) =1— Y p}
i=t
> p; is the probability that an instance in D belongs to class i, with m distinct classes.

>

CART (Classification And Regression Tree) considers a binary split for each feature.

It will be zero if all partitions are pure. Why?

v

We need to determine the splitting criterion: splitting feature + splitting subset.

CART (2/8)

» Assume A is a discrete-valued feature with v distinct values, {a;, as, -+ ,ay}, occur-
ring in D.
» S, will be all possible subsets of A.
e E.g., A=income = {low,medium, high}

e 8y = {{low,medium, high}, {low,medium}, {medium, high}, {low, high},
{low}, (mediun}, {nign}, {}}

e The test is of the form Dy € 5,7, where s, is a subset of Sy, e.g., sy = {low,high}.

CART (3/8)

RID age income student credit_rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle.aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no

m
Gini(D) =1- > p?
i=1

label = buys_computer = m = 2
9
14

5
)2 — (ﬂf = 0.459

Gini(D) =1 — (

CART (4/8)

» If a binary split on A partitions D into D; and Dy, the Gini index of D given that
partitioning is:

|D4 |

D

|Dy|

Gini(A,D) = Gini(Dy) + T(;1111(132)

» The subset that gives the minimum Gini index is selected as its splitting subset.

CART (5/8)

> For a feature A = income, we consider each of the possible splitting subsets.
e 8y = {{low,medium, high}, {low,medium}, {medium, high}, {low, high},
{Low}, {mediun}, {nigh}, {}}

» Assume, we choose the splitting subset s, = {low,medium}.

» Consider partition Dy satisfies the condition Dy € s,, and Dy does not.

. 10 . . 4 ..
Glnlincomee{low,medium} (AaD) = EGlnl(Dl) + ﬁGlnl(D2)
10 7 3

— 7G. . 1 o o 2 o -
1t~ (5) = (55

Z-CGr-(5)) =04

)?) +

CART (6/8)

» Similarly, we calculate the Gini index values for splits on the remaining subsets.

Giniincomee{low,medium} (Av D) = Giniincomee{high} (A7 D) = 0.443
Giniincomee{low,high} (Aa D) - Giniincomee{medium} (A' D) = 0.458
Giniincomee{medium,high} (A> D) = Giniincomee{low} (A7 D) = 0.450

» The best binary split for attribute A = income is on sy = {low,medium} because it
minimizes the Gini index.

CART (7/8)

» But, which feature?
» The reduction in impurity that would be incurred by a binary split on feature A is:

AGini(A) = Gini(D) — Gini(A,D)

» The feature that maximizes the reduction in impurity (has the minimum Gini index)
is selected as the splitting feature.

CART (8/8)

» Now, we can compute the information gain Gain(A) for different features.
e AGini(income) = 0.459 — 0.443 = 0.016
« AGini(age) = 0.459 — 0.357 = 0.102
¢ AGini(student) = 0.459 — 0.367 = 0.092
e AGini(credit rating) = 0.459 — 0.429 = 0.03

» The feature A = age and splitting subset sy, = {youth, senior} gives the minimum
Gini index overall.

Decision Tree in Spark (1/4)

» Two classes in spark.ml.

> Regression: DecisionTreeRegressor

val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)

» Classifier: DecisionTreeClassifier

val dt_classifier = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features")
val model = dt_classifier.fit(trainingData)

val predictions = model.transform(testData)

predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)

Decision Tree in Spark (2/4)

Input and output columns
labelCol and featuresCol identify label and features column’s names.
predictionCol indicates the predicted label.

rawPredictionCol is a vector of length of number of classes, with the counts of
training instance labels at the tree node which makes the prediction.

probabilityCol is a vector of length of number of classes equal to rawPrediction
normalized to a multinomial distribution.

Decision Tree in Spark (3/4)

» Tunable parameters

» maxBins: number of bins used when discretizing continuous features.

> impurity: impurity measure used to choose between candidate splits, e.g., entropy

and gini.

val maxBins = ...
val dt_classifier = new DecisionTreeClassifier () .setMaxBins(maxBins).setImpurity("gini")

val
val
val
val

Decision Tree in Spark (4/4)

Stopping criteria that determines when the tree stops building.
maxDepth: maximum depth of a tree.

minInstancesPerNode: for a node to be split further, each of its children must
receive at least this number of training instances.

minInfoGain: for a node to be split further, the split must improve at least this

much (in terms of information gain).

maxDepth = ...
minInstancesPerNode = ...

minInfoGain = ...

dt_classifier = new DecisionTreeClassifier()
.setMaxDepth (maxDepth)
.setMinInstancesPerNode (minInstancesPerNode)
.setMinInfoGain(minInfoGain)

Ensemble Methods

Wisdom of the Crowd

Ask a complex question to thousands of random people, then aggregate their answers.
In many cases, this aggregated answer is better than an expert's answer.
This is called the wisdom of the crowd.

Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or
regressors), often gets better estimations than with the best individual estimator.

A group of estimators is an ensemble, and this technique is called Ensemble Learning.

Ensemble Learning

» Two main categories of ensemble learning algorithms.

» Bagging
e Use the same training algorithm for every estimator, but to train them on different
random subsets of the training set.
e E.g., random forest

» Boosting

e Train estimators sequentially, each trying to correct its predecessor.
e E.g., adaboost and gradient boosting

Random Forest

» Random forest builds multiple decision trees that are most of the time trained with
the bagging method.

> |t, then, merges the trees together to get a more accurate and stable prediction.

X

e
R\ me (.. (‘5 /h\
L

®
|

Y

Random Forest in Spark (1/2)

» Two classes in spark.ml.

> Regression: RandomForestRegressor

val rf_regressor = new RandomForestRegressor().setLabelCol("label")
.setFeaturesCol ("features") . setNumTrees (10)
val model = rf_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)

» Classifier: RandomForestClassifier

val rf_classifier = new RandomForestClassifier().setLabelCol("label")
.setFeaturesCol ("features") .setNumTrees (10)

val model = rf_classifier.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)

Random Forest in Spark (2/2)

» numTrees: number of trees in the forest.

» subsamplingRate: specifies the size of the dataset used for training each tree in
the forest, as a fraction of the size of the original dataset.

e Default is 1.0 and decreasing it can speed up training.

» featureSubsetStrategy: number of features to use as candidates for splitting at
each tree node, as a fraction of the total number of features.

e Possible values: auto, all, onethird, sqrt, log2, n

AdaBoost

» AdaBoost: train a new estimator by paying more attention to the training instances
that the predecessor underfitted.

» Each estimator is trained on a random subset of the total training set.

» AdaBoost assigns a weight to each training instance, which determines the probability
that each instance should appear in the training set.

[o] [ler] [e]

e

[[o] [e

Gradient Boosting (1/3)

» Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an
ensemble, each one correcting its predecessor.

» However, instead of tweaking the instance weights at every iteration, this method
tries to fit the new estimator to the residual errors made by the previous estimator.

Gradient Boosting (2/3)

> Let's go through a regression example using Gradient Boosted Regression Trees.
» Fit the first estimator on the training set.

tree_regl = DecisionTreeRegressor (max_depth=2)
tree_regl.fit(X, y)

» Now train the second estimator on the residual errors made by the first estimator.

y2 = y - tree_regl.predict(X)
tree_reg2 = DecisionTreeRegressor (max_depth=2)
tree_reg2.fit (X, y2)

Gradient Boosting (3/3)

» Then we train the third estimator on the residual errors made by the second estimator.

y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor (max_depth=2)

tree_reg3.fit(X, y3)
» Now we have an ensemble containing three trees.
» It can make predictions on a new instance simply by adding up the predictions of all

the trees.

y_pred = sum(tree.predict(X_new) for tree in (tree_regl, tree_reg2, tree_reg3))

Gradient Boosting in Spark

» Two classes in spark.ml.

> Regression: GBTRegressor

val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("features")
.setMaxIter(10) .setFeatureSubsetStrategy("auto")

val model = gbt.fit(trainingData)
val predictions = model.transform(testData)

» Classifier: GBTClassifier

val gbt = new GBTClassifier().setLabelCol("label").setFeaturesCol("features")
.setMaxIter (10) .setFeatureSubsetStrategy("auto")

val model = gbt.fit(trainingData)
val predictions = model.transform(testData)

Summary

Summary

» Decision tree
e Top-down training algorithm
e Termination condition
e Feature selection: entropy, gini

» Ensemble models

e Bagging: random forest
e Boosting: AdaBoost, Gradient Boosting

Reference

» Aurélien Géron, Hands-On Machine Learning (Ch. 5, 6, 7)

» Matei Zaharia et al., Spark - The Definitive Guide (Ch. 27)

Questions?

