
Deep Feedforwards Networks

Amir H. Payberah
payberah@kth.se

2021-11-18



The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/6s5jy46a

1 / 63

https://tinyurl.com/6s5jy46a


Where Are We?

2 / 63



Where Are We?

3 / 63



Biological Neurons (1/2)

I Brain architecture has inspired artificial neural networks.

I A biological neuron is composed of
• Cell body, many dendrites (branching extensions), one axon (long extension), synapses

I Biological neurons receive signals from other neurons via these synapses.

I When a neuron receives a sufficient number of signals within a few milliseconds, it
fires its own signals.

4 / 63



Biological Neurons (2/2)

I Biological neurons are organized in a vast network of billions of neurons.

I Each neuron typically is connected to thousands of other neurons.

5 / 63



A Simple Artificial Neural Network

I One or more binary inputs and one binary output

I Activates its output when more than a certain number of its inputs are active.

[A. Geron, O’Reilly Media, 2017]

6 / 63



The Linear Threshold Unit (LTU)

I Inputs of a LTU are numbers (not binary).

I Each input connection is associated with a weight.

I Computes a weighted sum of its inputs and applies a step function to that sum.

I z = w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I ŷ = step(z) = step(wᵀx)

7 / 63



The Perceptron

I The perceptron is a single layer of LTUs.

I The input neurons output whatever input they are fed.

I A bias neuron, which just outputs 1 all the time.

I If we use logistic function (sigmoid) instead of a step function, it computes a con-
tinuous output.

8 / 63



How is a Perceptron Trained? (1/2)

I The Perceptron training algorithm is inspired by Hebb’s rule.

I When a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger.

9 / 63



How is a Perceptron Trained? (2/2)

I Feed one training instance x to each neuron j at a time and make its prediction ŷ.

I Update the connection weights.

ŷj = σ(wᵀ
jx + b)

J(wj) = cross entropy(yj, ŷj)

w
(next)
i,j = wi,j − η ∂J(wj)

wi

I wi,j: the weight between neurons i and j.

I xi: the ith input value.

I ŷj: the jth predicted output value.

I yj: the jth true output value.

I η: the learning rate.

10 / 63



Perceptron in TensorFlow

11 / 63



Perceptron in TensorFlow

n_neurons = 3

n_features = 2

model = keras.models.Sequential()

model.add(keras.layers.Dense(n_neurons, input_shape=(n_features,), activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])

model.fit(X_train, y_train, epochs=30)

12 / 63



Multi-Layer Perceptron (MLP)

13 / 63



Perceptron Weakness (1/2)

I Incapable of solving some trivial problems, e.g., XOR classification problem. Why?

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0



14 / 63



Perceptron Weakness (2/2)

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0

 ŷ = step(z), z = w1x1 + w2x2 + b

J(w) =
1

4

∑
x∈X

(ŷ(x)− y(x))2

I If we minimize J(w), we obtain w1 = 0, w2 = 0, and b = 1
2

.

I But, the model outputs 0.5 everywhere.

15 / 63



Multi-Layer Perceptron (MLP)

I The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.

I The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward
neural network.

16 / 63



Feedforward Neural Network Architecture

I A feedforward neural network is composed of:
• One input layer
• One or more hidden layers
• One final output layer

I Every layer except the output layer includes a bias neuron and is fully connected to
the next layer.

17 / 63



How Does it Work?

I The model is associated with a directed acyclic graph
describing how the functions are composed together.

I E.g., assume a network with just a single neuron in each layer.

I Also assume we have three functions f(1) , f(2), and
f(3) connected in a chain: ŷ = f(x) = f(3)(f(2)(f(1)(x)))

I f(1) is called the first layer of the network.

I f(2) is called the second layer, and so on.

I The length of the chain gives the depth of the model.

18 / 63



XOR with Feedforward Neural Network (1/3)

X =


0 0

0 1

1 0

1 1

 y =


0

1

1

0

 Wx =

[
1 1

1 1

]
bx =

[
−1.5
−0.5

]

19 / 63



XOR with Feedforward Neural Network (2/3)

outh = XWᵀ
x + bx =


−1.5 −0.5
−0.5 0.5
−0.5 0.5
0.5 1.5

 h = step(outh) =


0 0

0 1

0 1

1 1


wh =

[
−1

1

]
bh = −0.5

20 / 63



XOR with Feedforward Neural Network (3/3)

out = wᵀ
hh + bh =


−0.5
0.5
0.5
−0.5

 step(out) =


0

1

1

0



21 / 63



How to Learn Model Parameters W?

22 / 63



Feedforward Neural Network - Cost Function

I We use the cross-entropy (minimizing the negative log-likelihood) between the train-
ing data y and the model’s predictions ŷ as the cost function.

cost(y, ŷ) = −
∑
j

yjlog(ŷj)

23 / 63



Gradient-Based Learning (1/2)

I The most significant difference between the linear models we have seen so far and
feedforward neural network?

I The non-linearity of a neural network causes its cost functions to become non-convex.

I Linear models, with convex cost function, guarantee to find global minimum.
• Convex optimization converges starting from any initial parameters.

24 / 63



Gradient-Based Learning (2/2)

I Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.

I It is sensitive to the values of the initial parameters.

I For feedforward neural networks, it is important to initialize all weights to small
random values.

I The biases may be initialized to zero or to small positive values.

25 / 63



Training Feedforward Neural Networks

I How to train a feedforward neural network?

I For each training instance x(i) the algorithm does the following steps:

1. Forward pass: make a prediction (compute ŷ(i) = f(x(i))).
2. Measure the error (compute cost(ŷ(i), y(i))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).

I It’s called the backpropagation training algorithm

26 / 63



Output Unit (1/3)

I Linear units in neurons of the output layer.

I Output function: ŷj = wᵀ
jh + bj.

I Cost function: minimizing the mean squared error.

27 / 63



Output Unit (2/3)

I Sigmoid units in neurons of the output layer (binomial classification).

I Output function: ŷj = σ(wᵀ
jh + bj).

I Cost function: minimizing the cross-entropy.

28 / 63



Output Unit (3/3)

I Softmax units in neurons of the output layer (multinomial classification).

I Output function: ŷj = softmax(wᵀ
jh + bj).

I Cost function: minimizing the cross-entropy.

29 / 63



Hidden Units

I In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

I Alternative activation functions:

1. Logistic function (sigmoid): σ(z) = 1
1+e−z

2. Hyperbolic tangent function: tanh(z) = 2σ(2z)− 1

3. Rectified linear units (ReLUs): ReLU(z) = max(0, z)

30 / 63



Feedforward Network in TensorFlow

31 / 63



Feedforward Network in TensorFlow

n_output = 3

n_hidden = 4

n_features = 2

model = keras.models.Sequential()

model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))

model.add(keras.layers.Dense(n_output, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])

model.fit(X_train, y_train, epochs=30)

32 / 63



Dive into Backpropagation Algorithm

33 / 63



[https://i.pinimg.com/originals/82/d9/2c/82d92c2c15c580c2b2fce65a83fe0b3f.jpg]

34 / 63



Chain Rule of Calculus (1/2)

I Assume x ∈ R, and two functions f and g, and also assume y = g(x) and z =
f(y) = f(g(x)).

I The chain rule of calculus is used to compute the derivatives of functions, e.g., z,
formed by composing other functions, e.g., g.

I Then the chain rule states that dz
dx

= dz
dy

dy
dx

I Example:
z = f(y) = 5y4 and y = g(x) = x3 + 7

dz

dx
=

dz

dy

dy

dx
dz

dy
= 20y3 and

dy

dx
= 3x2

dz

dx
= 20y3 × 3x2 = 20(x3 + 7)× 3x2

35 / 63



Chain Rule of Calculus (2/2)

I Two paths chain rule.

z = f(y1, y2) where y1 = g(x) and y2 = h(x)

∂z

∂x
=

∂z

∂y1

∂y1
∂x

+
∂z

∂y2

∂y2
∂x

36 / 63



Backpropagation

I Backpropagation training algorithm for MLPs

I The algorithm repeats the following steps:

1. Forward pass
2. Backward pass

37 / 63



Backpropagation - Forward Pass

I Calculates outputs given input patterns.

I For each training instance
• Feeds it to the network and computes the output of every neuron in each consecutive

layer.
• Measures the network’s output error (i.e., the difference between the true and the

predicted output of the network)
• Computes how much each neuron in the last hidden layer contributed to each output

neuron’s error.

38 / 63



Backpropagation - Backward Pass

I Updates weights by calculating gradients.

I Measures how much of these error contributions came from each neuron in the
previous hidden layer
• Proceeds until the algorithm reaches the input layer.

I The last step is the gradient descent step on all the connection weights in the network,
using the error gradients measured earlier.

39 / 63



Backpropagation Example

I Two inputs, two hidden, and two output neurons.

I Bias in hidden and output neurons.

I Logistic activation in all the neurons.

I Squared error function as the cost function.

40 / 63



Backpropagation - Forward Pass (1/3)

I Compute the output of the hidden layer

neth1 = w1x1 + w2x2 + b1 = 0.15× 0.05+ 0.2× 0.1+ 0.35 = 0.3775

outh1 =
1

1+ eneth1
=

1

1+ e0.3775
= 0.59327

outh2 = 0.59688

41 / 63



Backpropagation - Forward Pass (2/3)

I Compute the output of the output layer

neto1 = w5outh1 + w6outh2 + b2 = 0.4× 0.59327+ 0.45× 0.59688+ 0.6 = 1.1059

outo1 =
1

1+ eneto1
=

1

1+ e1.1059
= 0.75136

outo2 = 0.77292

42 / 63



Backpropagation - Forward Pass (3/3)

I Calculate the error for each output

Eo1 =
1

2
(targeto1 − outputo1)

2 =
1

2
(0.01− 0.75136)2 = 0.27481

Eo2 = 0.02356

Etotal =
∑ 1

2
(target− output)2 = Eo1 + Eo2 = 0.27481+ 0.02356 = 0.29837

43 / 63



[http://marimancusi.blogspot.com/2015/09/are-you-book-dragon.html]

44 / 63



Backpropagation - Backward Pass - Output Layer (1/6)

I Consider w5
I We want to know how much a change in w5 affects the total error (∂Etotal∂w5

)

I Applying the chain rule

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

45 / 63



Backpropagation - Backward Pass - Output Layer (2/6)

I First, how much does the total error change with respect to the output? (∂Etotal∂outo1
)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

Etotal =
1

2
(targeto1 − outo1)

2 +
1

2
(targeto2 − outo2)

2

∂Etotal

∂outo1
= −2

1

2
(targeto1 − outo1) = −(0.01− 0.75136) = 0.74136

46 / 63



Backpropagation - Backward Pass - Output Layer (3/6)

I Next, how much does the outo1 change with respect to its total input neto1?
(∂outo1∂neto1

)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

outo1 =
1

1+ e−neto1

∂outo1

∂neto1
= outo1(1− outo1) = 0.75136(1− 0.75136) = 0.18681

47 / 63



Backpropagation - Backward Pass - Output Layer (4/6)

I Finally, how much does the total neto1 change with respect to w5? (∂neto1∂w5
)

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5

neto1 = w5 × outh1 + w6 × outh2 + b2

∂neto1

∂w5
= outh1 = 0.59327

48 / 63



Backpropagation - Backward Pass - Output Layer (5/6)

I Putting it all together:

∂Etotal

∂w5
=
∂Etotal

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂w5
∂Etotal

∂w5
= 0.74136× 0.18681× 0.59327 = 0.08216

49 / 63



Backpropagation - Backward Pass - Output Layer (6/6)

I To decrease the error, we subtract this value from the current weight.

I We assume that the learning rate is η = 0.5.

w
(next)
5 = w5 − η ×

∂Etotal

∂w5
= 0.4− 0.5× 0.08216 = 0.35891

w
(next)
6 = 0.40866

w
(next)
7 = 0.5113

w
(next)
8 = 0.56137

50 / 63



[https://makeameme.org/meme/oooh-this]

51 / 63



Backpropagation - Backward Pass - Hidden Layer (1/8)

I Continue the backwards pass by calculating new values for w1, w2, w3, and w4.
I For w1 we have:

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1

52 / 63



Backpropagation - Backward Pass - Hidden Layer (2/8)

I Here, the output of each hidden layer neuron contributes to the output of multiple
output neurons.

I E.g., outh1 affects both outo1 and outo2, so ∂Etotal
∂outh1

needs to take into consideration
its effect on the both output neurons.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1
∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1

53 / 63



Backpropagation - Backward Pass - Hidden Layer (3/8)

I Starting with ∂Eo1
∂outh1

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
∂Eo1

∂outh1
=

∂Eo1

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂outh1
∂Eo1

∂outo1
= 0.74136,

∂outo1

∂neto1
= 0.18681

neto1 = w5 × outh1 + w6 × outh2 + b2

∂neto1

∂outh1
= w5 = 0.40

54 / 63



Backpropagation - Backward Pass - Hidden Layer (4/8)

I Plugging them together.

∂Eo1

∂outh1
=

∂Eo1

∂outo1
×
∂outo1

∂neto1
×
∂neto1

∂outh1
= 0.74136× 0.18681× 0.40 = 0.0554

∂Eo2

∂outh1
= −0.01905

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
= 0.0554+−0.01905 = 0.03635

55 / 63



Backpropagation - Backward Pass - Hidden Layer (5/8)

I Now we need to figure out ∂outh1
∂neth1

.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1

outh1 =
1

1+ e−neth1

∂outh1

∂neth1
= outh1(1− outh1) = 0.59327(1− 0.59327) = 0.2413

56 / 63



Backpropagation - Backward Pass - Hidden Layer (6/8)

I And then ∂neth1
∂w1

.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1

neth1 = w1x1 + w2x2 + b1

∂neth1

∂w1
= x1 = 0.05

57 / 63



Backpropagation - Backward Pass - Hidden Layer (7/8)

I Putting it all together.

∂Etotal

∂w1
=
∂Etotal

∂outh1
×
∂outh1

∂neth1
×
∂neth1

∂w1
∂Etotal

∂w1
= 0.03635× 0.2413× 0.05 = 0.00043

58 / 63



Backpropagation - Backward Pass - Hidden Layer (8/8)

I We can now update w1.

I Repeating this for w2, w3, and w4.

w
(next)
1 = w1 − η ×

∂Etotal

∂w1
= 0.15− 0.5× 0.00043 = 0.14978

w
(next)
2 = 0.19956

w
(next)
3 = 0.24975

w
(next)
4 = 0.2995

59 / 63



Summary

60 / 63



Summary

I LTU

I Perceptron

I Perceptron weakness

I MLP and feedforward neural network

I Gradient-based learning

I Backpropagation: forward pass and backward pass

I Output unit: linear, sigmoid, softmax

I Hidden units: sigmoid, tanh, relu

61 / 63



Reference

I Ian Goodfellow et al., Deep Learning (Ch. 6)

I Aurélien Géron, Hands-On Machine Learning (Ch. 10)

62 / 63



Questions?

63 / 63


