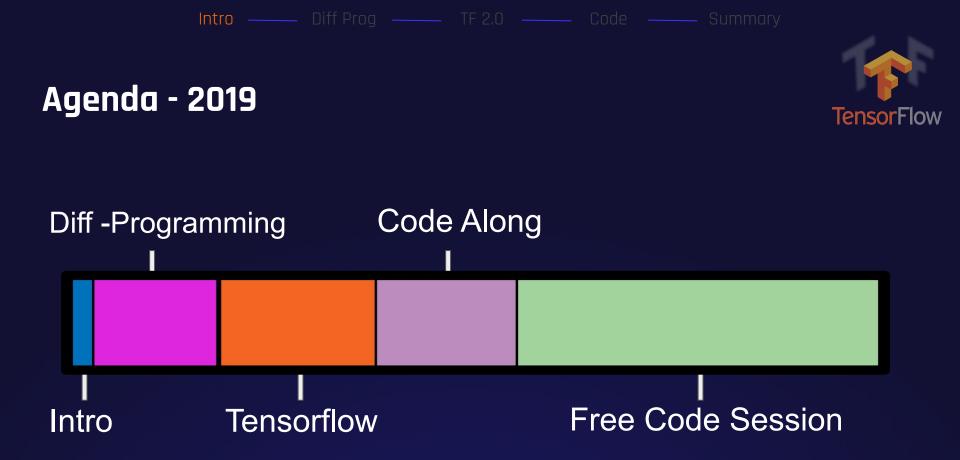
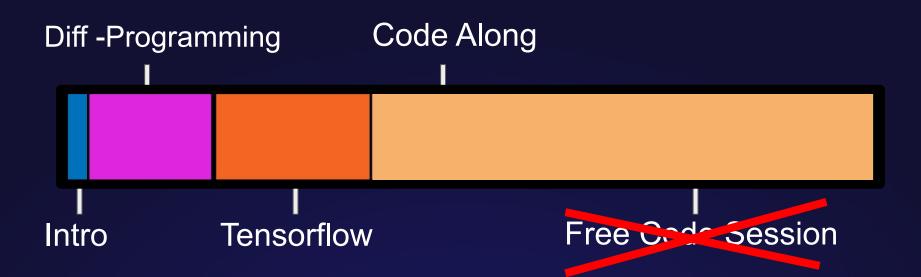
Differentiable Programming With



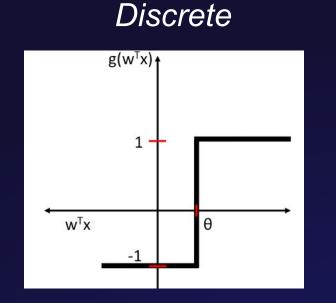
TensorFlow

Agenda - 2020/2021 Corona edition

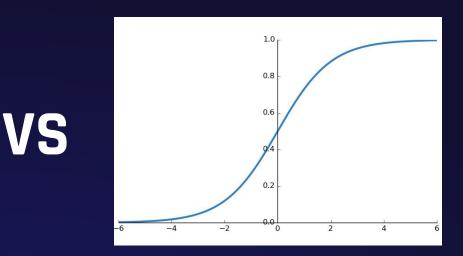


TensorFlow

Differentiable Programming

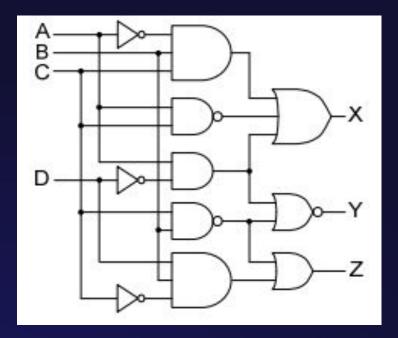


Continuous



Discrete Circuits

- Discrete circuits are <u>NOT</u> differentiable
- "Butterfly effect": Minor weight adjustments can have major output ramifications
- Early Neural Networks used discrete functions, but were hard to train effectively



Intro — Diff Prog — TF 2.0 — Code — Summary

Continuous Circuits

- Allows for differentiation
- Weight adjustments yield foreseeable changes
- Current training algorithms for continuous circuits are orders of magnitude faster than for discrete circuits



Intro — Diff Prog — TF 2.0 — Code — Summary

Differentiable Programming

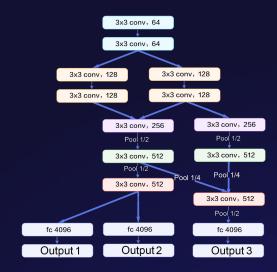
Surprising amount of inherently discrete tasks can be approximately differentiated, for example:

Searching and selecting files from a file storage

Selecting what move to play in chess

R,

Differentiable Programming



Model Architecture

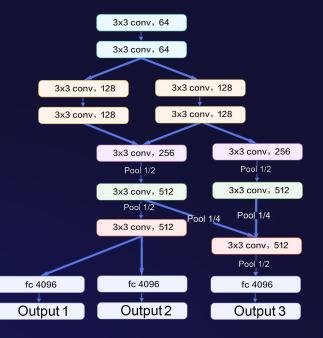
Loss Function

Model Architecture

• Determines the expressibility of the function approximation

Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

- Training and inference speed can vary widely between different model architectures
- Vast amount of different model possibilities can lead to protracted hyperparameter search



Loss Function

- The loss function acts as the learning target
- The loss must be defined so that a function that minimizes the loss also solves the desired problem
- A clever loss function is worth much more than a clever model architecture

Tensorflow

Inference Engine Library Optimizers Heavy Optimization Layers Activations Auto Differentiation **Standard Datasets Distribution Strategies Pre-trained Models** Multi-Platform Support etc... etc...

Inference Engine

Eager Execution

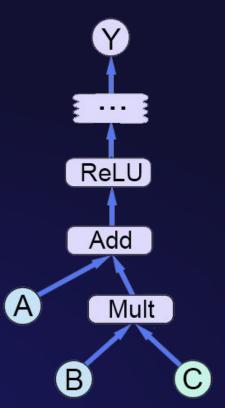
- Express computations in pure Python
- Integrates nicely with your dynamic data structures
- Great for debugging and experimentation

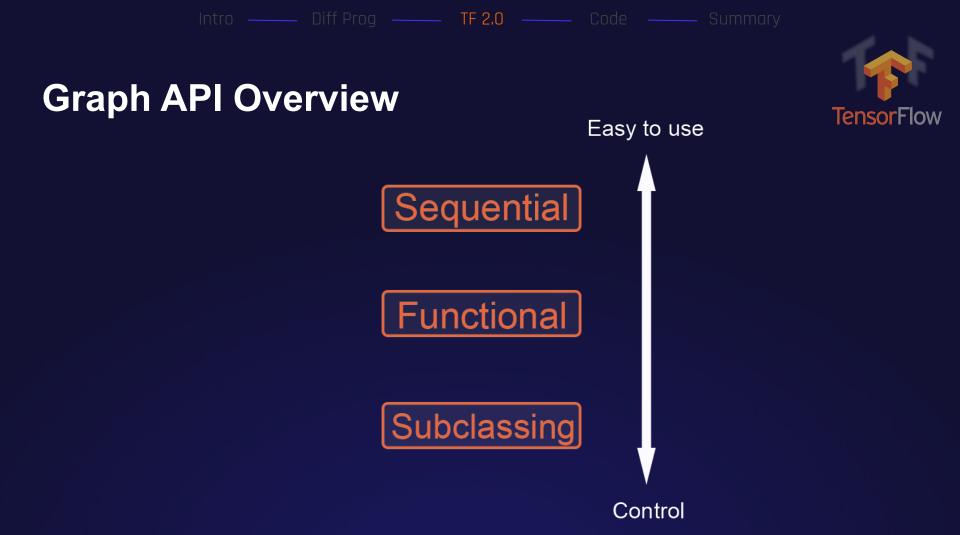
Declarative Graphs

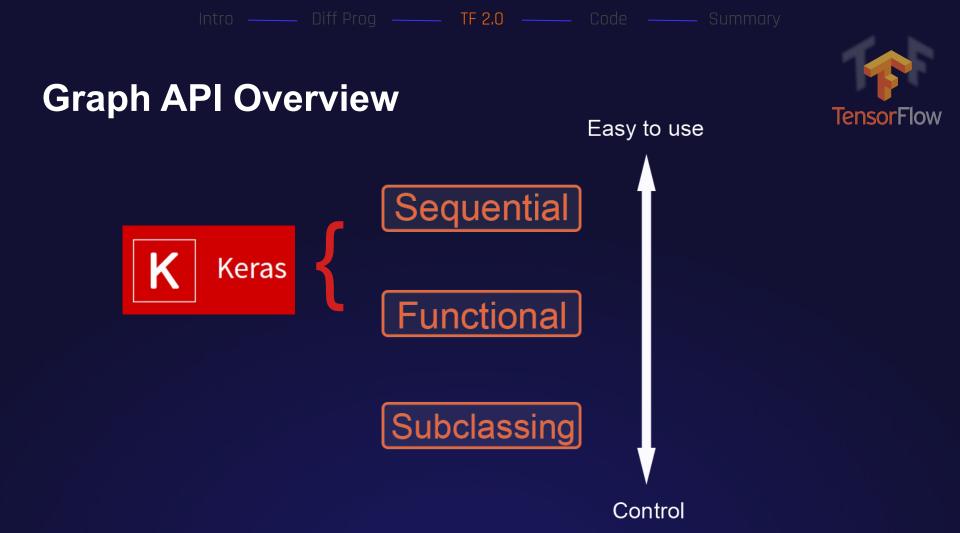
- Pre-define computations in form of a graph
- Allows for heavy optimizations
- Platform independent model structure

Computation Graphs

- Predefine computation in the form of graph
- Gives compiler apriori information, allowing for optimization: *common subexpression elimination, constant folding, etc...*
- Hardware agnostic, allowing for easy deployment
- Intuitive for large models







Graph API Overview - Sequential

- Define sequentially stacked models
- Minimal code
- Great Overview

Graph API Overview - Functional

3x3 conv, 64 3x3 conv, 64 Easy to use 3x3 conv, 128 3x3 conv, 128 Sequential 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256 3x3 conv, 256 Pool 1/2 Pool 1/2 Functional 3x3 conv, 512 3x3 conv, 512 Pool 1/2 Pool 1/4 Pool 1/4 3x3 conv, 512 3x3 conv, 512 Subclassing Pool 1/2 fc 4096 fc 4096 fc 4096 Control Output 1 Output 2 Output 3

TensorFlow

- Non Sequential Models
- Layer-based Connections
- Good for simple architecture experimentation

Graph API Overview - Subclassing

Control

TensorFlow

Code Session

Code Session

- Explore eager execution:
 - Numerical Equation Solver
 - Function Approximation
- Solve a binary classification problem using:
 - Subclassing
 - Functional API
 - Sequential
- Using Pre-trained Models:

 Image Classification
- Audience Choice

Easy to use

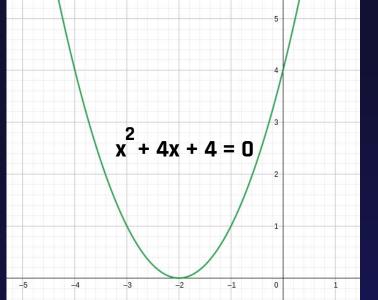
Sequential

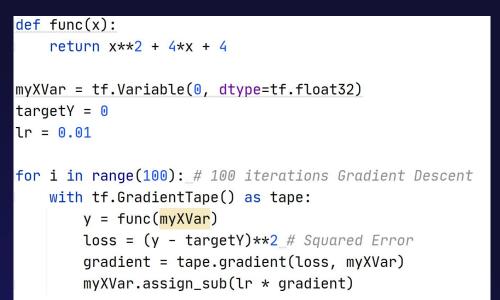
Functional

Subclassing

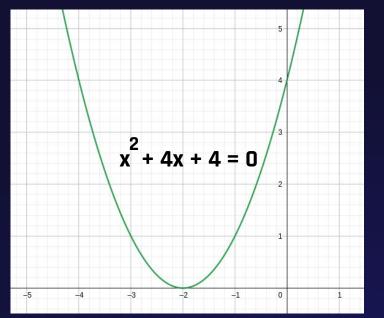
Control

Numerical Equation Solver





Function Approximation



def func(x):

return x ** 2 + 4 * x + 4

X, Y = generateTrainingData(func)
print(X.shape, Y.shape)

```
# Create the model and Optimizer
denseLayer1 = tf.keras.layers.Dense(64, activation='relu')
denseLayer2 = tf.keras.layers.Dense(1, activation='linear')
optimizer = tf.optimizers.Adam(lr=0.001)
```

```
for i in range(10000): # 10K Gradient Descent Updates
with tf.GradientTape() as tape:
    output1 = denseLayer1(X)
    y = denseLayer2(output1)
```

loss = tf.reduce_mean((Y - y) ** 2) # MSE
print("Loss:", loss)

modelVars = denseLayer1.variables + denseLayer2.variables
gradient = tape.gradient(loss, modelVars)_# Calculate Gradient
optimizer.apply_gradients(zip(gradient, modelVars))_# Update Model with Optimizer

Banknote Fraud Detection

Given preprocessed features of scanned banknotes detect which notes are authentic.

Banknote Fraud Detection

Given preprocessed features of scanned banknotes detect which notes are authentic.

- Binary classification problem
- 1372 data samples with 4 features
- <u>*** Download Link ***</u>

Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

Banknote Fraud Detection

Given preprocessed features of scanned banknotes detect which notes are authentic.

- Binary classification problem
- 1372 data samples with 4 features
- <u>*** Download Link ***</u>

Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

Real

Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

class ModelClass(tf.keras.Model):

def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)

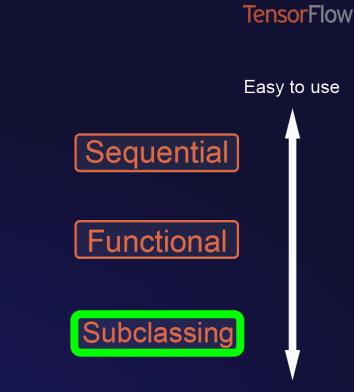
self.d1 = tf.keras.layers.Dense(64, 'relu') self.d2 = tf.keras.layers.Dense(32, 'relu') self.d3 = tf.keras.layers.Dense(1, 'sigmoid')

def call(self, inputs, training=None, mask=None): y1 = self.d1(inputs)

trainX, trainY, testX, testY = LectureUtils.loadBanknotedata() print(trainX.shape, trainY.shape, testX.shape, testY.shape)

model = ModelClass() # Create an instance of our model optimizer = tf.optimizers.Adam() # Specify the optimizer, loss and what metrics we would like to track model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])

model.evaluate(testX, testY) model.fit(trainX, trainY, batch_size=16, epochs=4) model.evaluate(testX, testY)



Control

Intro _____ Diff Prog _____ TF 2.0 _____ Code ___

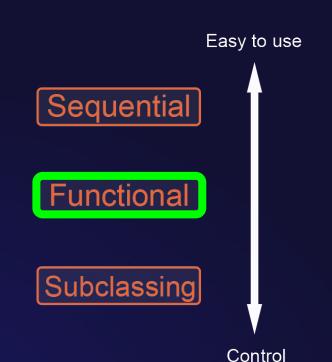
Pre-define the layers that will be used inputLayer = tf.keras.layers.Input((4,)) d1 = tf.keras.layers.Dense(64, 'relu') d2 = tf.keras.layers.Dense(32, 'relu') d3 = tf.keras.layers.Dense(1, 'sigmoid')

Pre define a computation graph using the <u>funtional</u> API
y1 = d1(inputLayer)
y2 = d2(y1)
y3 = d3(y2)
model = tf.keras.Model(inputLayer, y3)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

```
optimizer = tf.optimizers.Adam()
# Specify the optimizer, loss and what metrics we would like to track
model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
```

```
model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)
```



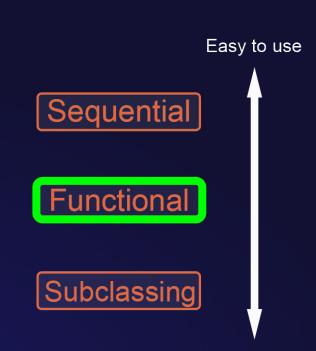
Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

Pre-define the layers that will be used
inputLayer = tf.keras.layers.Input((4,))
d1 = tf.keras.layers.Dense(64, 'relu')
d2 = tf.keras.layers.Dense(32, 'relu')
d3 = tf.keras.layers.Dense(1, 'sigmoid')
Pre define a computation graph using the funtional API
y1 = d1(inputLayer)
$y^{2} = d^{2}(y^{1})$
$y_3 = d_3(y_2)$
model = tf.keras.Model(inputLayer, y3)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

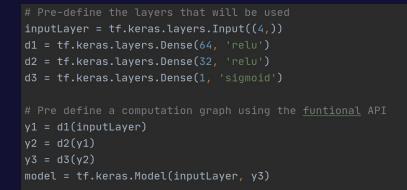
```
optimizer = tf.optimizers.Adam()
# Specify the optimizer, loss and what metrics we would like to track
model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
model.evaluate(testX, testY)
```

model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)



Control

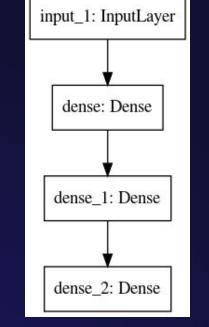
Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary



model.evaluate(testX, testY)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

```
optimizer = tf.optimizers.Adam()
# Specify the optimizer, loss and what metrics we would like to track
model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
```



```
inputLayer = tf.keras.layers.Input((4,))
d1 = tf.keras.layers.Dense(64, 'relu')
d2 = tf.keras.layers.Dense(32, 'relu')
d3 = tf.keras.layers.Dense(32, 'sigmoid')
concLayer = tf.keras.layers.Concatenate()
d4 = tf.keras.layers.Dense(1, 'sigmoid')
# Pre define a computation graph using the <u>funtic</u>
y1 = d1(inputLayer)
y2 = d2(y1)
y3 = d3(y1)
concY = concLayer([y2, y3])
y4 = d4(concY)
```

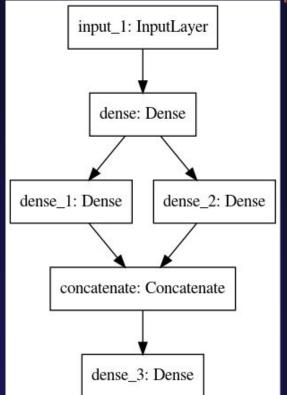
model = tf.keras.Model(inputLayer, y4)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

optimizer = tf.optimizers.Adam()

Specify the optimizer, loss and what metrics we would like to track model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])

```
model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)
```



Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

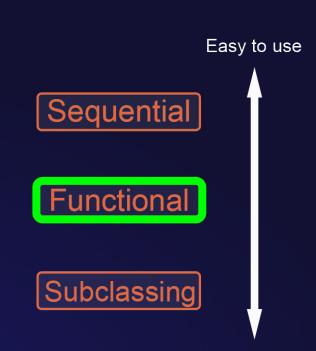
Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

Pre-define the layers that will be used
inputLayer = tf.keras.layers.Input((4,))
d1 = tf.keras.layers.Dense(64, 'relu')
d2 = tf.keras.layers.Dense(32, 'relu')
d3 = tf.keras.layers.Dense(1, 'sigmoid')
Pre define a computation graph using the funtional API
y1 = d1(inputLayer)
$y^{2} = d^{2}(y^{1})$
$y_3 = d_3(y_2)$
model = tf.keras.Model(inputLayer, y3)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

```
optimizer = tf.optimizers.Adam()
# Specify the optimizer, loss and what metrics we would like to track
model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
model.evaluate(testX, testY)
```

model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)



Control

Intro ——— Diff Prog ——— TF 2.0 ——— Code —

Pre-define the layers and the computation graph using the functional APT inputLayer = tf.keras.layers.Input((4,)) d1 = tf.keras.layers.Dense(64, 'relu')(inputLayer) d2 = tf.keras.layers.Dense(32, 'relu')(d1) d3 = tf.keras.layers.Dense(1, 'sigmoid')(d2) model = tf.keras.Model(inputLayer, d3)

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

```
optimizer = tf.optimizers.Adam()
```

Specify the optimizer, loss and what metrics we would like to track model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])

model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)

Easy to use Sequential Functional

Subclassing

Control

Intro — Diff Prog — TF 2.0 — Code — Summary

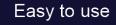
Pre-define a sequential computation graph
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, 'relu'))
model.add(tf.keras.layers.Dense(32, 'relu'))
model.add(tf.keras.layers.Dense(1, 'sigmoid'))

tf.keras.utils.plot_model(model, 'myModel.png') # Plot the model graph

```
optimizer = tf.optimizers.Adam()
```

```
# Specify the optimizer, loss and what metrics we would like to track
model.compile(optimizer, loss='binary_crossentropy', metrics=['acc'])
```

```
model.evaluate(testX, testY)
model.fit(trainX, trainY, batch_size=16, epochs=4)
model.evaluate(testX, testY)
```



```
Sequential
```

```
Functional
```

Subclassing

Pretrained Models

Training big models is expensive!

Approximative Computational Training Burden:

- BERT Large (*NLP Model*)
 - 4 days training on 16 TPUs
 - Cost ~7k dollars
- AlphaZero (RL Model)
 - 40 days Training time
 - Cost ~35 Million dollars

Pretrained Models

Training big models is expensive!

Approximative Computational Training Burden:

- BERT Large (*NLP Model*)
 - 4 days training on 16 TPUs
 - Cost ~7k dollars
- AlphaZero (RL Model)
 - 40 days Training time
 - Cost ~35 Million dollars

However, once a model is trained it can be used without great cost.

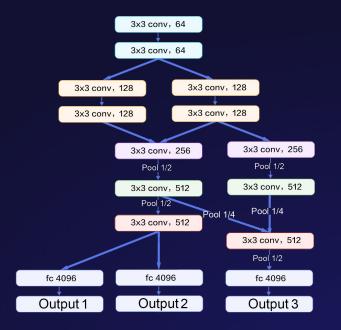
Pretrained Models

Expensive Slow Generic Task Large Datasets Cheap Medium Specific Task Small Datasets Super Cheap Fast New Data

Pretrained Models - Image Classification

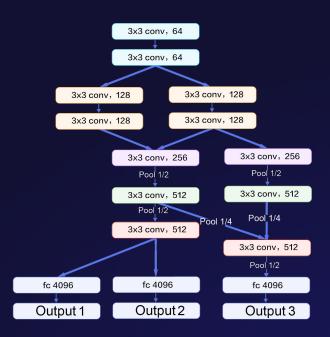
Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary

Pre-trained Convolutional Neural networks for images



- Over 14 Million labeled Images
- 20k Different classes
- Only naturally occurring images

Pretrained Models - Image Classification



TensorFlow

import tensorflow as tf

Intro — Diff Prog — TF 2.0 — Code — Summary

Load a jpg img and preprocess it for the ResNet50 model idef prepareImage(filePath, modelDims=(224, 224)): img = tf.io.read_file(filePath) img = tf.image.decode_jpeg(img, channels=3) img = tf.image.resize(img, modelDims) return tf.keras.applications.resnet50.preprocess_input(img)

imgs = []
for path in ["image1.jpg", "image2.jpg"]:
 imgs.append(prepareImage(path))

cnnModel = tf.keras.applications.ResNet50()_# Create pretrained Model
tf.keras.utils.plot_model(cnnModel)

imgs = tf.convert_to_tensor(imgs)_# Convert to tensor
print(imgs.shape)

predictions = cnnModel.predict(imgs)_# Make predictions
#Decode prediction into ImageNet classes
print(tf.keras.applications.resnet50.decode_predictions(predictions))

Words of Wisdom

Intro ——— Diff Prog ——— TF 2.0 ——— Code ——— Summary