& verenscar 55
38 OCH KONST 235
S%%m@g?gg

Distributed Deep Learning

Amir H. Payberah
payberah@kth.se
2021-12-08

The Course Web Page

https://id2223kth.github.io
https://tinyurl.com/6s5jy46a

https://tinyurl.com/6s5jy46a

Where Are We?

Deep Learning

Distributed Learning

Deep Feedforward Network || Training Feedforward Network

Machine Learning

I Regression ” Classification IIMore Supervised Learningl

I Spark ML |

Where Are We?

Deep Learning

- Distributed Learning :

Deep Feedforward Network | Training Feedforward Network

Machine Learning

I Regression ” Classification ”More Supervised Learningl

Spark ML

What is the problem?

Training Deep Neural Networks

» Computationally intensive

> Time consuming

i
Convolution
AvgPool
MaxPool
Coneat
@ Dropout
@ Fully connected
& Softmax

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.pngl

» Massive amount of training dataset

» Large number of parameters

SEE, T TOLD You
THAT BIG DATA
WAS TOO SCARY

—

Jﬁ\‘ ne

\/J‘Ol’k{of(.?. Ir\novm*‘non TL\O\T ‘W’GrkS'M
KEONOS. (oM

Accuracy vs. Data/Model Size

1980s and 1990s
A

Accuracy neural networks

— other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

1980s and 1990s
A

more

Accuracy compute neural networks

other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Accuracy vs. Data/Model Size

Now

A more

Accuracy compute neural networks

1
other approaches

Scale (data size, model size)

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]

Scale Matters

Scalabill

Fundamentals of Machine Learning

Training Dataset

Entities

Society and Culture

Health | Education and Reference.

Entertainment and Music | Family and Relationships] politics and Government

does anyone here play habbohotel and want 2 be

friends? Answer:
second part. |

Family and _Reationshi

Actions Offsite conversions
161

Impressions Clicks.
4 s65¢

No on the fist part and maybe on the
got to think it over first

29. 5 an
7408 1331 16 18170 1340
76.00 1349 2 18877 1357
7679 1382 8 19757 1378
728 141 21 18598 118
68.62 1 18 14847 1046
649 1 2 13004 1

65.12 137 2 15952 1145
6698 1185 7 17970 1190
6494 1118 5 14410 1116
663 1 6 15123 1

6738 143 15298 1159
6559 147 3 14072 a3
68.19 129 4 17959 116
6478 1081 25810 1059

Model

» E.g., linear models, neural networks, etc.

> §=fu(x)

Loss function

» How good ¥ is able to predict the expected outcome y.
> J(w) =351 1(ys, §4)

J =wo + wixl
J

h=0,-3)] n=0,-7)

Objective

» Minimize the loss function

» arg miny, J(w)

> J(w) = >0 1(yi, 91)

Training

> J(w) =351 134, 94)

v

Gradient descent, i.e., w :=w — nVJ(w)

v

Stochastic gradient descent, i.e., w :=w — ngJ(w)
e §: gradient at a randomly chosen point.

v

Mini-barch gradient descent, i.e., w :=w — nggJ(w)
e g: gradient with respect to a set of B randomly chosen points.

Let's Scale the Learning

Scalable Training

» Data parallelism

» Model parallelism

Data Parallelism

Data Parallelization (1/4)

> Replicate a whole model on every device.

» Train all replicas simultaneously, using a different mini-batch for each.

Communication
oo Lot [[]
ke kN o <

Worker |

Worker 2 Worker 3
I RRRR RRAR

........................ Update

1 i 1t D Low
T D) ﬁ)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (2/4)

» k devices
b . .
> ‘]J(W) - ZiJ:1 1(yi7yi)' \V/J - 1727 ok
» gpJj(w): gradient of Jj(w) with respect to a set of B randomly chosen points at
device j.
>

Compute ggJ;(w) on each device j.

Gradient Average

Communication

ks r r r

T Worker 2

Worker 3 Worker 4

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (3/4)

» Compute the mean of the gradients.

> gJ(w) = £ > 5 s Jj(w)

Communication
[t | [Gmtien] [t | [omiinn]
ke kN

Worker 2
—

Worker 3 Worker 4

SYEEERY LYY 0% Update
0 D Lowaua

‘(Mm.mcnl) ((umz)((mimmz) Mini-batchd.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization (4/4)

» Update the model.

» wi=w—nggJ(w)

Communication
o] o] [] []
T ko

Worker 2 Worker 3 Worker 4

Worker |

Update
ad data

£ @ 0t
(Gonivaen 1) Cnivarenz) (yamivaens) uamitaena

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Data Parallelization Design Issues

» The aggregation algorithm

» Communication synchronization and frequency

» Communication compression

The Aggregation Algorithm

The Aggregation Algorithm

>

How to aggregate gradients (compute the mean of the gradients)?

v

Centralized - parameter server

Decentralized - all-reduce

v

v

Decentralized - gossip

Aggregation - Centralized - Parameter Server

» Store the model parameters outside of the workers.

» Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

Local Local Local Local
Model 1 Model 2 Model n-1 Model n
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Aggregation - Distributed - All-Reduce

» Mirror all the model parameters across all workers (no PS).

» Workers exchange parameter updates directly via an allreduce operation.

Worker 1 Worker n

W

Workern-1

e
s e &

[Tang et al., Communication-Efficient Distributed Deep Learning:

A Comprehensive Survey, 2020]

Aggregation - Distributed - Gossip

» No PS, and no global model.
» Every worker communicates updates with their neighbors.

» The consistency of parameters across all workers only at the end of the algorithm.

Worker 1 Worker n

S 8%

8 s e B

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Reduce and AllReduce (1/2)

» Reduce: reducing a set of numbers into a smaller set of numbers via a function.
» E.g., sum([1, 2, 3, 4, 5]) = 15

» Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

Reduce

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

Reduce and AllReduce (2/2)

» AllReduce stores reduced results across all processes rather than the root process.

Allreduce

oluolslouulofe

S|
®|18|14| ®|18|14| @|18|14|

UM
[18]14|

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

VETENSKAP

AllReduce Example

Initial state After AllReduce operation

Worker A Worker B Worker A Worker B

SEAne [l EleEz

Worker C Worker D Worker C Worker D

[ol (N el

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation

>

» Master-worker allreduce

All-to-all allreduce

v

Tree allreduce

v

Round-robin allreduce

v

Butterfly allreduce

v

Ring allreduce

AllReduce Implementation - All-to-All AllIReduce

» Send the array of data to each other.
» Apply the reduction operation on each process.

» Too many unnecessary messages.

Worker A Worker B

cooD

Worker C Worker D

aoon

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Master-Worker AllReduce

» Selecting one process as a master, gather all arrays into the master.
» Perform reduction operations locally in the master.

» Distribute the result to the other processes.

>

The master becomes a bottleneck (not scalable).

Worker A Worker B

SR ==

Worker C Worker D

sallailL e =

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Other implementations

» Some try to minimize bandwidth.

» Some try to minimize latency.

oo oo oo o oo RO
ONORONO \PD ARG NG (VNG Q) Py
I\;:D f:;:) P f"\ o o X
DRORONRO NGO
o N ey AN
W 7 () () () (>
- o (.z\ sy — S
Q/,\ uj\ip;) &Y) _P7/ A -
e N o NS . P /’) N
NN NS N D A O O N O AN,
(a) Tree AllReduce (b) Round-robin AllReduce (c) Butterfly AllReduce

[Zhao H. et al., arXiv:1312.3020, 2013]

AllReduce Implementation - Ring-AllReduce (1/6)

» The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase

AllReduce Implementation - Ring-AllReduce (2/6)

> In the share-reduce phase, each process p sends data to the process (p+1)%m
e m is the number of processes, and % is the modulo operator.

» The array of data on each process is divided to m chunks (m=4 here).

» Each one of these chunks will be indexed by i going forward.

Worker A

.

Worker D

(o [« 1ol]

Worker B

Worker C

B EEEN

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

» In the first share-reduce step, process A sends ag to process B.

» Process B sends by to process C, etc.

Worker D

anan
;

Worker B

A
Ji

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911dal

AllReduce Implementation - Ring-AllReduce (4/6)

» When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)
e The reduce operator should be associative and commutative.

» |t then proceeds to send it to the next process in the ring.

Worker A

s
/ \

Worker D

Worker B
(o o] | N
k: /

N oo [
CINES

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

AllReduce Implementation - Ring-AllReduce (5/6)

» The share-reduce phase finishes when each process holds the complete reduction of
chunk 1.

» At this point each process holds a part of the end result.

Worker A

Worker D Worker B

t /

n=ag+by+opdy

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b4911da]

AllReduce Implementation - Ring-AllReduce (6/6)

» The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

» This consolidates the result of each chunk in every process.

Worker A

Worker D Worker B

ﬂ

Worker C

T=agtbtotd;

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1£34b491idal

Master-Worker AllReduce vs. Ring-AllReduce

» N: number of elements, m: number of processes

» Master-Worker AllReduce
o First each process sends N elements to the master: N x (m — 1) messages.
e Then the master sends the results back to the process: another N x (m — 1) messages.
e Total network traffic is 2(N x (m — 1)), which is proportional to m.

» Ring-AllReduce

N

* In the share-reduce step each process sends _ elements, and it does it m — 1 times:
¥'x (m — 1) messages.

m
¢ On the share-only step, each process sends the result for the chunk it calculated: another
¥ % (m — 1) messages.

« Total network traffic is 2(X x (m — 1)).

Communication Synchronization and Frequency

Synchronization

» When to synchronize the parameters among the parallel workers?

Communication Synchronization (1/2)

» Synchronizing the model replicas in data-parallel training requires communication

* between workers, in allreduce
e between workers and parameter servers, in the centralized architecture

» The communication synchronization decides how frequently all local models are syn-
chronized with others.

Communication Synchronization (2/2)

> It will influence:
e The communication traffic
e The performance
e The convergence of model training

» There is a trade-off between the communication traffic and the convergence.

Reducing Synchronization Overhead

» Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

Communication Synchronization Models

>

Synchronous

v

Stale-synchronous

v

Asynchronous

v

Local SGD

Communication Synchronization - Synchronous

>

After each iteration, the workers synchronize their parameter updates.

v

Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

v

Stragglers can influence the overall system throughput.

v

High communication cost that limits the system scalability.

[Fecd-Forward

[Backwand Propagation

Barrier

(]
[upie

t
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (1/2)

> Alleviate the straggler problem without losing synchronization.

» The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

» Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

Staleness bounded Barrier

I3
[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Stale Synchronous (2/2)

» For a maximum staleness bound s, the update formula of worker i at iteration t+1:

A t n t
> Wit 1= Wo — (D ko1 251 Gik T Do s Gik T 2o(5 0)ess ory Gik)
» The update has three parts:
1. Guaranteed pre-window updates from clock 1 to t over all workers.

2. Guaranteed read-my-writes in-window updates made by the querying worker i.

3. Best-effort in-window updates. S; t11 is some subset of the updates from other workers
during period [t — s].

Staleness bounded Barrier

t
A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:

Communication Synchronization - Asynchronous (1/2)

> It completely eliminates the synchronization.
» Each work transmits its gradients to the PS after it calculates the gradients.

» The PS updates the global model without waiting for the other workers.

[Fecd-Farward
[Backwand Propagation
[GradicnuModel A ggregation

U

Multi-device

Q@

ASP g
@

Si ~devi
ingle- eneeO
I3

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Synchronization - Asynchronous (2/2)

L n
> Wiy 1= Wg — 1) 2121 Git—mes

» Ty ; is the time delay between the moment when worker i calculates the gradient at

the current iteration.

B ackwand Propagation

[GmdienuModel Aggregation|

Multi-device I Upare

S

ASP

@

@
Single-device

©

13

A Comprehensive Survey, 2020]

[Tang et al., Communication-Efficient Distributed Deep Learning:

Communication Synchronization - Local SGD

> All workers run several iterations, and then averages all local models into the newest
global model.

> If Zt represents the synchronization timestamps, then:

W _ Wit — T’Gj_7t if t+1 ¢ Ir
it41 Wiy — 'r]% Zrilzl Gi ¢ if t+1€lr

[Feed-Forward
[Backwand Propagation
[GrdicntModel A geregation|

R Updae

r

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Communication Compression

Communication Compression

>

Reduce the communication traffic with little impact on the model convergence.

v

Compress the exchanged gradients or models before transmitting across the network.

» Quantization

v

Sparsification

Communication Compression - Quantization

» Useing lower bits to represent the data.

» The gradients are of low precision.

by |/l||||||||II||||||||||||||||IIII|
EEEN

LR LTI
osssne [T LT -T LT LT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Original § | | | |
Gradient

Communication Compression - Sparsification

» Reducing the number of elements that are transmitted at each iteration.

» Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

» E.g., the zero-valued elements are no need to transmit.

One element
(32 bits)

/
Gradient

|

A Comprehensive Survey, 2020]

Sparsification . | . .ee

[Tang et al., Communication-Efficient Distributed Deep Learning:

Model Parallelism

Model Parallelization

» The model is split across multiple devices.

» Depends on the architecture of the NN.

Model
dissection

A I . . :
ounitrch G Geies) G G

(3 samples)

Gradient

o [s | rs [e

Forward and

backward
propagation 4.3

Model
dissection |

Worker 1 O |Worker 4

Data
o Gema) - Gamed)

(3 samples)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

|

1

I
1 I
i \Y |
| 1
! i I
1 g

select randomly

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Critical Path

» Assigning the complete critical path to the fastest device.

» Critical path: the path with the longest computation time from source to sink vertex.

A
oo A

find Critical Path
R
assign CP to
fastest device
1 v

[Mayer, R. et al.,

The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Multi-Objective Heuristics

» Different objectives, e.g., memory, importance, traffic, and execution time

I
;I ! traversal
]

F

best score

s

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

Model Parallelization - Reinforcement Learning (1/5)

Input RL model Output

Neural model
g3 -

Set of available devices

Assignment of ops in
neural model to devices

Policy

CPU

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (2/5)

Input RL model Output

Neural model

Set of available devices

Assignment of ops in
neural model to devices

CPU

Evaluate
runtime

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

Model Parallelization - Reinforcement Learning (3/5)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

v

G: input neural graph
» R: runtime

» J(w): expected runtime

v

w: trainable parameters of policy
w(P|G,w): policy
P: output placements € {1,2, ..., num_ops

v

v

}num,devices

Model Parallelization - Reinforcement Learning (4/5)

» RL reward function based on execution runtime.
» The RL policy is defined as a seg-to-seq model.
» RNN Encoder receives graph embedding for each operation.

» RNN Decoder predicts a device placement for each operation.

Device
'
\
Attention
Hidden
state
\ \
Embedding | st o] o] s [l wle=] [~] |
\ v
B))
\ \
opl op2 0p100 ’ ’

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

» Grouping operations.

» Prediction is for group placement, not for a single operation.

Placer

Softmax

Attention

Hidden
state

Embedding

Grouper

Softmax

Embedding

0p10000

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]

Summary

Summary

>

Scalability matters

v

Parallelization

v

Data Parallelization

» Parameter server vs. AllReduce
e Synchronized vs. asynchronized

v

Model Parallelization

e Random, critical path, multi-objective, RL

Thanks!

