
Distributed Deep Learning

Amir H. Payberah
payberah@kth.se

2021-12-08

The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/6s5jy46a

1 / 72

https://tinyurl.com/6s5jy46a

Where Are We?

2 / 72

Where Are We?

3 / 72

What is the problem?

4 / 72

Training Deep Neural Networks

I Computationally intensive

I Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]

5 / 72

Why?

I Massive amount of training dataset

I Large number of parameters

6 / 72

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

7 / 72

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

8 / 72

Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

9 / 72

Scale Matters

10 / 72

Fundamentals of Machine Learning

11 / 72

Training Dataset

I E.g., tabular data, image, text, etc.

12 / 72

Model

I E.g., linear models, neural networks, etc.

I ŷ = fw(x)

13 / 72

Loss function

I How good ŷ is able to predict the expected outcome y.

I J(w) =
∑m

i=1 l(yi, ŷi)

I E.g., J(w) = 1
m

∑m
i=1(yi − ŷi)2

14 / 72

Objective

I Minimize the loss function

I arg minw J(w)

I J(w) =
∑m

i=1 l(yi, ŷi)

15 / 72

Training

I J(w) =
∑m

i=1 l(yi, ŷi)

I Gradient descent, i.e., w := w − η∇J(w)

I Stochastic gradient descent, i.e., w := w − η~gJ(w)
• ~g: gradient at a randomly chosen point.

I Mini-barch gradient descent, i.e., w := w − η~gBJ(w)
• ~g: gradient with respect to a set of B randomly chosen points.

16 / 72

Let’s Scale the Learning

17 / 72

Scalable Training

I Data parallelism

I Model parallelism

18 / 72

Data Parallelism

19 / 72

Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

20 / 72

Data Parallelization (2/4)

I k devices

I Jj(w) =
∑bj

i=1 l(yi, ŷi), ∀j = 1, 2, · · · , k
I ~gBJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at

device j.

I Compute ~gBJj(w) on each device j.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

21 / 72

Data Parallelization (3/4)

I Compute the mean of the gradients.

I ~gBJ(w) = 1
k

∑k
j=1 ~gBJj(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

22 / 72

Data Parallelization (4/4)

I Update the model.

I w := w − η~gBJ(w)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

23 / 72

Data Parallelization Design Issues

I The aggregation algorithm

I Communication synchronization and frequency

I Communication compression

24 / 72

The Aggregation Algorithm

25 / 72

The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip

26 / 72

Aggregation - Centralized - Parameter Server

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

27 / 72

Aggregation - Distributed - All-Reduce

I Mirror all the model parameters across all workers (no PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

28 / 72

Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

29 / 72

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

30 / 72

Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

31 / 72

AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

32 / 72

AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce

33 / 72

AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

34 / 72

AllReduce Implementation - Master-Worker AllReduce

I Selecting one process as a master, gather all arrays into the master.

I Perform reduction operations locally in the master.

I Distribute the result to the other processes.

I The master becomes a bottleneck (not scalable).

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

35 / 72

AllReduce Implementation - Other implementations

I Some try to minimize bandwidth.

I Some try to minimize latency.

[Zhao H. et al., arXiv:1312.3020, 2013]

36 / 72

AllReduce Implementation - Ring-AllReduce (1/6)

I The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase

37 / 72

AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1)%m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

38 / 72

AllReduce Implementation - Ring-AllReduce (3/6)

I In the first share-reduce step, process A sends a0 to process B.

I Process B sends b1 to process C, etc.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

39 / 72

AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

40 / 72

AllReduce Implementation - Ring-AllReduce (5/6)

I The share-reduce phase finishes when each process holds the complete reduction of
chunk i.

I At this point each process holds a part of the end result.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

41 / 72

AllReduce Implementation - Ring-AllReduce (6/6)

I The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

I This consolidates the result of each chunk in every process.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

42 / 72

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce
• In the share-reduce step each process sends N

m
elements, and it does it m − 1 times:

N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

43 / 72

Communication Synchronization and Frequency

44 / 72

Synchronization

I When to synchronize the parameters among the parallel workers?

45 / 72

Communication Synchronization (1/2)

I Synchronizing the model replicas in data-parallel training requires communication
• between workers, in allreduce
• between workers and parameter servers, in the centralized architecture

I The communication synchronization decides how frequently all local models are syn-
chronized with others.

46 / 72

Communication Synchronization (2/2)

I It will influence:
• The communication traffic
• The performance
• The convergence of model training

I There is a trade-off between the communication traffic and the convergence.

47 / 72

Reducing Synchronization Overhead

I Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

48 / 72

Communication Synchronization Models

I Synchronous

I Stale-synchronous

I Asynchronous

I Local SGD

49 / 72

Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

50 / 72

Communication Synchronization - Stale Synchronous (1/2)

I Alleviate the straggler problem without losing synchronization.

I The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

I Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

51 / 72

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

52 / 72

Communication Synchronization - Asynchronous (1/2)

I It completely eliminates the synchronization.

I Each work transmits its gradients to the PS after it calculates the gradients.

I The PS updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

53 / 72

Communication Synchronization - Asynchronous (2/2)

I wt+1 := wt − η
∑n

i=1 Gi,t−τk,i

I τk,i is the time delay between the moment when worker i calculates the gradient at
the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

54 / 72

Communication Synchronization - Local SGD

I All workers run several iterations, and then averages all local models into the newest
global model.

I If IT represents the synchronization timestamps, then:

wi,t+1 =

{
wi,t − ηGi,t if t + 1 /∈ IT
wi,t − η 1n

∑n
i=1 Gi,t if t + 1 ∈ IT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

55 / 72

Communication Compression

56 / 72

Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

57 / 72

Communication Compression - Quantization

I Useing lower bits to represent the data.

I The gradients are of low precision.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

58 / 72

Communication Compression - Sparsification

I Reducing the number of elements that are transmitted at each iteration.

I Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

I E.g., the zero-valued elements are no need to transmit.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

59 / 72

Model Parallelism

60 / 72

Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

61 / 72

Model Parallelization - Hash Partitioning

I Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

62 / 72

Model Parallelization - Critical Path

I Assigning the complete critical path to the fastest device.

I Critical path: the path with the longest computation time from source to sink vertex.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

63 / 72

Model Parallelization - Multi-Objective Heuristics

I Different objectives, e.g., memory, importance, traffic, and execution time

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

64 / 72

Model Parallelization - Reinforcement Learning (1/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

65 / 72

Model Parallelization - Reinforcement Learning (2/5)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

66 / 72

Model Parallelization - Reinforcement Learning (3/5)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(w): expected runtime

I w: trainable parameters of policy

I π(P|G, w): policy

I P: output placements ∈ {1, 2, ..., num ops}num devices

67 / 72

Model Parallelization - Reinforcement Learning (4/5)

I RL reward function based on execution runtime.

I The RL policy is defined as a seq-to-seq model.

I RNN Encoder receives graph embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

68 / 72

Model Parallelization - Reinforcement Learning (5/5)

I Grouping operations.

I Prediction is for group placement, not for a single operation.

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]

69 / 72

Summary

70 / 72

Summary

I Scalability matters

I Parallelization

I Data Parallelization
• Parameter server vs. AllReduce
• Synchronized vs. asynchronized

I Model Parallelization
• Random, critical path, multi-objective, RL

71 / 72

Thanks!

72 / 72

