

Distributed Roubust Learning

Amir H. Payberah payberah@kth.se 2021-12-15

The Course Web Page

https://id2223kth.github.io https://tinyurl.com/6s5jy46a

Where Are We?

Deep Learning			
RL	Distributed Learning		
CNN	RNN		Transformer
Deep Feedforward Network Training Feedforward Network			
TensorFlow			
Machine Learning			
Regression	Classification	n More	Supervised Learning
Spark ML			

Where Are We?

Adversarial Goals

Confidentiality and privacy

- Confidentiality of the model or the data.
- Integrity
 - Integrity of the predictions

Availability

• Availability of the system deploying machine learning

Adversarial Capabilities for Integrity Attacks

Training phase

[Papernot et al., SoK: Security and Privacy in Machine Learning, 2018]

Inference phase

- White box
- Black box

[Papernot et al., SoK: Security and Privacy in Machine Learning, 2018]

Our Focus and Goal

- Data parallelization
- Each worker is prone to adversarial attack.
- Adversarial attacks: some unknown subset of computing devices are compromised and behave adversarially (e.g., sending out malicious messages)
- Our goal: integrity of the model in the training phase

Distributed Stochastic Gradient Descent (1/3)

- One parameter server, and **n** workers.
- Computation is divided into synchronous rounds.
- ► During round t, the parameter server broadcasts its parameter vector w ∈ ℝ^d to all the workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Distributed Stochastic Gradient Descent (2/3)

- At each round t, each correct worker i computes $G_i(w_t, \beta)$.
- $G_i(w_t, \beta)$: the local estimate of the gradient of the loss function $\nabla J(w_t)$.
- β : a mini-batch of i.i.d. samples drawn from the dataset.
- $G_i(w_t, \beta) = \frac{1}{|\beta|} \sum_{x \in \beta} \nabla l_i(w_t, x)$

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Distributed Stochastic Gradient Descent (3/3)

- \blacktriangleright The parameter server computes $F(G_1,G_2,\cdots,G_n)$
- ▶ Gradient Aggregation Rule (GAR): $F(G_1, G_2, \cdots, G_n) = \frac{1}{n} \sum_{i=1}^n G_i$
- ▶ The parameter server updates the parameter vector $w \leftarrow w \gamma F(G_1, G_2, \cdots, G_n)$

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

Distributed SGD with Byzantine Workers

- Among the n workers, f of them are possibly Byzantine (behaving arbitrarily).
- ► A Byzantine worker b proposes a vector G_b that can deviate arbitrarily from the vector it is supposed.

[El-Mhamdi et al., Fast and Secure Distributed Learning in High Dimension, 2019]

Averaging GAR and Byzantine Workers

- Averaging GAR: $F(G_1, G_2, \cdots, G_n) = \frac{1}{n} \sum_{i=1}^n G_i$
- $\blacktriangleright \mathsf{w} \leftarrow \mathsf{w} \gamma \mathsf{F}(\mathsf{G}_1, \mathsf{G}_2, \cdots, \mathsf{G}_n)$
- Even a single Byzantine worker can prevent convergence.
- ▶ Proof: if the Byzantine worker proposes $G_n = nU \sum_{i=1}^{n-1} G_i$, then F = U.

(α, f) -Byzantine-Resilience (1/2)

- ► Assume n workers, where f of them are Byzantine workers.
- $\alpha \in [0, \pi/2]$ and $f \in \{0, \cdots, n\}$.
- ▶ $(G_1, \cdots, G_{n-f}) \in (\mathbb{R}^d)^{n-f}$ are i.i.d. random vectors
 - $G_{\text{i}} \sim g$
 - $\mathbb{E}[g] = \mathcal{J}$, where $\mathcal{J} = \nabla J(w)$
- ▶ $(B_1, \cdots, B_f) \in (\mathbb{R}^d)^f$ are random vectors, possibly dependent between them and the vectors (G_1, \cdots, G_{n-f})

(α, f) -Byzantine-Resilience (2/2)

- A GAR F is said to be (α, f)-Byzantine-resilient if, for any 1 ≤ j₁ < · · · < j_f ≤ n, the vector F(G₁, · · · , B₁, · · · , B_f, · · · , G_n) satisfies:
 - 1. Vector F that is not too far from the real gradient \mathcal{J} , i.e., $||\mathbb{E}[F] \mathcal{J}|| \leq r$.
 - 2. Moments of F should be controlled by the moments of the (correct) gradient estimator g, where $\mathbb{E}[g] = \mathcal{J}$.

[Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, 2017]

Byzantine-Resilience GAR

- Median
- Krum
- Multi-Krum
- ► Brute

- ▶ $n \ge 2f + 1$
- \blacktriangleright median(x₁, ..., x_n) = arg min_{x \in \mathbb{R}} \sum_{i=1}^{n} |x_i x|}
- d: the gradient vectors dimension.
- Geometric median

$$F = \texttt{GeoMed}(\texttt{G}_1, \cdots, \texttt{G}_n) = \arg\min_{\texttt{G} \in \mathbb{R}^d} \sum_{i=1}^n ||\texttt{G}_i - \texttt{G}||$$

Marginal median

$$F = \texttt{MarMed}(\texttt{G}_1, \cdots, \texttt{G}_n) = \begin{pmatrix} \texttt{median}(\texttt{G}_1[1], \cdots, \texttt{G}_n[1]) \\ \vdots \\ \texttt{median}(\texttt{G}_1[d], \cdots, \texttt{G}_n[d]) \end{pmatrix}$$

(1)

▶ $n \ge 2f + 3$

- Idea: to preclude the vectors that are too far away.
- $s(i) = \sum_{i \to j} ||G_i G_j||^2$, the score of the worker i.
- $\blacktriangleright \ i \rightarrow j$ denotes that ${\tt G}_j$ belongs to the n-f-2 closest vectors to ${\tt G}_i.$
- ▶ $F(G_1, \cdots, G_n) = G_{i_*}$
- G_{i_*} refers to the worker minimizing the score, $s(i_*) \leq s(i)$ for all i.

Multi-Krum

- Multi-Krum computes the score for each vector proposed (as in Krum).
- ▶ It selects m vectores G_{1_*}, \dots, G_{m_*} , which score the best $(1 \le m \le n f 2)$.
- It outputs their average $\frac{1}{m} \sum_{i} G_{i_*}$.
- \blacktriangleright The cases m = 1 and m = n correspond to Krum and averaging, respectively.

[Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, 2017]

- ▶ $n \ge 2f + 1$
- $\blacktriangleright \ \mathcal{Q} = \{\texttt{G}_1,\texttt{G}_2,\cdots,\texttt{G}_n\}$
- $\blacktriangleright \mathcal{R} = \{ \mathcal{X} | \mathcal{X} \subset \mathcal{Q}, |\mathcal{X}| = n f \}$
 - The set of all the subsets of $\mathtt{n}-\mathtt{f}$
- $\blacktriangleright \ \mathcal{S} = \arg\min_{\mathcal{X} \in \mathcal{R}} (\max_{(\mathtt{G}_{\mathtt{i}}, \mathtt{G}_{\mathtt{j}}) \in \mathcal{X}^2} (||\mathtt{G}_{\mathtt{i}} \mathtt{G}_{\mathtt{j}}||))$
 - Selects the ${\tt n-f}$ most clumped gradients among the submitted ones.
- $\blacktriangleright F(G_1, \cdots, G_n) = \frac{1}{n-f} \sum_{G \in \mathcal{S}} G$

[El Mhamdi et al., The Hidden Vulnerability of Distributed Learning in Byzantium, 2018]

Weak Byzantine Resilience

- Limitation of previous aggregation methods.
- If gradient dimension d ≫ 1, then the distance function between two vectors ||X-Y||_p, cannot distinguish these two cases:
- ▶ 1. Does X and Y disagree a bit on each coordinate?
- 2. Does X and Y disagree a lot on only one?

Strong Byzantine Resilience

- ► Ensuring convergence (as in weak Byzantine resilience functions).
- ► Ensures that each coordinate is agreed on by a majority of vectors that were selected by a Byzantine resilient aggregation rule A.
- A can be Brute, Krum, Median, etc.
- Bulyan is a strong Byzantine-resilience algorithm.

The Hidden Vulnerability of Distributed Learning in Byzantium

Bulyan - Step One (1/2)

- ▶ n ≥ 4f + 3
- A two step process.
- The first one is to recursively use A to select $\theta = n 2f$ gradients:
 - 1. With A, choose, among the proposed vectors, the closest one to A's output (for Krum this would be the exact output of A).
 - 2. Remove the chosen gradient from the received set and add it to the selection set S.
 - 3. Loop back to step 1 if $|\mathbf{S}| < \theta$.

Bulyan - Step One (2/2)

- θ = n − 2f ≥ 2f + 3, thus S = (S₁, · · · , S_θ) contains a majority of non-Byzantine gradients.
- For each i ∈ [1..d], the median of the θ coordinates i of the selected gradients is always bounded by coordinates from non-Byzantine submissions.

- ▶ The second step is to generate the resulting gradient $F = (F[1], \cdots, F[d])$.
- ▶ $\forall i \in [1..d], F[i] = \frac{1}{\beta} \sum_{X \in M[i]} X[i]$
- $\blacktriangleright \ \beta = \theta 2 \texttt{f} \geq \texttt{3}$
- \blacktriangleright M[i] = arg min_{R \subset S, |R| = \beta} (\sum_{X \in R} |X[i] median[i]|)
- $\blacktriangleright \text{ median}[\mathtt{i}] = \arg\min_{\mathtt{m}=\mathtt{Y}[\mathtt{i}], \mathtt{Y} \in \mathtt{S}} \left(\sum_{\mathtt{Z} \in \mathtt{S}} |\mathtt{Z}[\mathtt{i}] \mathtt{m}| \right)$
- Each ith coordinate of F is equal to the average of the β closest ith coordinates to the median ith coordinate of the θ selected gradients.

[El Mhamdi et al., The Hidden Vulnerability of Distributed Learning in Byzantium, 2018]

What if parameter servers are Byzantine?

SGD: Decentralized Byzantine Resilience

[El Mhamdi et al., SGD: Decentralized Byzantine Resilience, 2019]

- Byzantine tolerant learning algorithm that is
 - 1. Resilience to Byzantine workers.
 - 2. Resilience to Byzantine parameter servers.
- GuanYu tolerates up to $\frac{1}{3}$ Byzantine servers and $\frac{1}{3}$ Byzantine workers.
- GuanYu uses a GAR for aggregating workers' gradients and Median for aggregating models received from servers.

Assumptions and Notations (1/2)

- ► Asynchronous network: the lack of any bound on communication delays.
- Synchronous training: bulk-synchronous training.
 - The parameter server does not need to wait for all the workers' gradients to make progress, and vice versa.
 - The quorums indicate the number of messages to wait before aggregating them.

Assumptions and Notations (2/2)

- ▶ $n_{ps} \ge 3f_{ps} + 3$ the total number of parameter servers, among which f_{ps} are Byzantine.
- $n_{wr} \ge 3f_{wr} + 3$ the total number of workers, among which f_{wr} are Byzantine.
- ▶ M the coordinate-wise median (used in both workers and servers).
- ▶ F the GAR function (used in the servers)
- ▶ $2f_{ps} + 3 \le q_{ps} \le n_{ps} f_{ps}$ the quorum used for M.
- ▶ $2f_{wr} + 3 \le q_{wr} \le n_{wr} f_{wr}$ the quorum used for F.
- d the dimension of the parameter space \mathbb{R}^d .

GuanYu Algorithm - Step 1

- At each step t, each non-Byzantine server i broadcasts its current parameter vector w_i^t to every worker.
- Each non-Byzantine worker j aggregates with M the q_{ps} first received w^t .
- ► And computes an estimate G^t_i of the gradient at the aggregated parameters.

GuanYu Algorithm - Step 2

- ► Each non-Byzantine worker j broadcasts its computed gradient estimation G_j^t to every parameter server.
- ▶ Each non-Byzantine parameter server i aggregates with F the q_{wr} first received G^t .
- ▶ And performs a local parameter update with the aggregated gradient, resulting in \overline{w}_{i}^{t} .

GuanYu Algorithm - Step 3

- Each non-Byzantine parameter server i broadcasts w^{t+1} to every other parameter servers.
- They aggregate with M the q_{ps} first received \overline{w}_{k}^{t+1} .
- This aggregated parameter vector is \overline{w}_i^{t+1} .

Summary

- Integrity in data-parallel learning
- ► Weak Byzantine resilience
- Strong Byzantine resilience
- Byzantine parameter servers

- ▶ Xie et al., Generalized Byzantine-tolerant SGD, 2018
- Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, 2017
- El Mhamdi et al., The Hidden Vulnerability of Distributed Learning in Byzantium, 2018
- Damaskinos et al., AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation, 2019
- ► El Mhamdi et al., SGD: Decentralized Byzantine Resilience, 2019
- ► El Mhamdi et al., Fast Machine Learning with Byzantine Workers and Servers, 2019

Questions?