
Dr. Jim Dowling1,2

Slides together with Alexandru A. Ormenisan1,2, Mahmoud Ismail1,2

HOPSWORKS
KTH Lecture for ID2223

KTH - Royal Institute of Technology (1)
 Logical Clocks AB (2)

Growing Consensus on how to manage complexity of AI

Data validation

Distributed
ENGINEER

Model
Serving

A/B
Testing

Monitoring

Pipeline Management

HyperParameter
Tuning

Feature Engineering

Data
Collection

Hardware
Management

Data Model Prediction

φ(x)

2

Growing Consensus on how to manage complexity of AI

Data validation

Distributed
ENGINEER

Model
Serving

A/B
Testing

Monitoring

Pipeline Management

HyperParameter
Tuning

Feature Engineering

Data
Collection

Hardware
Management

Data Model Prediction

φ(x)

ML PLATFORM
TRAIN and SERVE

FEATURE
STORE

Training

Development

Model Repo

Model Serving

OutputFeature
Store

Feature
Engineering

Sources

 Feature
Store

Database

Application/ERP

Logs

3rd Party APIs

Object and File Storage

• • •

Dashboards

Batch Applications

Augmented Analytics

Applications

Microservices

• • •

Hopsworks - Design and Operate AI Applications at Scale

Python

Spark/SQL

Spark
Streaming

Flink

Any Python Library

HopsFS (S3 / Azure Blob Storage)

RonDB

Data Science

Data Engineering Compliance & Regulatory
Feature Store

Teams use the tools of their choice,
integrated with the

Hopsworks Feature Store
Model Serving

Hopsworks is an Open, Modular Feature Store

Code and
configuration

Data Lake,
Warehouse,

Kafka

Model
Registry

Feature
Engineering

Model
Serving

Model
Training

Model
Deploy

Model
Monitoring

Model
Development

Features

Retrieve Features

Log Predictions Training Data Statistics

Sync

HopsFS

Scaleout
Metadata

Experiment
Tracking

Programs

Feature Statistics

A/B Test

Model
Statistics

Serving
Statistics

Search (Artifacts,
Provenance and

Metadata)

Feature
Store

Elasticsearch

Experiments

Hopsworks End-to-End Machine Learning (ML) Pipelines

The Feature Store - From Information Poor Signals to Information Rich Signals

Information Rich Signals

Text

Images

Information Poor Signals

Media Playback
Finished

Text Entry

IP Packet
Received

Clicks

Search

Money
Transferred

Augment
with History
and Context

Information
Rich signals

Feature Store

IDs of user,
item,

ip-packet,
transfer, etc

Stateless Services/Applications

Commercial Feature Stores for Machine Learning

8

Data Pipelines

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E T L

9

Data Pipelines

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E L T

Feature Pipelines

($$)

V A T

AI

VAT = validate, aggregate, transform
10

V A T

V A T

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E L T

Feature Pipelines Jungle

V A T

VAT = validate, aggregate, transform
11

Data Pipelines

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E L T

Feature Pipelines

V A T

VAT = validate, aggregate, transform

Feature Store

12

Data Pipelines

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E L T

Feature Pipelines

V A

VAT = validate, aggregate, transform

Feature Store (UI, Catalog, Statistics, Custom Metadata, Governance, Security)

TServe Train
13

Data Pipelines

Apps
(operate the Business)

How the feature store fits in your data infrastructure

Operational Data

Data Warehouse/Lake
(optimize the Business)

Analytical Data
E L T

Feature Pipelines

V A

VAT = validate, aggregate, transform

Feature Store (UI, Catalog, Statistics, Custom Metadata, Governance, Security)

TServe Train

RonDB Hudi/
S3

14

Enables Collaboration between folks who speak different languages

Feature Store

Data Engineer
SQL, Spark, Flink, Python

Data Scientist
Python

ML Engineer
Kubernetes, Serverless

15

Enterprise Machine Learning Capabilities

Bu
si

ne
ss

 V
al

ue

Ad-hoc analysis, unsupervised learning
Notebooks

Online predictions
Batch

Offline predictions
Batch

Online predictions
Streaming

Road To AI Value

Traditional
Analytics

Ad-hoc ML
Research

Analytical ML

Operational ML

Real-Time ML

16

What are ML Pipelines?

ML Pipeline

Feature
engineering Training Serving

Raw Data Features Models

End-to-End Machine Learning (ML) Pipelines

How it Started

Project Based Multi Tenancy

Alice

Project A

Project A_Alice

ASSETS

Project B

Project B_Alice

ASSETS

Raw Data

Feature Store

Code

Users

Other resources

Raw Data

Feature Store

Code

Users

Other resources

Project Based Multi Tenancy - Shared Data

Alice

Project A

Project A_Alice

ASSETS

Project B

Project B_Alice

ASSETS

Raw Data

Feature Store

Code

Users

Other resources

Raw Data

Feature Store

Code

Users

Other resources

Data Scientists/Data EngineersCI/CD

Project Based Multi Tenancy - Production/Development

Production

ASSETS

Development

ASSETS

Raw Data

Feature Store (read-only)

Code

Users

Other resources

Raw Data

Feature Store

Code

Users

Other resources

MLOps Platform

Data Scientists/Data EngineersCI/CD

Project Based Multi Tenancy - Mix Structure

Marketing
Production

ASSETS

Marketing
Development

ASSETS

Raw Data

Feature Store (read-only)

Code

Users

Other resources

Raw Data

Feature Store

Code

Users

Other resources

MLOps Platform

Feature Engineering

From Data to Features to Training Data to Models

Select
target,

features

Model
architectureFeature Store Training Dataset

Raw Data

Feature
Engineering

Feature engineering - Aggregation example

#1 purchase #2 ...

Churn

Now

nr_purchase_1m

nr_purchase_2w

nr_purchase_1w

2021/02/10 23

2021/01/24 42

2021/01/20 47

transaction_time id

Transaction

1 1 2

1w 1m
Features

Entity
Feature Aggregation

Feature engineering

Existing feature
groups

Other Data
sources

Dataframe = (Python/PySpark/Spark/Flink based feature engineering)

fg = fs.create_feature_group("churn",
 version=1,
 description="Customer information about activity of contract",
 online_enabled=True,
 primary_key=["customer_id", "contract_id"],
 event_time="ts")

fg.save(dataframe)

Online feature store

Offline feature store

Feature Store

ClickFeatureGroup

TableFeatureGroup

UserFeatureGroup

LogsFeatureGroup

Event Data

SQL DW

S3, HDFS

SQL

Da
ta

Fr
am

e
AP

I

Kafka Input

Flink

RTFeatureGroup

Model

Train,
Batch App

User Clicks

DB Updates

User Profile Updates

Weblogs

Real-time features
Kafka Output

Reusable Features are stored in FeatureGroups

Serve

Click features every 10
secs
CDC data every 30
secs

User profile updates every
hour
Featurized weblogs data every
day

Online
Feature

Store

Offline
Feature

Store

SQL DW

S3, HDFS

SQL

Event Data

Real-Time Data
User-Entered Features (<2
secs)

Online
App

Low
Latency
Features

High
Latency
Features

Train,
Batch App

Feature Store

No existing database is both scalable (PBs) and low latency (<10ms). Hence, online + offline Feature Stores.

<10ms

TBs/PBs

Feature Pipelines update the Feature Store (2 Databases!) with data from backend Platforms

Streaming Applications can write Fresh Features

HSFS

Online Feature
store

OnlineFS

User/ Application

fg.insert(df)

Apache Hudi

Offline FS

Metadata

Schema / Metadata

30

Feature Groups

Cached feature groups

Offline Feature
Store

- Feature groups stored on Hopsworks

- Can be available both offline and
online.

- Documentation:
https://docs.hopsworks.ai/feature-st
ore-api/latest/generated/feature_gro
up/

- Example:
https://examples.hopsworks.ai/featu
restore/hsfs/basics/feature_engineer
ing/

Online Feature
Store

Feature Group Metadata

https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_group/
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_group/
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_group/
https://examples.hopsworks.ai/featurestore/hsfs/basics/feature_engineering/
https://examples.hopsworks.ai/featurestore/hsfs/basics/feature_engineering/
https://examples.hopsworks.ai/featurestore/hsfs/basics/feature_engineering/

Feature Group Versioning

- Each feature group has a version
number

- Version numbers allow users to
identify breaking changes to the
schema (feature dropped, change in
the way a feature is being computed)

- Appending feature to a feature group
is not considered a breaking change

Schema versioning Data versioning

- Calling insert()/save() on a feature
group generates a new data commit.

- Data commits allow users to track
how the data changed during the
lifetime of a feature group.

- Users can navigate the commit
history using the Activity UI

- Using the as_of method, users can
retrieve features from a feature
group, at a specific point in time.

Metadata - Activity

List actions performed on a feature group:
- Feature group creation
- Data ingestion
- Statistics computation
- Data validation

Metadata - Statistics

Statistics are computed at feature group
level for each data commit

Hopsworks computes automatically:
descriptive statistics, histograms and
correlations between features

Statistics can be explored from the UI.

Metadata - Tags

Tags allow users to specify arbitrary
metadata and make it searchable
throughout the feature store.

Tags require a schema that can be defined
and enforced at platform level.

Tags can be manipulated through the UI or
through the APIs

https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_group/#add_tag

Data Validation

Data validation

Rules Expectation

Expectation 1

These are the rules supported by the platform:
https://docs.hopsworks.ai/feature-store-api/latest/gene
rated/feature_validation/#rule-definitions

An expectation is a set of rules with specific values and
rule severity severity

Expectations can be applied to specific features on a
feature group, or to the entire set of features of a feature
group

https://docs.hopsworks.ai/feature-store-api/latest/gene
rated/feature_validation/#rule-definitions

Feature Groups

Expectation 2

HAS_MIN

HAS_MAX

NOT_NULL

Rule(name="HAS_MIN",
 level="WARNING",
 min=0, max=10)

Rule(name="HAS_MAX",
 level="WARNING",
 min=100, max=1000)

Rule(name="NOT_NULL",
 level="ERROR",
 min=100, max=100)

https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions

Validation types

Validation Type Success Warning Failure

Strict Insertion Reject Reject

Warning Insertion Insertion Reject

All Insertion Insertion Insertion

None No data validation performed

An expectation is a set of rules with specific values and rule severity severity

Expectations can be applied to specific features on a feature group, or to the
entire set of features of a feature group

https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validatio
n/#rule-definitions

Dataframe = (Python/PySpark/Spark/Flink based feature engineering)

fg = fs.create_feature_group("churn",
 version=1,
 description="Customer/contract information about activity of
contract",
 validation_type=”STRICT”,
 primary_key=["customer_id", "contract_id"])

fg.save(dataframe)

https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions
https://docs.hopsworks.ai/feature-store-api/latest/generated/feature_validation/#rule-definitions

Data Validation

Dataframe = (Python/PySpark/Spark/Flink based feature engineering)

fg = fs.create_feature_group("churn",
 version=1,
 description="Customer/contract information about activity of
contract",
 online_enabled=True,
 primary_key=["customer_id", "contract_id"],
 event_time="ts")

fg.save(dataframe)

Feature store
Data validation

✔

❌

Hopsworks Feature Store

Data Sources

Online

Feature Engineering &
preprocessing

Feature
Management

Offline
Time
TravelActivity

Low Latency
Feature Update

Batch

Real-time
Features

Lineage

Metadata

Custom
Metadata

StatisticsData
Validation

Transformations

41

Hopsworks.ai
Deployment / Security

Customer data

VPC/VNET

Hopsworks
Cluster

Hopsworks.ai
Control plane

Minimal,
Non-Sensitive

Metadata

Customer Cloud Account
Data plane

TLS

Identify
Provider

SSO

S3/ADLS

Databricks

Sagemaker /
Azure ML Studio

VPC Peering

Coming Soon

44

Serverless Platform on AWS - Amplify, Cognito, CloudFront, Lambdas, Route 53, DynamoDB

45

Lambdas

46

Cloud-Native Kubernetes Integration

https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks

 HopsFS Hive

 Elastic Kafka

Hopsworks

Pod

User

Project Creation

Kubernetes (EKS, AKS)

Access
using

X.509 /JWT

 v

Secrets

 Project_User

X.509

JWT

 Project_User
X.509

JWT

 Project_
User

X.509
JWT

Jobs UI

Project-User

Docker Container

 Project

 Jobs

2

1
1 API

server

Scheduler

2

https://www.logicalclocks.com/blog/how-we-secure-your-data-with-hopsworks

IAM Instance Profile OR IAM Role Chaining

Hopsworks EC2 Instance

Meta Instance Profile

Meta IAM Role

IAM Role A IAM Role N

Redshift
Database

S3 “MyBucket”
read/write

Hopsworks EC2 Instance

Instance Profile

IAM Role

Redshift
Database

S3 “MyBucket”
read/write

https://hopsworks.readthedocs.io/en/stable/admin_guide/cloud_role_mapping.html?highlight=iam

https://hopsworks.readthedocs.io/en/stable/admin_guide/cloud_role_mapping.html?highlight=iam

Configuring AWS IAM Role Chaining

Project

Data Scientist

Data Owner

ALL IAM Role XYZ

IAM Role ABC

IAM Role QRT

RawFeatures Data Owner IAM RedShift DB:Read

Example: Only allow admins of Project ‘RawFeatures’ to read from Redshift

https://hopsworks.readthedocs.io/en/stable/admin_guide/cloud_role_mapping.html?highlight=iam#aws-role-chaining

https://hopsworks.readthedocs.io/en/stable/admin_guide/cloud_role_mapping.html?highlight=iam#aws-role-chaining

Assuming AWS IAM Roles

https://hopsworks.readthedocs.io/en/stable/user_guide/hopsworks/assume-role.html

https://hopsworks.readthedocs.io/en/stable/user_guide/hopsworks/assume-role.html

Metadata is data that describes other data.

Artifacts and Metadata in End-to-End ML PipelinesMetadata in Hopsworks

Artifacts and Metadata in End-to-End ML Pipelines

File System (S3, HopsFS, etc)

Metastore (Database)

Provenance queries
● SQL or Free-Text or Graph?
● Update Throughput?
● Latency of queries?
● Size of Metadata?

https://www.dataplatformschool.com/blog/w0y8g0-the-data-governance-zoo

Metadata Cataloging Systems - a whole industry

https://www.dataplatformschool.com/blog/w0y8g0-the-data-governance-zoo

3 Mechanisms for Metadata Collection. Polyglot Metadata Storage for Efficient Querying.

File Systems, Databases, Data Warehouses, Message Bus, etc

Metastore (Database)

Crawler
Job

Pull

(REST) API

Push

Change Data
Capture(CDC) API

Applications
(Instrumented APIs)

Job

Graph DB Search (Elastic)

Metadata Query API

Artifacts and Metadata in End-to-End ML Pipelines

File System (S3, HopsFS, etc)

Metastore

Consistency issues
Synchronization

?

Metadata is data that describes other data.

Unspoken Assumption:
Why are Data and Metadata always separate stores?

Artifacts and Metadata in End-to-End ML PipelinesWhat is Metadata Revisited?

Artifacts and Metadata in End-to-End ML Pipelines

Raw Data Features
Experiments

(Src Code, Logs,
Checkpoints)

Models

Artifacts

Metadata

File System (S3, HopsFS, etc)

Metastore (Database)

Experiments
(HParams, Env,
Results, Graphs)

Feature Stats
(Min,Max,Std,
Mean, Distrib.)

Governance
(Privileges,Audit,
Retention, etc)

Model Desc
(Privileges, Perf,
Provenance, etc)

Jobs
(Executions,

Lineage, Prov.)

Mechanism 4: Artifacts and Metadata in the same system - a Unified Metadata Layer (Hopsworks)

Features
Experiments
(Progs, Logs,
Checkpoints)

Models

Artifacts
Metadata

HopsFS

Metastore (RonDB)

Experiments
(HParams, Env,
Results, Graphs)

Feature Stats
(Min,Max,Std,
Mean, Distrib.)

Governance
(Privileges,Audit,
Retention, etc)

Model Desc
(Privileges, Perf,
Provenance, etc)

Raw Data

extends extends extends extends

Libraries

Application

Data
platform

Metadata
store

Explicit

Top–down tracking of provenance.

Push/Pull, CDC, or instrumented
application or library code.

Standalone Metadata Store.

Implicit

Bottom-up tracking of provenance.

Requires redesigning the platform.

Conventions link files to artifacts.

Metadata is strongly consistent
with storage platform.

Mechanism 4: Implicit Provenance

ePipe: Near Real-Time Polyglot Persistence of HopsFS Metadata

Mahmoud Ismail1, Mikael Ronström2, Seif Haridi1, Jim Dowling1

1 KTH - Royal Institute of Technology 2 Oracle
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid 2019), May 15th

59

Tightly coupled Metadata and Data - replicating Metadata to External Systems

HopsFS

Scaleout
Metadata

Artifact (File)

Artifact
Metadata

Elasticsearch

Sync

DN1 DN2 DN3 DN4 DN5

60

● Highly scalable next-generation distribution of HDFS

mkdir /Images
write /Images/cat.png

Images
cat.png

/

DN1, DN3, DN5

What is HopsFS?

61

inodeID name parentID

Block
storage

(Datenodes)

Metadata
storage

RonDB

mkdir /Images

1 / 0

2 Images 1

3 cat.png 2

write /Images/cat.png

What is HopsFS?

62

● Drop-in replacement distribution of HDFS

● 16X - 37X the throughput of HDFS

● 37 larger clusters than HDFS

● 10 times lower latency

What is HopsFS?

63

ePipe: Near Real-Time Polyglot Persistence of HopsFS
Metadata

64

HopsFS

Get all images with 1 cat and 1 guitar

1 cat and 1 guitar

Full-text search is not supported by RonDB

Search in HopsFS

65

Store
X

Store
Y

HopsFS

App A

App B

?
Polyglot Persistence - Replicating Metadata to External Systems for Efficient Querying

66

ePipe: Near Real-Time Polyglot Persistence of HopsFS
Metadata

67

● ePipe is a databus that provides replicated metadata as a service for HopsFS

● ePipe internally

• creates a consistent and correctly ordered change stream for HopsFS

metadata

• and eventually delivers the change stream with low latency (sub second)

(Near Real-time) to consumers

ePipe

68

● Extend HopsFS with a logging table to log file system changes

● Leverage the RonDB event API to stream changes on the logging table to ePipe

● ePipe enriches the file system events with appropriate data and publish the

enriched events to the consumers

ePipe: Design Decisions

69

Create /f1

name operationinodeID name parentID

1 / 0

Inodes table logging table

RonDB

HopsFS Namenodes

2 f1 1

3 f2 1

f1 CREATE
f2 CREATE

f2 DELETE

f1 DELETE

Create /f2Delete /f2Delete /f1

Inodes table and logging table updated in the same Transaction to ensure Consistency/Integrity

70

HopsFS

RonDB

log fs
changes

ePipe
Change

stream

Store
X

Store
Y

App A

App Benrichment

subscribe

for changes

ePipe

71

HopsFS

RonDB

ePipe

Create f1
Append f1
Create f2
Delete f1
Delete f2

Create f1
Append f1

Create f2
Delete f1

Delete f2

Epoch1Epoch2Epoch3

Order across epochs Order within epoch

Delete f1 after Create f1 Create f1 ?? Append f1

Delete f2 after Create f2 Create f2 ?? Delete f1

…..

Inconsistencies

100 ms

Ordering of Log Entries

72

● Property 1: The epochs are totally ordered.

● Property 2: The changes within the same transaction happen in the same

epoch.

● Property 3: The changes on files are ordered only if they are in different

epochs, that is, no ordering is guaranteed within the same epoch.

NDB Ordering Properties

73

HopsFS

RonDB

ePipe
Epoch1Epoch2Epoch3

Delete f2 ,2

Create f1 ,1
Append f1 ,2
Create f2 ,1
Delete f1 ,3
Delete f2 ,2

Create f1 ,1
Append f1 ,2

Create f2 ,1
Delete f1 ,3

We introduced a version number per inode
which we will increment whenever

a change occurs to an inode.

Append f1 after Create f1

Create f2 ?? Delete f1

Strengthening NDB Ordering Properties

74

● Property 1 & 2 & 3

● Property 4 & 5: The version number ensures the serializability of the changes

on the same file/directory within epochs.

● Property 6: The order of changes for different files/directories within the same

epoch doesn't matter.

ePipe ordering Properties

75

Logging overhead on HopsFS

76

Logging overhead on HopsFS

77

lo
g

sc
al

e
ba

se
 1

0

Notifications Throughput

78

lo
g

sc
al

e
ba

se
 1

0

Latency: average Lag Time

79

● Supports failure recovery thanks to the persistent logging table
• The log entries are deleted only once the associated events are successfully

replicated to the downstream consumers.
• At least once delivery semantics.

● Pluggable architecture
• For example, filter events based on file name or any other attribute.

● Not Limited to HopsFS
• Can be extended to watch for other logging tables for different purposes.

More about ePipe

80

● A databus that provides replicated metadata as a service for HopsFS

● Low overhead on HopsFS

● Low replication lag (sub-second)

● High throughput

● Pluggable architecture

ePipe Properties

What is provenance - ML Pipeline

ML Pipeline

Feature
engineering Training Serving

Raw Data Features Models

● Provenance improves understanding of complex ML Pipelines.

● Provenance should not change the core ML pipeline code.

● Provenance facilitates Debugging, Analyzing, Automating and Cleaning
of ML Pipelines.

● Provenance and Time Travel facilitate reproducibility of experiments.

● In Hopsworks, we introduced a new mechanism for provenance based
on embedded metadata in a scale-out consistent metadata layer.

Provenance in ML Pipelines

MLFlow Metadata - Explicit API calls

def train(data_path, max_depth, min_child_weight, estimators, model_name):
X_train, X_test, y_train, y_test = build_data(..)
mlflow.set_tracking_uri("jdbc:mysql://username:password@host:3306/database")
mlflow.set_experiment("My Experiment")
with mlflow.start_run() as run:
 ...
 mlflow.log_param("max_depth", max_depth)
 mlflow.log_param("min_child_weight", min_child_weight)
 mlflow.log_param("estimators", estimators)
 with open("test.txt", "w") as f:
 f.write("hello world!")
 mlflow.log_artifacts("/full/path/to/test.txt")
 ...
 model.fit(X_train, y_train) # auto-logging
 ...
 mlflow.tensorflow.log_model(model, "tensorflow-model",

 registered_model_name=model_name)

Hopsworks Metadata - Implicit Metadata

def train(data_path, max_depth, min_child_weight, estimators):
 X_train, X_test, y_train, y_test = build_data(..)
 ...
 print("hello world") # monkeypatched - prints in notebook
 ...
 model.fit(X_train, y_train) # auto-logging
 …
 #Saves model to ”hopsfs://Projects/myProj/models/..”
 hops.export_model(model, "tensorflow",..,model_name)
 ...
 # maggy makes an API call to track this dict
 return {'accuracy': accuracy, 'loss': loss, 'diagram': 'diagram.png'}

from maggy import experiment
experiment.lagom(train, name="My Experiment", ...)

Metadata

In []:

add(fg_eng, raw_data, features)
…
add(training, features, model)

<fg_eng, raw_data, features>

Pipeline code

What is provenance - Metadata

Feature
engineering Training Serving

Raw
Data

Features Models

ePipe (with ML Provenance)

Distributed File System (HopsFS)

Full Text Search (Elastic)

Feature
engineering Training Serving

Raw
Data

Features Models

Let the platform manage the metadata!

ML Artifacts

Features, Feature Metadata,
Train/Test Datasets
Models, Model Metadata

Possibly thousands of files

Distributed File System

Generate thousands of operations

Change Data Capture (CDC)
Capture only relevant operations

Systems Challenges - Operations

More context for file system operations?

user: John user: Alex

Are any of these operations related?

user: John,
app1

user: John,
app3

user: Alex,
app2

Certificates (with AppId) enabled FS Operation

Order of operations Order of operations

Richer provenance information

Distributed File System

Read/Write/Create/Delete/XAttr/Metadata

 Resource Manager - Yarn (Application Context)

Application X

 Job Manager - Hopsworks (Job Context)

 Workflow Manager - Airflow (Pipeline Context)

Link input/output files via Apps

Different Executions of the same Job

Jobs as Stages of the same Pipeline

Additional Context

Richer provenance information

<file, op, user_id, app_id, job_id, pipeline_id>

Hopsworks Conventions

/training_datasets

/models

/logs

/notebooks

/featurestore

CDC API - Filtering Mechanisms

/training_datasets

/models

/featurestoreProject
Example

CDC API - Filtering Mechanisms

Path based filtering

Path based filtering

Tag based filtering

Example:
Custom metadata based on HDFS XAttr.
Tag: <tutorial>, <debug>
Tags can enable logging of all operations,
if path based filtering is not easy to set

CDC API - Filtering Mechanisms

Path based filtering

Tag based filtering

Coalesce FS Operations

Example:
Read file1
Read file2
…
Read filen

Access1
Training Dataset

CDC API - Filtering Mechanisms

Parent Create Artifact Create

Parent Delete Artifact Delete

Children Read Artifact Access

Children
Create/Delete/

Append/Truncate
Artifact Mutation

Namenodes

NDB

ePipe

Cache
per namenode

Log table
With duplicates

Remove duplicates

In []:

hops.load_training_dataset(
“/Projects/LC/Training_Datasets/ImageNet”)
…
hops.save_model(“/Projects/LC/Models/ResNet”)

Optimization - FS Operation Coalesce

Path based filtering

Tag based filtering

Coalesce FS Operations

Filtered Operations

Filesystem Op Metadata Stored

Create/Delete Artifact existence

XAttr Add metadata to artifact

Read Artifact used by ..

Children Files
Create/Delete Artifact mutation

Append/Truncate Artifact mutation

Permissions/ACL Artifact metadata mutation

CDC API - Filtering Mechanisms

DataOps
CI/CD Platform

Feature Store

...

Commit-0002

Commit-0001

Commit-0097

Model Training &
Model Validation

MLOps
CI/CD Platform

Model Repository
Model Serving
& Monitoring

Data

Develop/Test
Feature Pipelines2Data1 Develop Model3 Train/Validate

Model4 Deploy/
Monitor5

Hopsworks ML Pipelines

Metadata Store

CDC events CDC events CDC events
API calls

CDC events
API calls

Bias Detected !
?

Provenance example - Helping Debug Problems in ML Pipelines

What do I do

Delta Com
m

it
10/01/20@

10:10:01

Delta Com
m

it
10/01/20@

10:12:01

Delta Com
m

it
10/01/20@

12:10:01

… …

Delta Com
m

it
20/07/20@

02:10:01

Hudi Feature Timeline

Claim of Model Bias!
Can we determine the exact features used?

Provenance + Time travel

Feature
engineering Training Serving

Raw Data Features Models

Training
timestamp

Application

@hopsworks

http://github.com/logicalclocks/hopsworks

http://github.com/logicalclocks/hopsworks

● Ormenisan et al, Time-travel and Provenance for ML Pipelines, Usenix OpML 2020

● Niazi et al, HopsFS, Usenix Fast 2017

● Ismail et al, ePipe, CCGrid 2019

● Small Files in HopsFS, ACM Middleware 2018

● Ismail et al, HopsFS-S3, ACM Middleware 2020

● Meister et al, Oblivious Training Functions, 2020

● Hopsworks

References

https://www.usenix.org/conference/opml20/presentation/ormenisan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.logicalclocks.com/research/epipe-near-real-time-polyglot-persistence-of-hopsfs-metadata-ccgrid19
https://www.logicalclocks.com/research/size-matters-improving-the-performance-of-small-files-in-hadoop-middleware-2018https://www.logicalclocks.com/research/size-matters-improving-the-performance-of-small-files-in-hadoop-middleware-2018
https://2020.middleware-conference.org/
https://www.logicalclocks.com/research/towards-distribution-transparency-for-supervised-ml-with-oblivious-training-functions
https://www.hopsworks.ai

