

Transformers and Attention ID2223 Scalable Machine Learning and Deep Learning

Francisco J. Peña Postdoctoral Researcher, KTH frape@kth.se 2021-12-02

Roadmap

Acknowledgements

Material based on:

- Christoffer Manning's NLP Lectures at Stanford
- ► The Illustrated Transformer by Jay Alammar
- Slides from Jacob
- Self-attention Video from Peltarion
- Slides from Karl Erliksson

Contextualized Embeddings

Background to Natural Language Processing (NLP)

- Word embeddings are the basis of NLP
- Popular embeddings like GloVe and Word2Vec are pre-trained on large text corpuses based on cooccurrence statistics
- "A word is characterized by the company it keeps" [Firth, 1957]

(best	it -			selling) (artists			
	\checkmark		\mathbf{V}		\mathbf{V}	\checkmark		\checkmark		
	-0.11		0.01		-0.01	0.06		-0.02		
	0.01		0.07		-0.03	0.11		0.00		
	-0.17		-0.04		0.15	0.05		-0.05		
	÷		÷		÷	÷		÷		
	0.13		-0.05		0.00	0.14		0.05		
	-0.13		-0.11		-0.07	-0.12		-0.12		
	-0.09		-0.25		0.05	-0.04		0.02		

Word Embeddings

Problem: Word embeddings are context-free

a	nice	walk	by	the	river	bank
0.02	0.03	0.02	-0.00	-0.04	-0.01	-0.02
÷	:	÷	÷	÷	÷.	- 3
0.02	-0.02	-0.07	0.03	-0.03	-0.04	-0.03

walk	to	the	bank	and	get	cash
0.02	0.01	-0.04	-0.02	-0.02	-0.06	0.01
:		1	1	:		:
-0.07	0.02	-0.03	-0.03	0.02	0.04	-0.01

Problem: Word embeddings are context-free

a	nice	walk	by	the	river	bank
0.02	0.03	0.02	-0.00	-0.04	-0.01	-0.02
÷	÷	÷	÷	÷	÷ .	÷
0.02	-0.02	-0.07	0.03	-0.03	-0.04	-0.03

walk	to	the	bank	and	get	cash
0.02	0.01	-0.04	-0.02	-0.02	-0.06	0.01
:	÷	÷	÷	÷	÷	÷
-0.07	0.02	-0.03	-0.03	0.02	0.04	-0.01

Word Embeddings

Problem: Word embeddings are context-free **Solution:** Create contextualized representation

From RNNs to Transformers

Problems with RNNs - Motivation for Transformers

- Sequential computations prevents parallelization
- Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal with long range dependencies
- ► Attention gives us access to any state...Maybe we don't need the costly recursion?
- ► Then NLP can have deep models, solves our computer vision envy!

Attention is all you need! [Vaswani, 2017]

- Sequence-to-sequence model for Machine Translation
- Encoder-decoder architecture
- Multi-headed self-attention
 - Models context and no locality bias

Transformers Step-by-Step

Understanding the Transformer: Step-by-Step

Understanding the Transformer: Step-by-Step

No recursion, instead stacking encoder and decoder blocks

- ► Originally: 6 layers
- ▶ BERT base: 12 layers
- ► BERT large: 24 layers
- ► GPT2-XL: 48 layers
- ► GPT3: 96 layers

Attention Preliminaries

Mimics the retrieval of a value v_i for a query q based on a key k_i in a database, but in a probabilistic fashion

Dot-Product Attention

- Queries, keys and values are vectors
- Output is a weighted sum of the values
- Weights are are computed as the scaled dot-product (similarity) between the query and the keys

Attention
$$(q, K, V) = \sum_{i}$$
 Similarity $(q, k_i) \cdot v_i = \sum_{i} \frac{e^{q \cdot k_i / \sqrt{d_k}}}{\sum_{j} e^{q \cdot k_j / \sqrt{d_k}}} v_i$ Output is row-vector

► Can stack multiple queries into a matrix
$$Q$$

Attention $(Q, K, V) = \operatorname{softmax} \left(\frac{QK^{\top}}{\sqrt{d_k}} \right) V$ Output is again
a matrix

 Self-attention: Let the word embeddings be the queries, keys and values, i.e. let the words select each other s a

Self-Attention Mechanism

Self-Attention Mechanism

Self-Attention Mechanism in Matrix Notation

[Alammar, 2018]

21/52

Multi-Headed Self-Attention

Multi-Headed Self-Attention

Self-Attention: Putting It All Together

Attention Visualized

The Full Encoder Block

Encoder block consisting of:

- Multi-headed self-attention
- ► Feedforward NN (FC 2 layers)
- Skip connections
- Layer normalization Similar to batch normalization but computed over features (words/tokens) for a single sample

Encoder-Decoder Architecture - Small Example

[Alammar, 2018]

Positional Encodings

Encoder block consisting of:

- Attention mechanism has no locality bias - no notion of word order
- Add positional encodings to input embeddings to let model learn relative positioning

$$\mathsf{PE}(\mathsf{pos},2i) = \sin\left(\frac{\mathsf{pos}}{10000^{2i/d_{\mathsf{model}}}}\right)$$

$$\mathsf{PE}(\mathsf{pos}, 2i+1) = \cos\left(\frac{\mathsf{pos}}{10000^{2i/d_{\mathsf{model}}}}\right)$$

Positional Encodings

[Kazemnejad, 2019]

Let's start the encoding!

Decoding time step: 1 2 3 4 5 6

OUTPUT

Decoding procedure

Decoding time step: 1 (2) 3 4 5 6

Producing the output text

Encoder block consisting of:

- The output from the decoder is passed through a final fully connected linear layer with a softmax activation function
- Produces a probability distribution over the pre-defined vocabulary of output words (tokens)
- Greedy decoding picks the word with the highest probability at each time step

Training Objective

Target Model Outputs

Trained Model Outputs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length			
Self-Attention	$O(n^2 \cdot d)$	O(1)	<i>O</i> (1)			
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)			
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$			

[Vaswani et al., 2017]

Model	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$		
Transformer (base model)	27.3	38.1	3.3 •	10^{18}		
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}		

[Vaswani et al., 2017]

BERT

- Bidirectional Encoder Representations from Transformers
 - Self-supervised pre-training of Transformers encoder for language understanding
 - Fine-tuning for specific downstream task

BERT Training Procedure

[Devlin et al., 2018]

BERT Training Objectives

Masked Language Modelling

Next Sentence prediction

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

[Devlin et al., 2018]

BERT Fine-Tuning Examples

Sentence Classification

Tok N (SEP) Tok 1

Sentence A

E_N E_{ISEP1} E₁' ... E_N'

Tok M

Sentence B

EIOLSI E.

[CLS] Tok 1

Question Answering

Named Entity Recognition

[Devlin et al., 2018]

How good are transformers?

- Scaling up models size and amount of training data helps a lot
- ▶ Best model is 10B (!!) parameters
- ► Two models have already surpassed human performance!!!
- Exact pre-training objective (MLM, NSP, corruption) doesn't matter too much
- SuperGLUE benchmark:

Ran	ık	Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
1	1	ERNIE Team - Baidu	ERNIE 3.0	Z	90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	92.7/94.7	68.6
+ 2	2	Zirui Wang	T5 + UDG, Single Model (Google Brain)	Z	90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	92.7/91.9	69.1
+ 3	3	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	Z	90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
4	4	SuperGLUE Human Baselines	SuperGLUE Human Baselines	Z	89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
+ 5	5	T5 Team - Google	Т5	Z	89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
+ 6	5	Huawei Noah's Ark Lab	NEZHA-Plus	Z	86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0
											[Ra:	ffe]	et	: al.	. 20

Practical Examples

BERT in low-latency production settings

GOOGLE TECH ARTIFICIAL INTELLIGENCE

Google is improving 10 percent of searches by understanding language context

Say hello to BERT

By Dieter Bohn | @backlon | Oct 25, 2019, 3:01am EDT

Bing says it has been applying BERT since April

The natural language processing capabilities are now applied to all Bing queries globally.

George Nguyen on November 19, 2019 at 1:38 pm

[Devlin, 2020]

Distillation

- Modern pre-trained language models are huge and very computationally expensive
- How are these companies applying them to low-latency applications?
- Distillation!
 - Train SOTA teacher model (pre-training + fine-tuning)
 - Train smaller student model that mimics the teacher's output on a large dataset on unlabeled data
- Distillation works much better than pre-training + fine-tuning with smaller model

[Devlin, 2020] [Turc, 2020]

- The HuggingFace Library contains a majority of the recent pre-trained State-of-the-art NLP models, as well as over 4 000 community uploaded models
- Works with both TensorFlow and PyTorch

HUGGING FACE									
L Back to home All Models and checkpoints									
Also check out our list of Community Organizations ③ .	contributo	rs 🍸 and							
Search models	Tags: All 🔻	Sort: Most downloads -							
bert-base-uncased 🚖									
deepset/bert-large-uncased-whole-word	l-masking-sc	uad2							
distilbert-base-uncased \pm									
dccuchile/bert-base-spanish-wwm-cased	*								
microsoft/xprophetnet-large-wiki100-c	ased-xglue-	ntg 🛨							
deepset/roberta-base-squad2 🔺									
jplu/tf-xlm-roberta-base 🚖	jplu/tf-xlm-roberta-base 🔺								
cl-tohoku/bert-base-japanese-whole-word-masking									
bert-base-cased 🛧									

xlm-roberta-base 🔺

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

```
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
```

```
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
```

```
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
```


from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

```
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
```

```
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
```

```
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
```


from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

```
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
```

```
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
```

```
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
```


from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

```
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
```

```
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
```

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

Wrap Up

- Transformers have blown other architectures out of the water for NLP
- Get rid of recurrence and rely on self-attention
- NLP pre-training using Masked Language Modelling
- Most recent improvements using larger models and more data
- Distillation can make model serving and inference more tractable

Thanks! Questions?

Francisco J. Peña Postdoctoral Researcher, KTH frape@kth.se