
Transformers and Attention
ID2223 Scalable Machine Learning and Deep Learning

Francisco J. Peña
Postdoctoral Researcher, KTH

frape@kth.se
2021-12-02

Roadmap

05

Distillation and Practical
Example

04

BERT

03

Transformers
Step-by-Step

02

From RNNs to Transformers

01

Contextualized Embeddings

1 / 52

Acknowledgements

Material based on:

I Christoffer Manning’s NLP Lectures at Stanford
I The Illustrated Transformer by Jay Alammar
I Slides from Jacob
I Self-attention Video from Peltarion
I Slides from Karl Erliksson

2 / 52

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture12.pdf
http://jalammar.github.io/illustrated-transformer/
http://web.stanford.edu/class/cs224n/slides/Jacob_Devlin_BERT.pdf
https://peltarion.com/blog/data-science/self-attention-video

Contextualized Embeddings

3 / 52

Background to Natural Language Processing (NLP)

I Word embeddings are the basis of
NLP

I Popular embeddings like GloVe
and Word2Vec are pre-trained on
large text corpuses based on co-
occurrence statistics

I “A word is characterized by the com-
pany it keeps” [Firth, 1957]

[Peltarion, 2020]

4 / 52

Word Embeddings

[Peltarion, 2020]

5 / 52

Word Embeddings

Problem: Word embeddings are context-free

[Peltarion, 2020]

6 / 52

Word Embeddings

Problem: Word embeddings are context-free

[Peltarion, 2020]

7 / 52

Word Embeddings
Problem: Word embeddings are context-free
Solution: Create contextualized representation

[Peltarion, 2020]

8 / 52

From RNNs to Transformers

9 / 52

Problems with RNNs - Motivation for Transformers

I Sequential computations prevents parallelization
I Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal with long

range dependencies
I Attention gives us access to any state…Maybe we don’t need the costly recursion?
I Then NLP can have deep models, solves our computer vision envy!

10 / 52

Attention is all you need! [Vaswani, 2017]

I Sequence-to-sequence model for
Machine Translation

I Encoder-decoder architecture
I Multi-headed self-attention

• Models context and no locality
bias

[Vaswani et al., 2017]

11 / 52

Transformers Step-by-Step

12 / 52

Understanding the Transformer: Step-by-Step

[Alammar, 2018]

13 / 52

Understanding the Transformer: Step-by-Step

No recursion, instead
stacking encoder and
decoder blocks

I Originally: 6 layers
I BERT base: 12 layers
I BERT large: 24 layers
I GPT2-XL: 48 layers
I GPT3: 96 layers

[Alammar, 2018]

14 / 52

The Encoder and Decoder Blocks

[Alammar, 2018]

15 / 52

The Encoder Block

[Alammar, 2018]

16 / 52

Attention Preliminaries

Mimics the retrieval of a value vi for a query q based on a key ki in a database,
but in a probabilistic fashion

17 / 52

Dot-Product Attention

I Queries, keys and values are vectors
I Output is a weighted sum of the values
I Weights are are computed as the scaled dot-product (similarity) between

the query and the keys

Attention(q,K ,V) =
∑

i
Similarity(q, ki) · vi =

∑
i

eq·ki/
√

dk∑
j eq·kj/

√
dk

vi
Output is a
row-vector

I Can stack multiple queries into a matrix Q

Attention(Q,K ,V) = softmax
(

QK>
√

dk

)
V Output is again

a matrix

I Self-attention: Let the word embeddings be the queries, keys and values,
i.e. let the words select each other

18 / 52

Self-Attention Mechanism

[Alammar, 2018]

19 / 52

Self-Attention Mechanism

[Alammar, 2018]

20 / 52

Self-Attention Mechanism in Matrix Notation

[Alammar, 2018]

21 / 52

Multi-Headed Self-Attention

[Alammar, 2018]

22 / 52

Multi-Headed Self-Attention

[Alammar, 2018]

23 / 52

Self-Attention: Putting It All Together

[Alammar, 2018]

24 / 52

Attention Visualized

[Alammar, 2018]

25 / 52

The Full Encoder Block

Encoder block consisting of:
I Multi-headed self-attention
I Feedforward NN (FC 2 layers)
I Skip connections
I Layer normalization - Similar to

batch normalization but computed
over features (words/tokens) for a
single sample

[Alammar, 2018]

26 / 52

Encoder-Decoder Architecture - Small Example

[Alammar, 2018]

27 / 52

Positional Encodings

Encoder block consisting of:
I Attention mechanism has no locality

bias - no notion of word order
I Add positional encodings to input

embeddings to let model learn rel-
ative positioning

PE(pos, 2i) = sin
(pos
100002i/dmodel

)

PE(pos, 2i + 1) = cos
(pos
100002i/dmodel

)

[Alammar, 2018]

28 / 52

Positional Encodings

[Kazemnejad, 2019]

29 / 52

Let’s start the encoding!

[Alammar, 2018]

30 / 52

Decoding procedure

[Alammar, 2018]

31 / 52

Producing the output text

Encoder block consisting of:
I The output from the decoder is

passed through a final fully con-
nected linear layer with a softmax
activation function

I Produces a probability distribution
over the pre-defined vocabulary of
output words (tokens)

I Greedy decoding picks the word with
the highest probability at each time
step

[Alammar, 2018]

32 / 52

Training Objective

[Alammar, 2018]

33 / 52

Complexity Comparison

[Vaswani et al., 2017]

34 / 52

Results
Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 · 1020
GNMT + RL [31] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [8] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [26] 26.03 40.56 2.0 · 1019 1.2 · 1020
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 · 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [8] 26.36 41.29 7.7 · 1019 1.2 · 1021
Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.0 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value ✏ls = 0.1 [30]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0

BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty ↵ = 0.6 [31]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [31].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

8

[Vaswani et al., 2017]

35 / 52

BERT

36 / 52

BERT

Bidirectional Encoder Representations
from Transformers

I Self-supervised pre-training of
Transformers encoder for language
understanding

I Fine-tuning for specific downstream
task

37 / 52

BERT Training Procedure

[Devlin et al., 2018]

38 / 52

BERT Training Objectives

Masked Language Modelling

Next Sentence prediction

[Devlin et al., 2018]

39 / 52

BERT Fine-Tuning Examples

Sentence
Classification

Question
Answering

Named Entity
Recognition

[Devlin et al., 2018]

40 / 52

How good are transformers?
I Scaling up models size and amount of training data helps a lot
I Best model is 10B (!!) parameters
I Two models have already surpassed human performance!!!
I Exact pre-training objective (MLM, NSP, corruption) doesn’t matter too

much
I SuperGLUE benchmark:

[Raffel et al., 2019]

41 / 52

Practical Examples

42 / 52

BERT in low-latency production settings

[Devlin, 2020]

43 / 52

Distillation
I Modern pre-trained language

models are huge and very
computationally expensive

I How are these companies applying
them to low-latency applications?

I Distillation!
• Train SOTA teacher model

(pre-training + fine-tuning)
• Train smaller student model that

mimics the teacher’s output on a
large dataset on unlabeled data

I Distillation works much better than
pre-training + fine-tuning with
smaller model

[Devlin, 2020] [Turc, 2020]

44 / 52

Transformers in TensorFlow using HuggingFace

I The HuggingFace Library contains a
majority of the recent pre-trained
State-of-the-art NLP models, as well as
over 4 000 community uploaded models

I Works with both TensorFlow and PyTorch

45 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

46 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

47 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

48 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

49 / 52

Wrap Up

50 / 52

Summary

I Transformers have blown other
architectures out of the water for
NLP

I Get rid of recurrence and rely on
self-attention

I NLP pre-training using Masked
Language Modelling

I Most recent improvements using
larger models and more data

I Distillation can make model serving
and inference more tractable

51 / 52

Thanks!
Questions?

Francisco J. Peña
Postdoctoral Researcher, KTH

frape@kth.se

52 / 52

