Training Deep Feedforwards Networks

Amir H. Payberah
payberah@kth.se
2021-11-24

The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/6s5jy46a

https://tinyurl.com/6s5jy46a

Where Are We?

Deep Learning

Distributed Learning

Deep Feedforward Network || Training Feedforward Network

Machine Learning

I Regression ” Classification IIMore Supervised Learningl

I Spark ML |

Where Are We?

Deep Learning

Distributed Learning

Deep Feedforward Network ining Feedforward Netw

Machine Learning

I Regression ” Classification ”More Supervised Learningl

Spark ML

Feedforward Neural Network Architecture

» A feedforward neural network is composed of:
e One input layer
e One or more hidden layers
¢ One final output layer

"\ Softmax
, output layer
.

*\ Hidden layer
’,’ (e.g., ReLU)

™ Input
_,’ layer

n_output =
n_hidden =
n_features

& w

2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))
model.add(keras.layers.Dense(n_output, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=30)

Challenges of Training Feedforward Neural Networks

>

Challenges ...

v

Overfitting: risk of overfitting a model with large number of parameters.

» Vanishing/exploding gradients: hard to train lower layers.
» Training speed: slow training with large networks. WARNING
CHALLENGES
AHEAD

Overfitting

WARNING

P

CHALLENGES
AHEAD

High Degree of Freedom and Overfitting Problem

>

With large number of parameters, a network has a high degree of freedom.

v

It can fit a huge variety of complex datasets.

v

This flexibility also means that it is prone to overfitting on training set.

W)

v

Let's reduce the degree of freedom a model.

.. .

Underfitting Desired Overfitting

Avoiding Overfitting

>

Early stopping

v

I1 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation

Avoiding Overfitting

>

Early stopping

v

11 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation

Early Stopping (1/2)

» As the training steps go by, its prediction error on the training/validation set naturally
goes down.

» After a while the validation error stops decreasing and starts to go back up.
e The model has started to overfit the training data.

> In the early stopping, we stop training when the validation error reaches a minimum.

Learning curves
T

e
9
>

*— Training set loss

0.15 — Validation set loss|

stop here

e
S

0.05f

Loss (negative log likelihood)

=4

0 l 50 100 150 200 250

Time (epochs)

Early Stopping (2/2)

from tensorflow.keras.callbacks import EarlyStopping
model = tf.keras.models.Sequential(...)
model.compile(optimizer=’sgd’, loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’])

earlystop_callback = EarlyStopping(monitor=’accuracy’, min_delta=0.05, patience=1)

model.fit(x_train, y_train, epochs=500, callbacks=[earlystop_callback])

Avoiding Overfitting

>

Early stopping

v

I1 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation

I1 and /2 Regularization (1/3)

» Penalize large values of weights wj.

J(w) = J(w) + AR(w)

» Two questions:

1. How should we define R(w)?
2. How do we determine \?

I1 and /2 Regularization (2/3)

» /1 regression: R(w) = A>_}_, |w;| is added to the cost function.

J(w) = J(w) + A Z s |

keras.layers.Dense(100, activation="relu", kernel_regularizer=keras.regularizers.11(0.1))

I1 and /2 Regularization (3/3)

> /2 regression: R(w) =AY 5_, w? is added to the cost function.

i

J(w) = J(w) + A Z w2

keras.layers.Dense(100, activation="relu", kernel_regularizer=keras.regularizers.12(0.01))

Avoiding Overfitting

» Early stopping

» /1 and /2 regularization
» Max-norm regularization
» Dropout

» Data augmentation

Max-Norm Regularization

» Max-norm regularization: constrains the weights wj of the incoming connections for
each neuron j.

e Prevents them from getting too large.

» After each training step, clip wy as below, if ||wj||2 > r:
T

Wy ¢ Wi
T lwll

e r is the max-norm hyperparameter
1
* wslla = (25 wiy)2 = \/w%,j SRR =

keras.layers.Dense(100, activation="relu", kernel_constraint=keras.constraints.max_norm(1.))

Avoiding Overfitting

>

Early stopping

v

I1 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation

Dropout (1/4)

» Would a company perform better if its employees were told to toss a coin every
morning to decide whether or not to go to work?

Dropout (2/4)

> At each training step, each neuron drops out temporarily with a probability p.
e The hyperparameter p is called the dropout rate.
* A neuron will be entirely ignored during this training step.
e |t may be active during the next step.
e Exclude the output neurons.

» After training, neurons don't get dropped anymore.

Dropout (3/4)

» Each neuron can be either present or absent.

ORNONNORNO.
» 2% possible networks, where N is the total o“@ 0‘@ @,@ 2
number of droppable neurons. ‘ O O @ OXC
()

)

2

@

e N =4 in this figure. *
T —

Base network

Ol ®

O,
©x6 046
o © ey\e
©)
©),
®
Ol oo ®

Ensemble of Sub-Networks L

Dropout (4/4)

model = keras.models.Sequential ([

D

keras.
keras
keras
keras.
keras.

layers.
.layers.
.layers.
layers.
layers.

Flatten(input_shape=[28, 28]),
Dropout (rate=0.2),
Dense (128, activation="relu"),
Dropout (rate=0.2),
Dense (10, activation="softmax")

Avoiding Overfitting

>

Early stopping

v

11 and /2 regularization

» Max-norm regularization

v

Dropout

v

Data augmentation

Data Augmentation

» One way to make a model generalize better is to train it on more data.

» This will reduce overfitting.

» Create fake data and add it to the training set.

e E.g., in an image classification we can slightly
shift, rotate and resize an image.

e Add the resulting pictures to the training set.

Vanishing /Exploding Gradients

WARNING

S

CHALLENGES
AHEAD

Vanishing/Exploding Gradients Problem (1/4)

» The backpropagation goes from output to input layer, and propagates the error
gradient on the way.

0J(w)
ow

w(next) —w—n

» Gradients often get smaller and smaller as the algorithm progresses down to the lower
layers.

> As a result, the gradient descent update leaves the lower layer connection weights
virtually unchanged.

» This is called the vanishing gradients problem.

Vanishing/Exploding Gradients Problem (2/4)

» Assume a network with just a single neuron in each layer.

O . @ wy @ wy m wy ‘O—»F
* Wi, Wy, - are the weights

* by,by, - are the biases
e Cis the cost function

» The output aj from the jth neuron is o(z;).
e o is the sigmoid activation function
* zj =w;jaj—1 + b
e E.g., a; = 0(z4) = sigmoid(wsas + bs)

Vanishing/Exploding Gradients Problem (3/4)

> Lets compute the gradient associated to the first hidden neuron (%)'

ocC ocC Oay 0z Oasz 0z3 Dasy 0z Oay 0z
— = — X — X — X — X — X — X — X — X ——
Oby Oag 0z4 Oaz 0z3 Oas 0zo Oay 0z1 Oby

8C 8C 8a4 aW4a3 + b4 6a3 8W3a2 + b3 0a2 8W2a1 + b2 8a1 6w1ao + b1
X —/—/— X — X —/—/— X — X ———— X X ———

2 22 I8 e
Oby Oay 0z4 Oas 0z3 Oay tor) Oay 0z Oby
ocC ocC Oag Oaz Dasy Oay
= X X ua X — X W3 X — X XwWp X — X 1

Oby Oag 0z4 0z3 0zo 0z

Vanishing/Exploding Gradients Problem (4/4)

: oc
» Now, consider o5
i N e s B
ocC oc Oag Oaz
= x2S X X —
Obs Oag 0za 0z3
6C 0C 0a4 0a3 aaz 0a1
= X S XuaX — XwW3 X — Xwg X — X 1
Oby Oag 0z4 0z3 0za 0z

>Assumew;gngz<}Lande><g%i<}l

» The gradient & be a factor of 16 (or more) smaller than <.

e This is the essential origin of the vanishing gradient problem.

Overcoming the Vanishing Gradient

>

Parameter initialization strategies

v

Nonsaturating activation function

v

Batch normalization

v

Gradient clipping

Overcoming the Vanishing Gradient

>

Parameter initiazlization strategies

v

Nonsaturating activation function

» Batch normalization

v

Gradient clipping

Parameter Initialization Strategies (1/4)

» The non-linearity of a neural network causes the cost functions to become non-convex.

» The stochastic gradient descent on non-convex cost functions performs is sensitive
to the values of the initial parameters.

» Designing initialization strategies is a difficult task.

J(w)
A

Plateau

1
1
B w

H
Global
minimum

Local minimum

Parameter Initialization Strategies (2/4)

» The initial parameters need to break symmetry between different units.

» Two hidden units with the same activation function connected to the same inputs,
must have different initial parameters.

e The goal of having each unit compute a different function.

» |t motivates random initialization of the parameters.

o Typically, we set the biases to constants, and initialize only the weights randomly.

Parameter Initialization Strategies (3/4)

We need the signals to flow properly in both directions.

The Glorot and Bengio initialization proposed that:

e The variance of the outputs of each layer to be equal to the variance of its inputs.
e The gradients to have equal variance before and after flowing through a layer in the
reverse direction.

It is not possible to guarantee both unless each layer has an equal number of inputs
and neurons.

Based on the Xavier initialization, the weights are initialized using normal distribution
with mean 0 and the following standard deviation.

Parameter Initialization Strategies (4/4)

» fan;, and fan,, are the number of inputs and neurons for the layer whose weights
are being initialized.

I
> fanag = fanip+fanout
> Glorot initialization, for none, logistic, sigmoid, and tanh: o2 = -
avg
> He initialization, for ReLU: 02 = ==
aNin

keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal")

Overcoming the Vanishing Gradient

>

» Nonsaturating activation function

>

Parameter initiazlization strategies

Batch normalization

v

Gradient clipping

Nonsaturating Activation Functions (1/4)

» ReLU(z) = max(0, z)

» The dying ReLUs problem.
e During training, some neurons stop outputting anything other than 0.
e E.g., when the weighted sum of the neuron’s inputs is negative, it starts outputting 0.

» Use leaky RelLU instead: LeakyReLU,(z) = max(az, z).
e « is the slope of the function for z < 0.

Leaky RelLU activation function

Nonsaturating Activation Functions (2/4)

» Randomized Leaky ReLU (RReLU)

e « is picked randomly during training, and it is fixed during testing.

» Parametric Leaky ReLU (PReLU)
e Learn « during training (instead of being a hyperparameter).

ELU activation function (a = 1)

» Exponential Linear Unit (ELU) ’

ELUa(z) = { :(GXP(Z) - :: z ; 8

Nonsaturating Activation Functions (3/4)

» Which activation function should we use?
» In general logistic < tanh < ReLU < leaky ReLU (and its variants) < ELU
> If you care about runtime performance, then leaky RelLUs works better than ELUs.
Leaky ReLU activation function ELU activation function (a = 1) -
4 PO U 3 1.0 —
N ‘_/' — Ste?
o oo oo - o
1 == RelU
Leak e 03
Rl 5 -1.0
~4 -2 2 4 —4 -2 2

Nonsaturating Activation Functions (4/4)

elu
keras.layers.Dense(10, activation="elu")

leaky relu

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dense (128, kernel_initializer="he_normal"),
keras.layers.LeakyReLU(),
keras.layers.Dense(10, activation="softmax")

D

Overcoming the Vanishing Gradient

» Parameter initiazlization strategies

v

Nonsaturating activation function

G Pegor arpesen

Batch normalization

v

v

Gradient clipping

Batch Normalization (1/4)

» The gradient tells how to update each parameter, under the assumption that the
other layers do not change.
e In practice, we update all of the layers simultaneously.
e However, unexpected results can happen.

» Batch normalization makes the learning of layers in the network more independent
of each other.
e It is a technique to address the problem that the distribution of each layer's inputs
changes during training, as the parameters of the previous layers change.

> The technique consists of adding an operation in the model just before the activation
function of each layer.

Batch Normalization (2/4)

» It's zero-centering and normalizing the inputs, then scaling and shifting the result.
e Estimates the inputs’ mean and standard deviation of the current mini-batch.

RO
g = — x\
mp
i=1
> up: the empirical mean, evaluated over the whole mini-batch B.

» op: the empirical standard deviation, also evaluated over the whole mini-batch.

» mp: the number of instances in the mini-batch.

Batch Normalization (3/4)

» 2(3): the zero-centered and normalized input.

» z(1): the output of the BN operation, which is a scaled and shifted version of the
inputs.

v

~: the scaling parameter vector for the layer.

v

B: the shifting parameter (offset) vector for the layer.

> ¢c: a tiny number to avoid division by zero.

> ®: represents the element-wise multiplication.

Batch Normalization (4/4)

model = keras.models.Sequential ([

D

keras.
keras
keras
keras.
keras.

layers.
.layers.
.layers.
layers.
layers.

Flatten(input_shape=[28, 28]),
BatchNormalization(),
Dense (128, activation="relu"),
BatchNormalization(),
Dense (10, activation="softmax")

Overcoming the Vanishing Gradient

» Parameter initiazlization strategies

v

Nonsaturating activation function

Batch normalization

v

v

Gradient clipping

Gradient Clipping

» Gradient clipping: clip the gradients during backpropagation so that they never ex-
ceed some threshold.

optimizer = keras.optimizers.SGD(clipvalue=1.0)
model.compile(loss="mse", optimizer=optimizer)

> Setting the clipvalue or clipnorm argument when creating an optimizer.

> clipvalue=1.0 and clipnorm=1.0: values between -1.0 and 1.0.
» clipvalue=1.0: [0.9,100.0] = [0.9,1.0]
» clipnorm=1.0: [0.9,100.0] = [0.00899964,0.9999595]

Training Speed

WARNING

P

CHALLENGES
AHEAD

Regular Gradient Descent Optimization (1/2)

» Gradient descent optimization algorithm

(next) _ . 03(w)

i o i 8Wi

> It updates the weights w

» Better optimization algorithms to improve the training speed

"\ Softmax
, output layer
.

*\ Hidden layer
’,’ (e.g., ReLU)

™ Input
_,’ layer

]
& w

n_output
n_hidden
n_features 2

model = keras.models.Sequential()

model.add(keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))
model.add(keras.layers.Dense(n_output, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=30)

Optimization Algorithms

Momentum

>

Nesterov momentum

v

AdaGrad

v

v

RMSProp

v

Adam Optimization

Optimization Algorithms

>

Momentum

v

Nesterov momentum

v

AdaGrad

v

RMSProp

v

Adam optimization

Momentum (1/3)

» Momentum is a concept from physics: an object in motion will have a tendency to
keep moving.

» It measures the resistance to change in motion.
e The higher momentum an object has, the harder it is to stop it.

Momentum (2/3)

» This is the very simple idea behind momentum optimization.
» We can see the change in the parameters w as motion: w(ineXt) =w; — dggf')

v

We can thus use the concept of momentum to give the update process a tendency
to keep moving in the same direction.

v

It can help to escape from bad local minima pits.

Initial

'
weight \ /
/

Jw) Gradient

Global cost minimum
Jain(W)

Momentum (3/3)

» Regular gradient descent optimization: w(ineXt) =w; — ndgy')
» Momentum optimization cares about what previous gradients were.
» At each iteration, it adds the local gradient to the momentum vector m.
0J(w
m; = fm; + 77L
awi
wgnext) —w, —m
» 3 is called momentum, ans it is between 0 and 1.

optimizer = keras.optimizers.SGD(1r=0.001, momentum=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

Optimization Algorithms

Momentum

>

Nesterov momentum

v

AdaGrad
RMSProp G Frgertorg

v

v

v

Adam optimization

Nesterov Momentum (1/2)

> Nesterov Momentum is a small variant to Momentum optimization.
» Faster than vanilla Momentum optimization.

» V1 represents the gradient of the cost function measured at the starting point w,
and V2 represents the gradient at the point located at w + Sm.

_Starting point

3

Regular momentum update
av, b
) ,// Nesterov update
3 NE)

optimum

ym\

Nesterov Momentum (2/2)

» Measure the gradient of the cost function slightly ahead in the direction of the
momentum (not at the local position).

0J(w + Sm
m; = /Bmi + n%
(next) —w, —m,

optimizer = keras.optimizers.SGD(1r=0.001, momentum=0.9, nesterov=True)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

Optimization Algorithms

Momentum

>

» Nesterov momentum

AdaGrad

v

v

RMSProp

v

Adam optimization

AdaGrad (1/2)

» AdaGrad keeps track of a learning rate for each parameter.

» Adapts the learning rate over time (adaptive learning rate).

» Decays the learning rate faster for steep dimensions than for dimensions with gentler
slopes.

AdaGrad (2/2)

» For each feature w;, we do the following steps:

aJ(W))2
aWi
n_ 903(w)
W, Wy — ———
* VSi+ € awi

Si:Si+(

optimizer = keras.optimizers.Adagrad(1lr=0.001)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

Optimization Algorithms

Momentum

>

» Nesterov momentum

>

AdaGrad

v

RMSProp

v

Adam optimization

RMSProp (1/2)

» AdaGrad often stops too early when training neural networks.

» The learning rate gets scaled down so much that the algorithm ends up stopping
entirely before reaching the global optimum.

» The RMSProp fixed the AdaGrad problem.

> It is like the AdaGrad problem, but accumulates only the gradients from the most
recent iterations (not from the beginning of training).

RMSProp (2/2)

» For each feature w;, we do the following steps:

s = o+ (1 - D)LY

(next) - n 6J(W)

b i_\/Si+€ awi

optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

Optimization Algorithms

Momentum

>

Nesterov momentum

v

AdaGrad

v

v

RMSProp

v

Adam optimization

Adam Optimization (1/3)

» Adam (Adaptive moment estimation) combines the ideas of Momentum optimization
and RMSProp.

> Like Momentum optimization, it keeps track of an exponentially decaying average of
past gradients.

» Like RMSProp, it keeps track of an exponentially decaying average of past squared
gradients.

Adam Optimization (2/3)

1. m(next) — Blm + (1 — ﬂl)VwJ(W)

2. S(next) _ BQSJ’_ (1 _ BQ)VWJ(W) ® VWJ(W)
m

1- 61

4. s(next) _ S
1— 7

5. wlet) —w —ym o Vs + €

3. m(next) _

> ® and © represent the element-wise multiplication and division.

» Steps 1, 2, and 5: similar to both Momentum optimization and RMSProp.

» Steps 3 and 4: since m and s are initialized at 0, they will be biased toward 0 at the
beginning of training, so these two steps will help boost m and s at the beginning of
training.

Adam Optimization (3/3)

optimizer = keras.optimizers.Adam(1lr=0.001, beta_1=0.9, beta_2=0.999)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

Summary

Summary

» Overfitting

e Early stopping, /1 and /2 regularization, max-norm regularization
e Dropout, data augmentation

» Vanishing gradient

e Parameter initialization, nonsaturating activation functions
e Batch normalization, gradient clipping

» Training speed
* Momentum, nesterov momentum, AdaGrad
e RMSProp, Adam optimization

Reference

» lan Goodfellow et al., Deep Learning (Ch. 7, 8)

» Aurélien Géron, Hands-On Machine Learning (Ch. 11)

Questions?

