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What is the problem?



Training Deep Neural Networks

» Computationally intensive

> Time consuming

i
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AvgPool
MaxPool
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[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.pngl




» Massive amount of training dataset

» Large number of parameters

SEE, T TOLD You
THAT BIG DATA
WAS TOO SCARY
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Accuracy vs. Data/Model Size

1980s and 1990s
A

Accuracy neural networks

— other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]
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Accuracy vs. Data/Model Size

Now
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Scale Matters

Scalabill




Fundamentals of Machine Learning



Training Dataset
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Model

» E.g., linear models, neural networks, etc.

> §=fu(x)




Loss function

» How good ¥ is able to predict the expected outcome y.
> J(w) =351 1(ys, §4)

J =wo + wixl
J

h=0,-3)] n=0,-7)




Objective

» Minimize the loss function

» arg miny, J(w)

> J(w) = >0 1(yi, 91)




Training

> J(w) =351 134, 94)

v

Gradient descent, i.e., w :=w — nVJ(w)

v

Stochastic gradient descent, i.e., w :=w — ngJ(w)
e §: gradient at a randomly chosen point.

v

Mini-barch gradient descent, i.e., w :=w — nggJ(w)
e g: gradient with respect to a set of B randomly chosen points.




Let's Scale the Learning



Scalable Training

» Data parallelism

» Model parallelism




Data Parallelism




Data Parallelization (1/4)

> Replicate a whole model on every device.

» Train all replicas simultaneously, using a different mini-batch for each.
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (2/4)

» k devices
b . .
> ‘]J(W) - ZiJ:1 1(yi7yi)' \V/J - 1727 ok
» gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at
device j.
>

Compute ggJ;(w) on each device j.

Gradient Average
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (3/4)

» Compute the mean of the gradients.

> gJ(w) = £ > 5 s Jj(w)
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization (4/4)

» Update the model.

» wi=w—nggJ(w)

Communication
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Data Parallelization Design Issues

» The aggregation algorithm

» Communication synchronization and frequency

» Communication compression




The Aggregation Algorithm



The Aggregation Algorithm

>

How to aggregate gradients (compute the mean of the gradients)?

v

Centralized - parameter server

Decentralized - all-reduce

v

v

Decentralized - gossip




Aggregation - Centralized - Parameter Server

» Store the model parameters outside of the workers.

» Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

Local Local Local Local
Model 1 Model 2 Model n-1 Model n
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Aggregation - Distributed - All-Reduce

» Mirror all the model parameters across all workers (no PS).

» Workers exchange parameter updates directly via an allreduce operation.

Worker 1 Worker n

W

Workern-1

e
s e &

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]




Aggregation - Distributed - Gossip

» No PS, and no global model.
» Every worker communicates updates with their neighbors.

» The consistency of parameters across all workers only at the end of the algorithm.

Worker 1 Worker n
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]




Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Allreduce
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[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]




VETENSKAP

AllReduce Example

Initial state After AllReduce operation

Worker A Worker B Worker A Worker B

SEAne [l EleEz

Worker C Worker D Worker C Worker D
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[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal




AllReduce Implementation

>

» Master-worker allreduce

All-to-all allreduce

v

Tree allreduce

v

Round-robin allreduce

v

Butterfly allreduce

v

Ring allreduce




AllReduce Implementation - All-to-All AllIReduce

» Send the array of data to each other.
» Apply the reduction operation on each process.

» Too many unnecessary messages.

Worker A Worker B

cooD

Worker C Worker D

aoon

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]




AllReduce Implementation - Master-Worker AllReduce

» Selecting one process as a master, gather all arrays into the master.
» Perform reduction operations locally in the master.

» Distribute the result to the other processes.

>

The master becomes a bottleneck (not scalable).

Worker A Worker B

SR ==

Worker C Worker D
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[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]




AllReduce Implementation - Other implementations

» Some try to minimize bandwidth.

» Some try to minimize latency.
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(a) Tree AllReduce (b) Round-robin AllReduce (c) Butterfly AllReduce

[Zhao H. et al., arXiv:1312.3020, 2013]




AllReduce Implementation - Ring-AllReduce (1/6)

» The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase




AllReduce Implementation - Ring-AllReduce (2/6)

> In the share-reduce phase, each process p sends data to the process (p+1)%m
e m is the number of processes, and % is the modulo operator.

» The array of data on each process is divided to m chunks (m=4 here).

» Each one of these chunks will be indexed by i going forward.

Worker A

.

Worker D
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[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]




» In the first share-reduce step, process A sends ag to process B.

» Process B sends by to process C, etc.

Worker D

anan
;

Worker B

A
Ji

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911dal




AllReduce Implementation - Ring-AllReduce (4/6)

» When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)
e The reduce operator should be associative and commutative.

» |t then proceeds to send it to the next process in the ring.

Worker A

s
/ \

Worker D

Worker B
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[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal




AllReduce Implementation - Ring-AllReduce (5/6)

» The share-reduce phase finishes when each process holds the complete reduction of
chunk 1.

» At this point each process holds a part of the end result.

Worker A

Worker D Worker B

t /

n=ag+by+opdy

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]




AllReduce Implementation - Ring-AllReduce (6/6)

» The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

» This consolidates the result of each chunk in every process.

Worker A

Worker D Worker B

ﬂ

Worker C

T=agtbtotd;

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal




Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce
o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

N

* In the share-reduce step each process sends _ elements, and it does it m — 1 times:
¥'x (m — 1) messages.

m
¢ On the share-only step, each process sends the result for the chunk it calculated: another
¥ % (m — 1) messages.

« Total network traffic is 2(X x (m — 1)).




Communication Synchronization and Frequency



Synchronization

» When to synchronize the parameters among the parallel workers?




Communication Synchronization (1/2)

» Synchronizing the model replicas in data-parallel training requires communication

* between workers, in allreduce
e between workers and parameter servers, in the centralized architecture

» The communication synchronization decides how frequently all local models are syn-
chronized with others.




Communication Synchronization (2/2)

> It will influence:
e The communication traffic
e The performance
e The convergence of model training

» There is a trade-off between the communication traffic and the convergence.




Reducing Synchronization Overhead

» Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.




Communication Synchronization Models

>

Synchronous

v

Stale-synchronous

v

Asynchronous

v

Local SGD




Communication Synchronization - Synchronous

>

After each iteration, the workers synchronize their parameter updates.

v

Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

v

Stragglers can influence the overall system throughput.

v

High communication cost that limits the system scalability.

[ Fecd-Forward

[Backwand Propagation

Barrier

(]
[ upie

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Communication Synchronization - Stale Synchronous (1/2)

> Alleviate the straggler problem without losing synchronization.

» The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

» Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

Staleness bounded Barrier

I3
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

A t n t
> Wit 1= Wo — (D ko1 251 Gik T Do s Gik T 2o(5 0)ess ory Gik)
» The update has three parts:
1. Guaranteed pre-window updates from clock 1 to t over all workers.

2. Guaranteed read-my-writes in-window updates made by the querying worker i.

3. Best-effort in-window updates. S; t11 is some subset of the updates from other workers
during period [t — s].

Staleness bounded Barrier

t
A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:




Communication Synchronization - Asynchronous (1/2)

> It completely eliminates the synchronization.
» Each work transmits its gradients to the PS after it calculates the gradients.

» The PS updates the global model without waiting for the other workers.

[ Fecd-Farward
[ Backwand Propagation
[ GradicnuModel A ggregation
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Multi-device
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[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Communication Synchronization - Asynchronous (2/2)

L n
> Wiy 1= Wg — 1) 2121 Git—mes

» Ty ; is the time delay between the moment when worker i calculates the gradient at

the current iteration.

B ackwand Propagation

[ GmdienuModel Aggregation|

Multi-device I Upare

S

ASP

@

@
Single-device

©

13

A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:




Communication Synchronization - Local SGD

> All workers run several iterations, and then averages all local models into the newest
global model.

> If Zt represents the synchronization timestamps, then:

W _ Wit — T’Gj_7t if t+1 ¢ Ir
it41 Wiy — 'r]% Zrilzl Gi ¢ if t+1€lr

[ Feed-Forward
[ Backwand Propagation
[ GrdicntModel A geregation|

R Updae

r

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Communication Compression



Communication Compression

>

Reduce the communication traffic with little impact on the model convergence.

v

Compress the exchanged gradients or models before transmitting across the network.

» Quantization

v

Sparsification




Communication Compression - Quantization

» Useing lower bits to represent the data.

» The gradients are of low precision.

by |/l||||||||II||||||||||||||||IIII|
EEEN

LR LTI
osssne [ T LT -T LT LT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Communication Compression - Sparsification

» Reducing the number of elements that are transmitted at each iteration.

» Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

» E.g., the zero-valued elements are no need to transmit.

One element
(32 bits)

/
Gradient

|

A Comprehensive Survey, 2020]

Sparsification . | . .ee

[Tang et al., Communication-Efficient Distributed Deep Learning:




Model Parallelism




Model Parallelization

» The model is split across multiple devices.

» Depends on the architecture of the NN.

Model
dissection

A I . . :
ounitrch G Geies) G G

(3 samples)

Gradient

o [ s | rs [ e

Forward and

backward
propagation 4.3

Model
dissection |

Worker 1 O |Worker 4

Data
o Gema) - Gamed)

(3 samples)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]




Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

|

1

I
1 I
i \Y |
| 1
! i I
1 g

select randomly

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Critical Path

» Assigning the complete critical path to the fastest device.

» Critical path: the path with the longest computation time from source to sink vertex.

A
oo A

find Critical Path
R
assign CP to
fastest device
1 v

[Mayer, R. et al.,

The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Multi-Objective Heuristics

» Different objectives, e.g., memory, importance, traffic, and execution time

I
;I ! traversal
]

F

best score

s

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Reinforcement Learning (1/5)

Input RL model Output

Neural model
g3 -

Set of available devices

Assignment of ops in
neural model to devices

Policy

CPU

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (2/5)

Input RL model Output

Neural model

Set of available devices

Assignment of ops in
neural model to devices

CPU

Evaluate
runtime

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy
w(P|G,w): policy
P: output placements € {1,2, ..., num_ops

v

v

}num,devices




Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.
» The RL policy is defined as a seg-to-seq model.
» RNN Encoder receives graph embedding for each operation.

» RNN Decoder predicts a device placement for each operation.

Device
'
\
Attention
Hidden
state
\ \
Embedding | st o] o] s [l wle= ] [~ ] |
\ v
B ) )
\ \
opl op2 0p100 ’ ’

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




» Grouping operations.

» Prediction is for group placement, not for a single operation.

Placer

Softmax

Attention

Hidden
state

Embedding

Grouper

Softmax

Embedding

0p10000

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]




Summary




Summary

>

Scalability matters

v

Parallelization

v

Data Parallelization

» Parameter server vs. AllReduce
e Synchronized vs. asynchronized

v

Model Parallelization

e Random, critical path, multi-objective, RL




Thanks!




