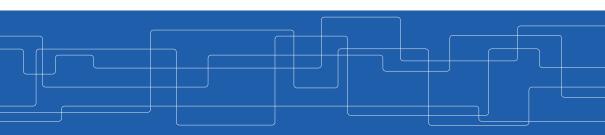
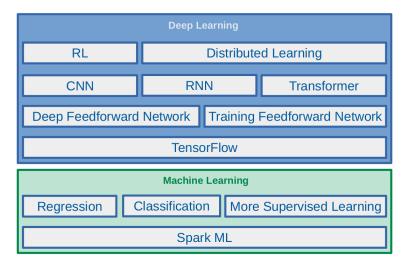


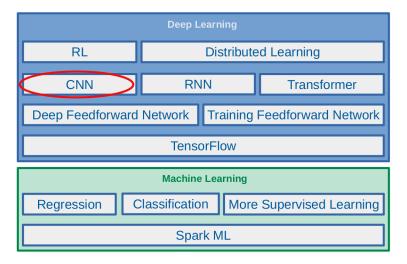
Convolutional Neural Networks

Amir H. Payberah payberah@kth.se 2021-11-25



https://id2223kth.github.io https://tinyurl.com/6s5jy46a





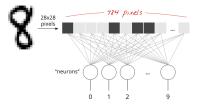
Let's Start With An Example

MNIST Dataset

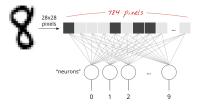
► Handwritten digits in the MNIST dataset are 28x28 pixel greyscale images.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

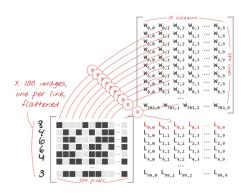
► Let's make a one-layer neural network for classifying digits.



- ► Let's make a one-layer neural network for classifying digits.
- ► Each neuron in a neural network:
 - Does a weighted sum of all of its inputs
 - Adds a bias
 - Feeds the result through some non-linear activation function, e.g., softmax.



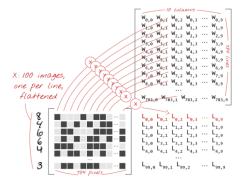
▶ Assume we have a batch of 100 images as the input.



► Assume we have a batch of 100 images as the input.

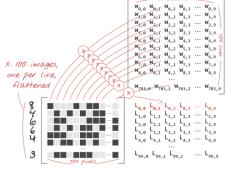
▶ Using the first column of the weights matrix W, we compute the weighted sum of

all the pixels of the first image.

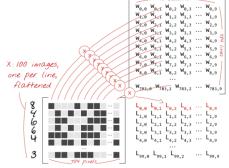


- ▶ Assume we have a batch of 100 images as the input.
- ▶ Using the first column of the weights matrix W, we compute the weighted sum of all the pixels of the first image.

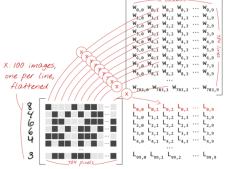
• The first neuron: $L_{0,0} = w_{0,0} x_0^{(1)} + w_{1,0} x_1^{(1)} + \dots + w_{783,0} x_{783}^{(1)}$



- ► Assume we have a batch of 100 images as the input.
- ▶ Using the first column of the weights matrix W, we compute the weighted sum of all the pixels of the first image.
 - The first neuron: $L_{0,0} = \mathtt{w}_{0,0} \mathtt{x}_0^{(1)} + \mathtt{w}_{1,0} \mathtt{x}_1^{(1)} + \cdots + \mathtt{w}_{783,0} \mathtt{x}_{783}^{(1)}$
 - The 2nd neuron until the 10th: $L_{0,1} = w_{0,1}x_0^{(1)} + w_{1,1}x_1^{(1)} + \dots + w_{783,1}x_{783}^{(1)}$ \dots $L_{0,9} = w_{0,9}x_0^{(1)} + w_{1,9}x_1^{(1)} + \dots + w_{783,9}x_{792}^{(1)}$

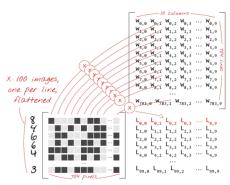


- ► Assume we have a batch of 100 images as the input.
- ► Using the first column of the weights matrix W, we compute the weighted sum of all the pixels of the first image.
 - The first neuron: $L_{0,0} = \mathtt{w}_{0,0} \mathtt{x}_0^{(1)} + \mathtt{w}_{1,0} \mathtt{x}_1^{(1)} + \cdots + \mathtt{w}_{783,0} \mathtt{x}_{783}^{(1)}$
 - The 2nd neuron until the 10th: $L_{0,1} = w_{0,1}x_0^{(1)} + w_{1,1}x_1^{(1)} + \dots + w_{783,1}x_{783}^{(1)}$ \dots $L_{0,9} = w_{0,9}x_0^{(1)} + w_{1,9}x_1^{(1)} + \dots + w_{783,9}x_{792}^{(1)}$
 - Repeat the operation for the other 99 images, i.e., x⁽²⁾ ··· x⁽¹⁰⁰⁾



- ► Each neuron must now add its bias.
- ▶ Apply the softmax activation function for each instance $x^{(i)}$.

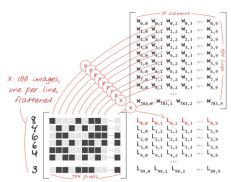
▶ For each input instance $x^{(i)}$: $L_i = \begin{bmatrix} L_{i,0} \\ L_{i,1} \\ \vdots \\ L_{i,9} \end{bmatrix}$



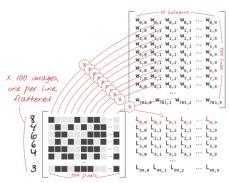
- ► Each neuron must now add its bias.
- ▶ Apply the softmax activation function for each instance $x^{(i)}$.

For each input instance
$$x^{(i)}$$
: $L_i = \begin{bmatrix} L_{i,0} \\ L_{i,1} \\ \vdots \\ L_{i,9} \end{bmatrix}$

 $ightharpoonup \hat{y}_i = softmax(L_i + b)$

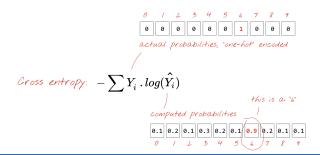


- ► Each neuron must now add its bias.
- ► Apply the softmax activation function for each instance x⁽ⁱ⁾.
- ► For each input instance $x^{(i)}$: $L_i = \begin{bmatrix} L_{i,0} \\ L_{i,1} \\ \vdots \\ L_{i,9} \end{bmatrix}$
- $ightharpoonup \hat{y}_i = softmax(L_i + b)$



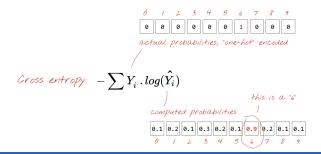
How Good the Predictions Are?

▶ Define the cost function J(W) as the cross-entropy of what the network tells us (\hat{y}_i) and what we know to be the truth (y_i) , for each instance $x^{(i)}$.



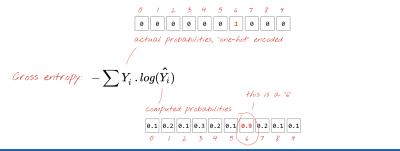
How Good the Predictions Are?

- ▶ Define the cost function J(W) as the cross-entropy of what the network tells us (\hat{y}_i) and what we know to be the truth (y_i) , for each instance $x^{(i)}$.
- ▶ Compute the partial derivatives of the cross-entropy with respect to all the weights and all the biases, $\nabla_W J(W)$.



How Good the Predictions Are?

- ▶ Define the cost function J(W) as the cross-entropy of what the network tells us (\hat{y}_i) and what we know to be the truth (y_i) , for each instance $x^{(i)}$.
- ▶ Compute the partial derivatives of the cross-entropy with respect to all the weights and all the biases, $\nabla_W J(W)$.
- ▶ Update weights and biases by a fraction of the gradient $W^{(next)} = W \eta \nabla_W J(W)$




```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```



```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(10, activation='softmax')
])
```



```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

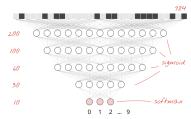
model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(10, activation='softmax')
])
```

model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])


```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(10, activation='softmax')
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=10)
model.evaluate(x_test, y_test)
```


Some Improvement (1/5)

- ► Add more layers to improve the accuracy.
- ▶ On intermediate layers we will use the the sigmoid activation function.
- ▶ We keep softmax as the activation function on the last layer.



[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

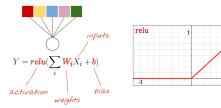
Some Improvement (2/5)

- ▶ Network initialization. e.g., using He initialization.
- ▶ Better optimizer, e.g., using Adam optimizer.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement (3/5)

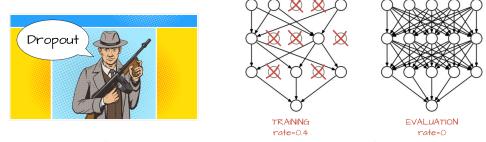
▶ Better activation function, e.g., using ReLU(z) = max(0, z).



[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]

Some Improvement (4/5)

▶ Overcome overfitting, e.g., using dropout.



 $[\verb|https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]|$

Some Improvement (5/5)

- ▶ Start fast and decay the learning rate exponentially.
- ▶ You can do this with the tf.keras.callbacks.LearningRateScheduler callback.

[https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd]


```
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])
```



```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
# lr decay function
def lr_decay(epoch):
   return 0.01 * math.pow(0.6, epoch)
# lr schedule callback
lr_decay_callback = tf.keras.callbacks.LearningRateScheduler(lr_decay, verbose=True)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'],
              callbacks=[lr_decay_callback])
```

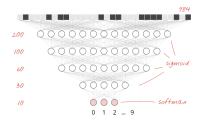


```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, kernel_initializer="he_normal", activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
# lr decay function
def lr_decay(epoch):
   return 0.01 * math.pow(0.6, epoch)
# lr schedule callback
lr_decay_callback = tf.keras.callbacks.LearningRateScheduler(lr_decay, verbose=True)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'],
              callbacks=[lr decay callback])
```

```
model.fit(x_train, y_train, batch_size=100, epochs=10)
model.evaluate(x_test, y_test)
```

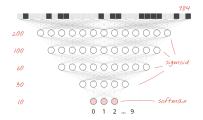

Vanilla Deep Neural Networks Challenges (1/2)

▶ Pixels of each image were flattened into a single vector (really bad idea).



Vanilla Deep Neural Networks Challenges (1/2)

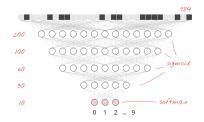
▶ Pixels of each image were flattened into a single vector (really bad idea).



- ▶ Vanilla deep neural networks do not scale.
 - In MNIST, images are black-and-white 28x28 pixel images: $28 \times 28 = 784$ weights.

Vanilla Deep Neural Networks Challenges (1/2)

▶ Pixels of each image were flattened into a single vector (really bad idea).



- ▶ Vanilla deep neural networks do not scale.
 - In MNIST, images are black-and-white 28x28 pixel images: $28 \times 28 = 784$ weights.
- ► Handwritten digits are made of shapes and we discarded the shape information when we flattened the pixels.

Vanilla Deep Neural Networks Challenges (2/2)

► Difficult to recognize objects.

Vanilla Deep Neural Networks Challenges (2/2)

- ► Difficult to recognize objects.
- Rotation
- ▶ Lighting: objects may look different depending on the level of external lighting.
- ▶ Deformation: objects can be deformed in a variety of non-affine ways.
- ► Scale variation: visual classes often exhibit variation in their size.
- Viewpoint invariance.

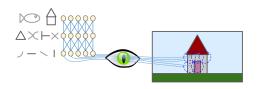
- ► Convolutional neural networks (CNN) can tackle the vanilla model challenges.
- ► CNN is a type of neural network that can take advantage of shape information.

- ► Convolutional neural networks (CNN) can tackle the vanilla model challenges.
- ▶ CNN is a type of neural network that can take advantage of shape information.
- ▶ It applies a series of filters to the raw pixel data of an image to extract and learn higher-level features, which the model can then use for classification.

Filters and Convolution Operations

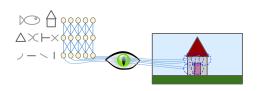
Brain Visual Cortex Inspired CNNs

- ▶ 1959, David H. Hubel and Torsten Wiesel.
- ▶ Many neurons in the visual cortex have a small local receptive field.



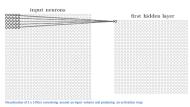
Brain Visual Cortex Inspired CNNs

- ▶ 1959, David H. Hubel and Torsten Wiesel.
- Many neurons in the visual cortex have a small local receptive field.
- ▶ They react only to visual stimuli located in a limited region of the visual field.



Receptive Fields and Filters

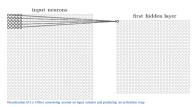
▶ Imagine a flashlight that is shining over the top left of the image.



[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

Receptive Fields and Filters

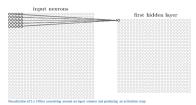
- ▶ Imagine a flashlight that is shining over the top left of the image.
- ► The region that it is shining over is called the receptive field.
- ► This flashlight is called a filter.



[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

Receptive Fields and Filters

- ▶ Imagine a flashlight that is shining over the top left of the image.
- ► The region that it is shining over is called the receptive field.
- ► This flashlight is called a filter.
- ► A filter is a set of weights.
- ► A filter is a feature detector, e.g., straight edges, simple colors, and curves.



[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

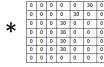
Filters Example (1/3)

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0
Pixel representation of filter						

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0
Pixel representation of filter						

[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

1		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
pit				



receptive field

Pixel representation of the receptive

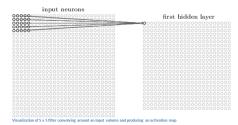
Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30) = 6600 (A large number!)

[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

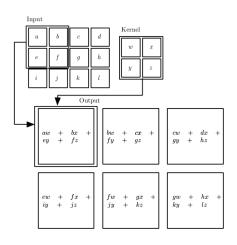
[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

- ► Convolution takes a filter and multiplying it over the entire area of an input image.
- ▶ Imagine this flashlight (filter) sliding across all the areas of the input image.



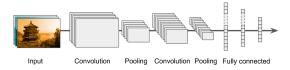
[https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks]

Convolution Operation - 2D Example



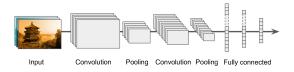
Convolutional Neural Network (CNN)

► Convolutional layers: apply a specified number of convolution filters to the image.



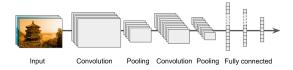
CNN Components (1/2)

- ► Convolutional layers: apply a specified number of convolution filters to the image.
- ▶ Pooling layers: downsample the image data extracted by the convolutional layers to reduce the dimensionality of the feature map in order to decrease processing time.

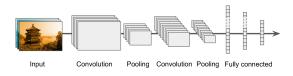


CNN Components (1/2)

- ► Convolutional layers: apply a specified number of convolution filters to the image.
- ▶ Pooling layers: downsample the image data extracted by the convolutional layers to reduce the dimensionality of the feature map in order to decrease processing time.
- ▶ Dense layers: a fully connected layer that performs classification on the features extracted by the convolutional layers and downsampled by the pooling layers.

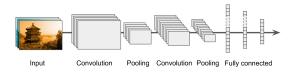


► A CNN is composed of a stack of convolutional modules.



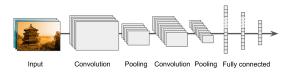
CNN Components (2/2)

- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.



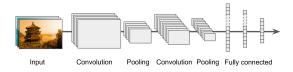
CNN Components (2/2)

- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.
- ▶ The last module is followed by one or more dense layers that perform classification.

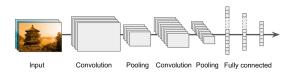


CNN Components (2/2)

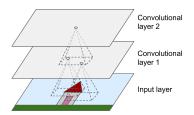
- ► A CNN is composed of a stack of convolutional modules.
- ► Each module consists of a convolutional layer followed by a pooling layer.
- ▶ The last module is followed by one or more dense layers that perform classification.
- ► The final dense layer contains a single node for each target class in the model, with a softmax activation function.



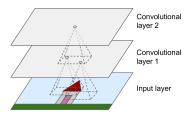
Convolutional Layer



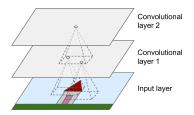
- ► Sparse interactions
- ► Each neuron in the convolutional layers is only connected to pixels in its receptive field (not every single pixel).



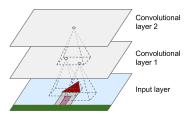
► Each neuron applies filters on its receptive field.



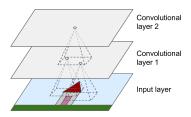
- ► Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.



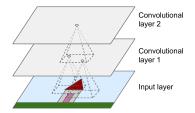
- ► Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.
- ► Adds a bias, and feeds the result through its activation function to the next layer.



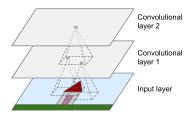
- ► Each neuron applies filters on its receptive field.
 - Calculates a weighted sum of the input pixels in the receptive field.
- ► Adds a bias, and feeds the result through its activation function to the next layer.
- ► The output of this layer is a feature map (activation map)



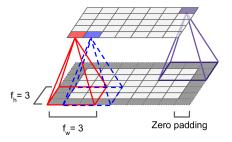
- ► Parameter sharing
- ▶ All neurons of a convolutional layer reuse the same weights.



- ► Parameter sharing
- ▶ All neurons of a convolutional layer reuse the same weights.
- ▶ They apply the same filter in different positions.
- ▶ Whereas in a fully-connected network, each neuron had its own set of weights.

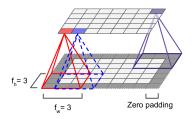


- Assume the filter size (kernel size) is $f_w \times f_h$.
 - fh and fw are the height and width of the receptive field, respectively.
- A neuron in row i and column j of a given layer is connected to the outputs of the neurons in the previous layer in rows i to $i + f_h 1$, and columns j to $j + f_w 1$.

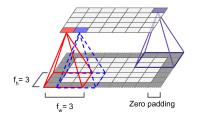


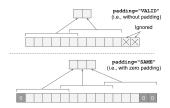
- ▶ What will happen if you apply a 5x5 filter to a 32x32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.

- ▶ What will happen if you apply a 5x5 filter to a 32x32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.
- ► Zero padding: in order for a layer to have the same height and width as the previous layer, it is common to add zeros around the inputs.



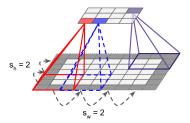
- ▶ What will happen if you apply a 5x5 filter to a 32x32 input volume?
 - The output volume would be 28x28.
 - The spatial dimensions decrease.
- ► Zero padding: in order for a layer to have the same height and width as the previous layer, it is common to add zeros around the inputs.
- ▶ In TensorFlow, padding can be either SAME or VALID to have zero padding or not.





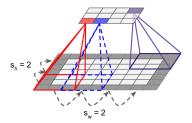
KTH Stride

▶ The distance between two consecutive receptive fields is called the stride.

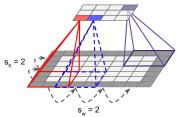


Stride

- ► The distance between two consecutive receptive fields is called the stride.
- ▶ The stride controls how the filter convolves around the input volume.

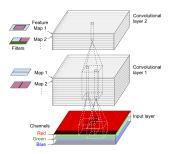


- ► The distance between two consecutive receptive fields is called the stride.
- ▶ The stride controls how the filter convolves around the input volume.
- Assume s_h and s_w are the vertical and horizontal strides, then, a neuron located in row i and column j in a layer is connected to the outputs of the neurons in the previous layer located in rows $i \times s_h$ to $i \times s_h + f_h 1$, and columns $j \times s_w$ to $j \times s_w + f_w 1$.



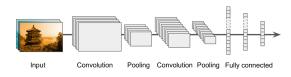
Stacking Multiple Feature Maps

- ▶ Up to now, we represented each convolutional layer with a single feature map.
- ► Each convolutional layer can be composed of several feature maps of equal sizes.
- ▶ Input images are also composed of multiple sublayers: one per color channel.
- ► A convolutional layer simultaneously applies multiple filters to its inputs.



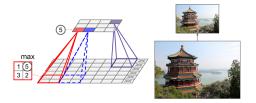
- After calculating a weighted sum of the input pixels in the receptive fields, and adding biases, each neuron feeds the result through its ReLU activation function to the next layer.
- ▶ The purpose of this activation function is to add non linearity to the system.

Pooling Layer



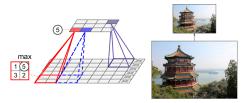
Pooling Layer (1/2)

- ▶ After the activation functions, we can apply a pooling layer.
- ▶ Its goal is to subsample (shrink) the input image.



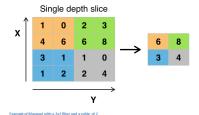
Pooling Layer (1/2)

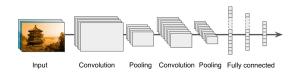
- ▶ After the activation functions, we can apply a pooling layer.
- ▶ Its goal is to subsample (shrink) the input image.
 - To reduce the computational load, the memory usage, and the number of parameters.



Pooling Layer (2/2)

- ► Each neuron in a pooling layer is connected to the outputs of a receptive field in the previous layer.
- ► A pooling neuron has no weights.
- ▶ It aggregates the inputs using an aggregation function such as the max or mean.





- ► This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.

- ► This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.
- ► For example, if you wanted a digit classification model, N would be 10.

- ► This layer takes an input from the last convolution module, and outputs an N dimensional vector.
 - N is the number of classes that the model has to choose from.
- ► For example, if you wanted a digit classification model, N would be 10.
- ► Each number in this N dimensional vector represents the probability of a certain class.

Flattening

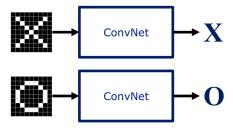
- ▶ We need to convert the output of the convolutional part of the CNN into a 1D feature vector.
- ► This operation is called **flattening**.

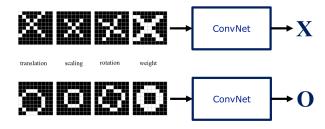
Flattening

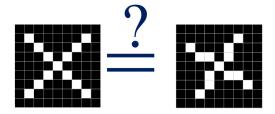
- ▶ We need to convert the output of the convolutional part of the CNN into a 1D feature vector.
- ► This operation is called **flattening**.
- ▶ It gets the output of the convolutional layers, flattens all its structure to create a single long feature vector to be used by the dense layer for the final classification.

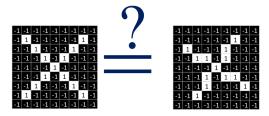
Example

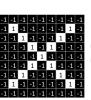
A Toy ConvNet: X's and O's

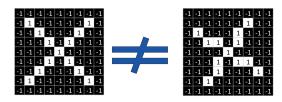




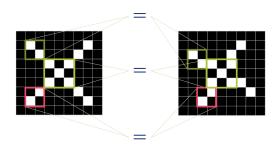


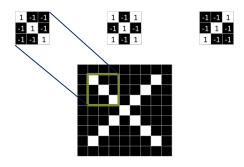


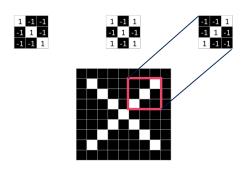


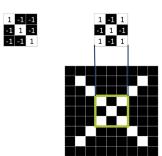


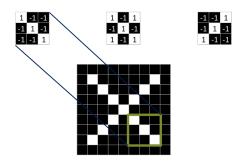
ConvNets Match Pieces of the Image

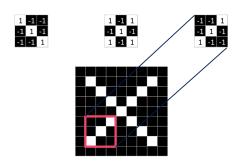


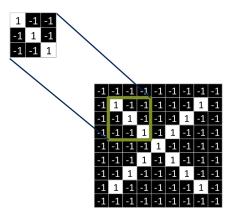


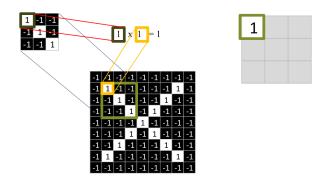


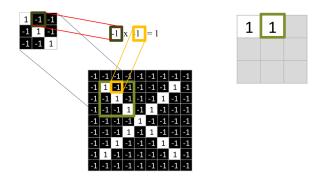


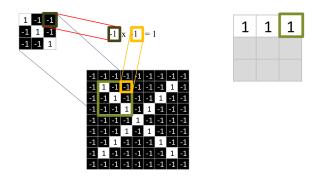


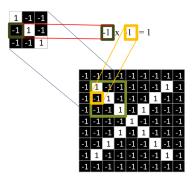




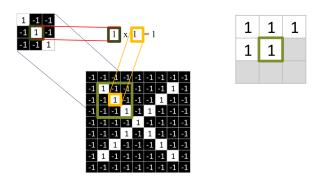


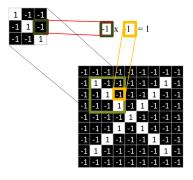


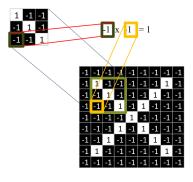




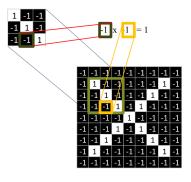
1	1	1
1		



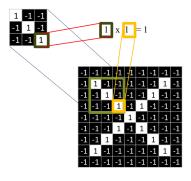




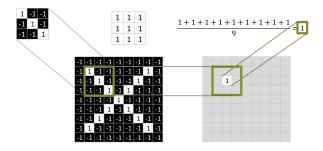
1	1	1
1	1	1
1		

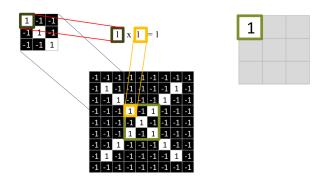


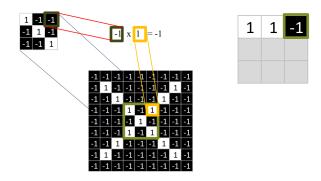
1	1	1
1	1	1
1	1	

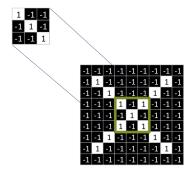


1	1	1
1	1	1
1	1	1

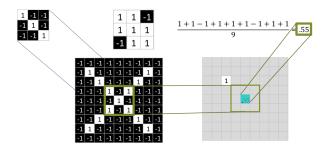




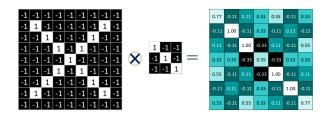




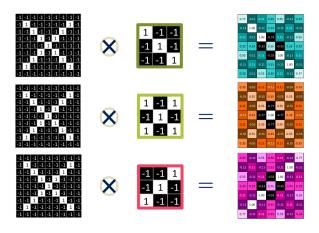
1	1	-1
1	1	1
-1	1	1



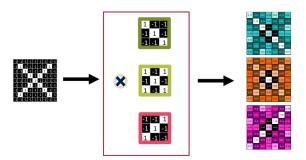
Convolution: Trying Every Possible Match

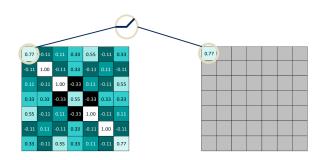


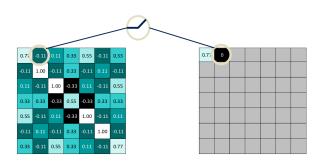
Three Filters Here, So Three Images Out

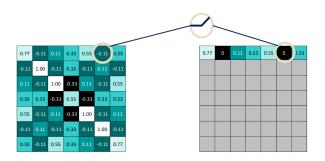


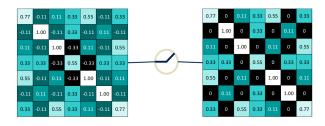
▶ One image becomes a stack of filtered images.





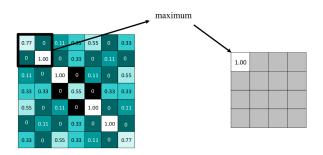


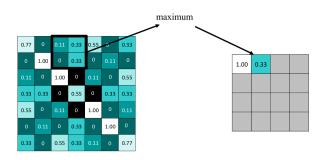


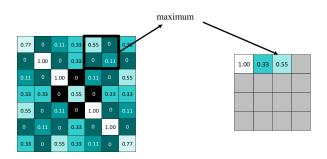


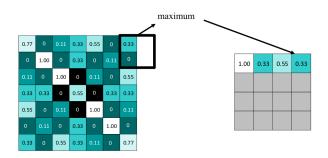
ReLU Layer

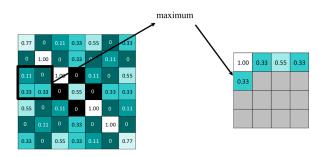
▶ A stack of images becomes a stack of images with no negative values.

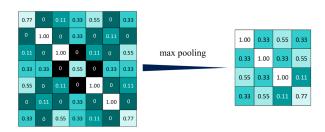




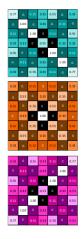


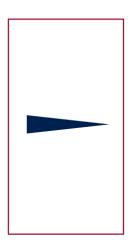


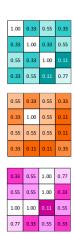




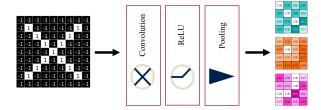
Repeat For All the Filtered Images



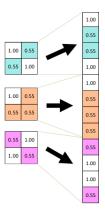




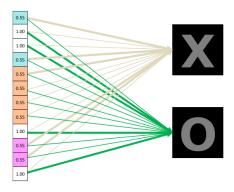
▶ The output of one becomes the input of the next.

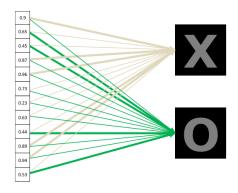


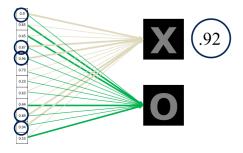
▶ Flattening the outputs before giving them to the fully connected layer.

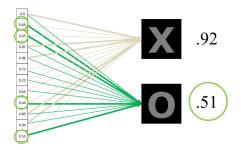


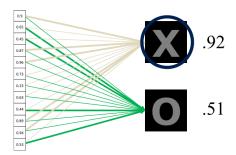


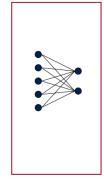


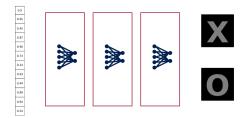








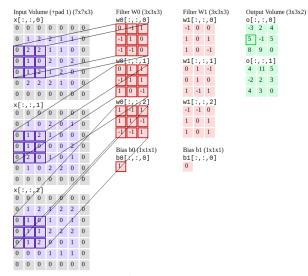




Putting It All Together

One more example

- ► A conv layer.
- ► Computes 2 feature maps.
- ► Filters: 3x3 with stride of 2.
- ▶ Input tensor shape: [7,7,3].
- ▶ Output tensor shape: [3, 3, 2].



[http://cs231n.github.io/convolutional-networks]

CNN in TensorFlow

► A CNN for the MNIST dataset with the following network.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Dense layer: densely connected layer with 1024 neurons.

- ► A CNN for the MNIST dataset with the following network.
- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Dense layer: densely connected layer with 1024 neurons.
- Softmax layer

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Padding same is added to preserve width and height.

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Padding same is added to preserve width and height.
- ▶ Input tensor shape: [batch_size, 28, 28, 1]

- ► Conv. layer 1: computes 32 feature maps using a 5x5 filter with ReLU activation.
- ▶ Padding same is added to preserve width and height.
- ▶ Input tensor shape: [batch_size, 28, 28, 1]
- Output tensor shape: [batch_size, 28, 28, 32]

▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.

- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Input tensor shape: [batch_size, 28, 28, 32]

- ▶ Pooling layer 1: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Input tensor shape: [batch_size, 28, 28, 32]
- ▶ Output tensor shape: [batch_size, 14, 14, 32]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Padding same is added to preserve width and height.

- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Padding same is added to preserve width and height.
- ▶ Input tensor shape: [batch_size, 14, 14, 32]

- ► Conv. layer 2: computes 64 feature maps using a 5x5 filter.
- ▶ Padding same is added to preserve width and height.
- ▶ Input tensor shape: [batch_size, 14, 14, 32]
- ▶ Output tensor shape: [batch_size, 14, 14, 64]

```
tf.keras.layers.Conv2D(kernel_size=5, filters=64, activation='relu', padding='same')
```

▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.

- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Input tensor shape: [batch_size, 14, 14, 64]

- ▶ Pooling layer 2: max pooling layer with a 2x2 filter and stride of 2.
- ▶ Input tensor shape: [batch_size, 14, 14, 64]
- ▶ Output tensor shape: [batch_size, 7, 7, 64]

tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)

Flatten tensor into a batch of vectors.

- ► Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

▶ Dense layer: densely connected layer with 1024 neurons.

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ▶ Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ▶ Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ▶ Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

► Softmax layer: softmax layer with 10 neurons.

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ▶ Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- ► Softmax layer: softmax layer with 10 neurons.
 - Input tensor shape: [batch_size, 1024]

- ▶ Flatten tensor into a batch of vectors.
 - Input tensor shape: [batch_size, 7, 7, 64]
 - Output tensor shape: [batch_size, 7 * 7 * 64]

tf.keras.layers.Flatten()

- ▶ Dense layer: densely connected layer with 1024 neurons.
 - Input tensor shape: [batch_size, 7 * 7 * 64]
 - Output tensor shape: [batch_size, 1024]

tf.keras.layers.Dense(1024, activation='relu')

- ► Softmax layer: softmax layer with 10 neurons.
 - Input tensor shape: [batch_size, 1024]
 - Output tensor shape: [batch_size, 10]

tf.keras.layers.Dense(10, activation='softmax')

Training CNNs

Training CNN (1/4)

▶ Let's see how to use backpropagation on a single convolutional layer.

h_{II}	h ₁₂
h ₂₁	h ₂₂

- ▶ Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3x3 and a single filter W of size 2x2.

h _{II}	h ₁₂
h ₂₁	h ₂₂

- ▶ Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3x3 and a single filter W of size 2x2.
- ► No padding and stride = 1.

X_{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

h _{II}	h ₁₂
h ₂₁	h ₂₂

- ▶ Let's see how to use backpropagation on a single convolutional layer.
- ► Assume we have an input X of size 3x3 and a single filter W of size 2x2.
- ▶ No padding and stride = 1.
- ▶ It generates an output H of size 2x2.

X_{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

h _{II}	h ₁₂
h ₂₁	h ₂₂

h ₁₁	h ₁₂
h ₂₁	h ₂₂

$$\mathbf{h}_{11} = \mathtt{W}_{11} \mathtt{X}_{11} + \mathtt{W}_{12} \mathtt{X}_{12} + \mathtt{W}_{21} \mathtt{X}_{21} + \mathtt{W}_{22} \mathtt{X}_{22}$$

$h_{_{II}}$	h ₁₂
h ₂₁	h ₂₂

$$\mathbf{h_{11}} = \mathtt{W_{11}X_{11}} + \mathtt{W_{12}X_{12}} + \mathtt{W_{21}X_{21}} + \mathtt{W_{22}X_{22}}$$

$$\mathbf{h_{12}} = \mathbf{W_{11}X_{12}} + \mathbf{W_{12}X_{13}} + \mathbf{W_{21}X_{22}} + \mathbf{W_{22}X_{23}}$$

h _{II}	h ₁₂
h ₂₁	h ₂₂

$$h_{11} = W_{11}X_{11} + W_{12}X_{12} + W_{21}X_{21} + W_{22}X_{22}$$

$$\mathbf{h}_{12} = \mathbf{W}_{11}\mathbf{X}_{12} + \mathbf{W}_{12}\mathbf{X}_{13} + \mathbf{W}_{21}\mathbf{X}_{22} + \mathbf{W}_{22}\mathbf{X}_{23}$$

$$\mathbf{h}_{21} = \mathbf{W}_{11}\mathbf{X}_{21} + \mathbf{W}_{12}\mathbf{X}_{22} + \mathbf{W}_{21}\mathbf{X}_{31} + \mathbf{W}_{22}\mathbf{X}_{32}$$

h _{II}	h ₁₂
h ₂₁	h ₂₂

$$\begin{split} h_{11} &= \mathtt{W}_{11} \mathtt{X}_{11} + \mathtt{W}_{12} \mathtt{X}_{12} + \mathtt{W}_{21} \mathtt{X}_{21} + \mathtt{W}_{22} \mathtt{X}_{22} \\ h_{12} &= \mathtt{W}_{11} \mathtt{X}_{12} + \mathtt{W}_{12} \mathtt{X}_{13} + \mathtt{W}_{21} \mathtt{X}_{22} + \mathtt{W}_{22} \mathtt{X}_{23} \\ h_{21} &= \mathtt{W}_{11} \mathtt{X}_{21} + \mathtt{W}_{12} \mathtt{X}_{22} + \mathtt{W}_{21} \mathtt{X}_{31} + \mathtt{W}_{22} \mathtt{X}_{32} \\ h_{22} &= \mathtt{W}_{11} \mathtt{X}_{22} + \mathtt{W}_{12} \mathtt{X}_{23} + \mathtt{W}_{21} \mathtt{X}_{32} + \mathtt{W}_{22} \mathtt{X}_{33} \end{split}$$

- ► Backward pass
- \blacktriangleright E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X _{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

- ► Backward pass
- \blacktriangleright E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X_{II}	X 12	X ₁₃
X 21	X 22	X ₂₃
X 31	X ₃₂	X ₃₃

$$\frac{\partial E}{\partial W_{11}} = \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{11}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{11}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{11}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{11}}$$

- Backward pass
- \blacktriangleright E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X _{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

$$\begin{split} \frac{\partial E}{\partial W_{11}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{11}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{11}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{11}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{11}} \\ \frac{\partial E}{\partial W_{12}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{12}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{12}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{12}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{12}} \end{split}$$

- ► Backward pass
- ▶ E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X ₁₁	X 12	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X_{31}	X ₃₂	X ₃₃

$$\begin{split} \frac{\partial E}{\partial W_{11}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{11}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{11}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{11}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{11}} \\ \frac{\partial E}{\partial W_{12}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{12}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{12}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{12}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{12}} \\ \frac{\partial E}{\partial W_{21}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{21}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{21}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{21}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{21}} \end{split}$$

- ► Backward pass
- ▶ E is the error: $E = E_{h_{11}} + E_{h_{12}} + E_{h_{21}} + E_{h_{22}}$

X_{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

$$\begin{split} \frac{\partial E}{\partial W_{11}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{11}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{11}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{11}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{11}} \\ \frac{\partial E}{\partial W_{12}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{12}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{12}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{12}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{12}} \\ \frac{\partial E}{\partial W_{21}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{21}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{21}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{21}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{21}} \\ \frac{\partial E}{\partial W_{22}} &= \frac{\partial E_{h_{11}}}{\partial h_{11}} \frac{\partial h_{11}}{\partial W_{22}} + \frac{\partial E_{h_{12}}}{\partial h_{12}} \frac{\partial h_{12}}{\partial W_{22}} + \frac{\partial E_{h_{21}}}{\partial h_{21}} \frac{\partial h_{21}}{\partial W_{22}} + \frac{\partial E_{h_{22}}}{\partial h_{22}} \frac{\partial h_{22}}{\partial W_{22}} \end{aligned}$$

► Update the wights ₩

X_{II}	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

h ₁₁	h ₁₂
h ₂₁	h ₂₂

$$\begin{split} & \textbf{W}_{11}^{(\text{next})} = \textbf{W}_{11} - \eta \frac{\partial \textbf{E}}{\partial \textbf{W}_{11}} \\ & \textbf{W}_{12}^{(\text{next})} = \textbf{W}_{12} - \eta \frac{\partial \textbf{E}}{\partial \textbf{W}_{12}} \\ & \textbf{W}_{21}^{(\text{next})} = \textbf{W}_{21} - \eta \frac{\partial \textbf{E}}{\partial \textbf{W}_{21}} \\ & \textbf{W}_{22}^{(\text{next})} = \textbf{W}_{22} - \eta \frac{\partial \textbf{E}}{\partial \textbf{W}_{22}} \end{split}$$

Summary

KTH Summary

- ► Receptive fields and filters
- ► Convolution operation
- Padding and strides
- ► Pooling layer
- ► Flattening, dropout, dense

- ► Tensorflow and Deep Learning without a PhD https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
- ▶ Ian Goodfellow et al., Deep Learning (Ch. 9)
- ► Aurélien Géron, Hands-On Machine Learning (Ch. 14)

Questions?