

Introduction

Jim Dowling jdowling@kth.se 2022-11-6 Slides by Amir H. Payberah

The Housing Price Example (1/3)

▶ Given the dataset of m houses.

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	:	:

Predict the prices of other houses, as a function of the size of living area and number of bedrooms?

The Housing Price Example (2/3)

or boar comb	Price
3	400
3	330
3	369
1.00	1
	3 3 3

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2104\\3 \end{bmatrix} \quad \mathbf{y}^{(1)} = 400 \qquad \mathbf{x}^{(2)} = \begin{bmatrix} 1600\\3 \end{bmatrix} \quad \mathbf{y}^{(2)} = 330 \qquad \mathbf{x}^{(3)} = \begin{bmatrix} 2400\\3 \end{bmatrix} \quad \mathbf{y}^{(3)} = 369$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)T}\\\mathbf{x}^{(2)T}\\\mathbf{x}^{(3)T}\\\vdots \end{bmatrix} = \begin{bmatrix} 2104&3\\1600&3\\2400&3\\\vdots & \vdots \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 400\\330\\369\\\vdots \end{bmatrix}$$

▶ $\mathbf{x}^{(i)} \in \mathbb{R}^2$: $\mathbf{x}_1^{(i)}$ is the living area, and $\mathbf{x}_2^{(i)}$ is the number of bedrooms of the ith house in the training set.

The Housing Price Example (3/3)

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
:	÷	÷

- ► Predict the prices of other houses ŷ as a function of the size of their living areas x₁, and number of bedrooms x₂, i.e., ŷ = f(x₁, x₂)
- E.g., what is \hat{y} , if $x_1 = 4000$ and $x_2 = 4$?
- As an initial choice: $\hat{y} = f_w(x) = w_1 x_1 + w_2 x_2$

Linear Regression

- ▶ Our goal: to build a system that takes input $\mathbf{x} \in \mathbb{R}^n$ and predicts output $\hat{\mathbf{y}} \in \mathbb{R}$.
- In linear regression, the output \hat{y} is a linear function of the input x.

$$\begin{split} \hat{y} &= \mathtt{f}_\mathtt{w}(\mathtt{x}) = \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \cdots + \mathtt{w}_n \mathtt{x}_n \\ \\ \hat{y} &= \mathtt{w}^\intercal \mathtt{x} \end{split}$$

- $\boldsymbol{\hat{y}}$: the predicted value
- n: the number of features
- $\mathtt{x}_\mathtt{i} :$ the <code>ith</code> feature value
- w_j : the jth model parameter ($w \in \mathbb{R}^n$)

Linear regression often has one additional parameter, called intercept b:

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b}$

► Instead of adding the bias parameter b, we can augment **x** with an extra entry that is always set to 1.

 $\hat{y} = f_w(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$, where $x_0 = 1$

Linear Regression - Model Parameters

$$\hat{\mathtt{y}} = \mathtt{f}_{\mathtt{w}}(\mathtt{x}) = \mathtt{w}_0 \mathtt{x}_0 + \mathtt{w}_1 \mathtt{x}_1 + \mathtt{w}_2 \mathtt{x}_2 + \dots + \mathtt{w}_n \mathtt{x}_n$$

- Parameters $\mathbf{w} \in \mathbb{R}^n$ are values that control the behavior of the model.
- **w** are a set of weights that determine how each feature affects the prediction.
 - $w_i > 0$: increasing the value of the feature $x_i,$ increases the value of our prediction $\boldsymbol{\hat{y}}.$
 - $w_i < 0$: increasing the value of the feature $x_i,$ decreases the value of our prediction $\hat{y}.$
 - $w_i=0:$ the value of the feature $x_i,$ has no effect on the prediction $\boldsymbol{\hat{y}}.$

How can you learn Model Parameters w?

Linear Regression - Cost Function (1/2)

- One reasonable model should make \hat{y} close to y, at least for the training dataset.
- **•** Residual: the difference between the dependent variable y and the predicted value \hat{y} .

$$r^{(i)} = y^{(i)} - \hat{y}^{(i)}$$

Linear Regression - Cost Function (2/2)

► Cost function J(w)

- For each value of the **w**, it measures how close the $\hat{y}^{(i)}$ is to the corresponding $y^{(i)}$.
- We can define J(w) as the mean squared error (MSE):

$$\begin{split} J(\mathbf{w}) &= \text{MSE}(\mathbf{w}) = \frac{1}{m} \sum_{i}^{m} (\hat{y}^{(i)} - y^{(i)})^2 \\ &= \text{E}[(\hat{y} - y)^2] = \frac{1}{m} ||\hat{y} - y||_2^2 \end{split}$$

How can you learn Model Parameters?

- ▶ We want to choose **w** so as to minimize J(**w**).
- ► Two approaches to find w:
 - Normal equation closed form solution
 - Gradient descent iterative optimization

Normal Equation

Derivatives and Gradient (1/4)

[https://mathequality.wordpress.com/2012/09/26/derivative-dance-gangnam-style/]

Derivatives and Gradient (2/4)

- ► The first derivative of f(x), shown as f'(x), shows the slope of the tangent line to the function at the poa x.
- ▶ $f(x) = x^2 \Rightarrow f'(x) = 2x$
- If f(x) is increasing, then f'(x) > 0
- If f(x) is decreasing, then f'(x) < 0
- If f(x) is at local minimum/maximum, then f'(x) = 0

Derivatives and Gradient (3/4)

- \blacktriangleright What if a function has multiple arguments, e.g., $f(x_1,x_2,\cdots,x_n)$
- ▶ Partial derivatives: the derivative with respect to a particular argument.
 - $\frac{\partial f}{\partial x_1}$, the derivative with respect to x_1
 - $\frac{\partial \hat{f}}{\partial x_2}$, the derivative with respect to x_2
- $\frac{\partial f}{\partial x_i}$: shows how much the function f will change, if we change x_i .
- ► Gradient: the vector of all partial derivatives for a function f.

$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_1} \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_2} \\ \vdots \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}_n} \end{bmatrix}$$

Derivatives and Gradient (4/4)

• What is the gradient of $f(x_1, x_2, x_3) = x_1 - x_1x_2 + x_3^2$?

$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}_1} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \\ \frac{\partial}{\partial \mathbf{x}_2} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \\ \frac{\partial}{\partial \mathbf{x}_3} (\mathbf{x}_1 - \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3^2) \end{bmatrix} = \begin{bmatrix} 1 - \mathbf{x}_2 \\ -\mathbf{x}_1 \\ 2\mathbf{x}_3 \end{bmatrix}$$

▶ To minimize $J(\mathbf{w})$, we can simply solve for where its gradient is 0: $\nabla_{\mathbf{w}}J(\mathbf{w}) = 0$

 $\hat{\mathbf{y}} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

. . .

Normal Equation - Example (1/7)

Living area	No. of bedrooms	Price
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540

- Predict the value of \hat{y} , when $x_1 = 4000$ and $x_2 = 4$.
- We should find w_0 , w_1 , and w_2 in $\hat{y} = w_0 + w_1 x_1 + w_2 x_2$.
- $\blacktriangleright \mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Normal Equation - Example (2/7)

Livi	ng a	rea	No.	of b	edrooms	s Price		
2	104			3		400		
1	600			3		330	330	
2	400			3		369		
1	416			2		232		
3	000			4		540		
Г	1	210	4 3	1		F 400 -	1	
	1	160	0 3			330		
X =	1	240	0 3		у —	369		
	1	141	6 2			232		
L	. 1	300	0 4]		540 _		

Normal Equation - Example (3/7)

Normal Equation - Example (4/7)

	4.90366455e + 00	7.48766737e - 04	-2.09302326e + 00]
$(\mathbf{X}^{\intercal}\mathbf{X})^{-1} =$	7.48766737e - 04	2.75281889e - 06	-2.18023256e - 03
	-2.09302326e + 00	-2.18023256e - 03	2.22674419e + 00

Normal Equation - Example (5/7)

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2104 & 1600 & 2400 & 1416 & 3000 \\ 3 & 3 & 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 400 \\ 330 \\ 369 \\ 232 \\ 540 \end{bmatrix} = \begin{bmatrix} 1871 \\ 4203712 \\ 5921 \end{bmatrix}$$

Normal Equation - Example (6/7)

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 4.90366455e + 00 & 7.48766737e - 04 & -2.09302326e + 00 \\ 7.48766737e - 04 & 2.75281889e - 06 & -2.18023256e - 03 \\ -2.09302326e + 00 & -2.18023256e - 03 & 2.22674419e + 00 \end{bmatrix} \begin{bmatrix} 1871 \\ 4203712 \\ 5921 \end{bmatrix}$$
$$= \begin{bmatrix} -7.04346018e + 01 \\ 6.38433756e - 02 \\ 1.03436047e + 02 \end{bmatrix}$$

Normal Equation - Example (7/7)

• Predict the value of y, when $x_1 = 4000$ and $x_2 = 4$.

 $\hat{y} = -7.04346018e + 01 + 6.38433756e - 02 \times 4000 + 1.03436047e + 02 \times 4 \approx 599$

Gradient Descent

Gradient Descent (1/2)

- Gradient descent is a generic optimization algorithm capable of finding optimal solutions to a wide range of problems.
- ▶ The idea: to tweak parameters iteratively in order to minimize a cost function.

Gradient Descent (2/2)

- Suppose you are lost in the mountains in a dense fog.
- ► You can only feel the slope of the ground below your feet.
- A strategy to get to the bottom of the valley is to go downhill in the direction of the steepest slope.

Gradient Descent - Iterative Optimization Algorithm

- ► Choose a starting point, e.g., filling **w** with random values.
- ▶ If the stopping criterion is true return the current solution, otherwise continue.
- Find a descent direction, a direction in which the function value decreases near the current point.
- Determine the step size, the length of a step in the given direction.

Gradient Descent - Key Points

- Stopping criterion
- Descent direction
- Step size (learning rate)

Gradient Descent - Stopping Criterion

▶ The cost function minimum property: the gradient has to be zero.

 $\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$

Gradient Descent - Descent Direction (1/2)

- ► Direction in which the function value decreases near the current point.
- ► Find the direction of descent (slope).
- Example:

• Follow the opposite direction of the slope.

Gradient Descent - Learning Rate

- Learning rate: the length of steps.
- ▶ If it is too small: many iterations to converge.

• If it is too high: the algorithm might diverge.

Gradient Descent - How to Learn Model Parameters w?

- Goal: find w that minimizes $J(w) = \sum_{i=1}^{m} (w^{\mathsf{T}} x^{(i)} y^{(i)})^2$.
- Start at a random point, and repeat the following steps, until the stopping criterion is satisfied:
 - 1. Determine a descent direction $\frac{\partial J(w)}{\partial w}$
 - 2. Choose a step size η
 - 3. Update the parameters: $w^{(next)} = w \eta \frac{\partial J(w)}{\partial w}$ (should be done for all parameters simultanously)

Gradient Descent - Different Algorithms

- Batch gradient descent (all samples)
- Stochastic gradient descent (1 sample)
- Mini-batch gradient descent (a mini-batch of samples e.g., 200 samples)

[https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3]

Mini-Batch Gradient Descent

- Batch gradient descent: at each step, it computes the gradients based on the full training set.
- Stochastic gradient descent: at each step, it computes the gradients based on just one instance.
- Mini-batch gradient descent: at each step, it computes the gradients based on small random sets of instances called mini-batches.

Comparison of Algorithms for Linear Regression

Algorithm	Large <i>m</i>	Large <i>n</i>
Normal Equation	Fast	Slow
Batch GD	Slow	Fast
Stochastic GD	Fast	Fast
Mini-batch GD	Fast	Fast

Generalization

Training Data and Test Data

- Split data into a training set and a test set.
- Use training set when training a machine learning model.
 - Compute training error on the training set.
 - Try to reduce this training error.
- ► Use test set to measure the accuracy of the model.
 - Test error is the error when you run the trained model on test data (new data).

Full Dataset:	
Training Data	Test Data
est data (new data).

Cull Determine

Generalization

- Generalization: make a model that performs well on test data.
 - Have a small test error.
- Challenges
 - 1. Make the training error small.
 - 2. Make the gap between training and test error small.

More About The Test Error

► The test error is defined as the expected value of the error on test set.

$$\begin{split} \text{MSE} &= \frac{1}{k}\sum_{i}^{k}(\hat{y}^{(i)}-y^{(i)})^2, \text{ k: the num. of instances in the test set} \\ &= \text{E}[(\hat{y}-y)^2] \end{split}$$

• A model's test error can be expressed as the sum of bias and variance.

$$\mathbf{E}[(\mathbf{\hat{y}} - \mathbf{y})^2] = \mathbf{Bias}[\mathbf{\hat{y}}, \mathbf{y}]^2 + \mathbf{Var}[\mathbf{\hat{y}}] + \varepsilon^2$$

Bias and Underfitting

• Bias: the expected deviation from the true value of the function.

 $Bias[\hat{v}, v] = E[\hat{v}] - v$

- A high-bias model is most likely to underfit the training data.
 - High error value on the training set.
- Underfitting happens when the model is too simple to learn the underlying structure of the data.

Variance and Overfitting

- ► Variance: how much a model changes if you train it on a different training set. Var[ŷ] = E[(ŷ - E[ŷ])²]
- A high-variance model is most likely to overfit the training data.
 - The gap between the training error and test error is too large.
- Overfitting happens when the model is too complex relative to the amount and noisiness of the training data.

- ▶ Assume a model with two parameters w_0 (intercept) and w_1 (slope): $\hat{y} = w_0 + w_1 x$
- ► They give the learning algorithm two degrees of freedom.
- We tweak both the w_0 and w_1 to adapt the model to the training data.
- ► If we forced w₀ = 0, the algorithm would have only one degree of freedom and would have a much harder time fitting the data properly.

The Bias/Variance Tradeoff (2/2)

- ► Increasing degrees of freedom will typically increase its variance and reduce its bias.
- ► Decreasing degrees of freedom increases its bias and reduces its variance.
- This is why it is called a tradeoff.

[https://ml.berkeley.edu/blog/2017/07/13/tutorial-4]

- One way to reduce the risk of overfitting is to have fewer degrees of freedom.
- Regularization is a technique to reduce the risk of overfitting.
- For a linear model, regularization is achieved by constraining the weights of the model.

 $J(\mathbf{w}) = MSE(\mathbf{w}) + \lambda R(\mathbf{w})$

Regularization (2/2)

- ► Lasso regression (/1): $\mathbb{R}(\mathbf{w}) = \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$ is added to the cost function: $J(\mathbf{w}) = \mathbb{MSE}(\mathbf{w}) + \lambda \sum_{i=1}^{n} |\mathbf{w}_i|$
- ► Ridge regression (/2): $R(\mathbf{w}) = \lambda \sum_{i=1}^{n} w_i^2$ is added to the cost function. $J(\mathbf{w}) = MSE(\mathbf{w}) + \lambda \sum_{i=1}^{n} w_i^2$
- ► ElasticNet: a middle ground between /1 and /2 regularization. $J(\mathbf{w}) = MSE(\mathbf{w}) + \alpha\lambda \sum_{i=1}^{n} |w_i| + (1 - \alpha)\lambda \sum_{i=1}^{n} w_i^2$

Hyperparameters

Hyperparameters and Validation Sets (1/2)

- ► Hyperparameters are settings that we can use to control the behavior of a learning algorithm.
- ► The values of hyperparameters are not adapted by the learning algorithm itself.
 - E.g., the α and λ values for regularization.
- We do not learn the hyperparameter.
 - It is not appropriate to learn that hyperparameter on the training set.
 - If learned on the training set, such hyperparameters would always result in overfitting.

Hyperparameters and Validation Sets (2/2)

- ► To find hyperparameters, we need a validation set of examples that the training algorithm does not observe.
- ▶ We construct the validation set from the training data (not the test data).
- We split the training data into two disjoint subsets:
 - 1. One is used to learn the parameters.
 - 2. The other one (the validation set) is used to estimate the test error during or after training, allowing for the hyperparameters to be updated accordingly.

Full Dataset:				
Training Data	Validation Data	Test Data		

Cross-Validation

- Cross-validation: a technique to avoid wasting too much training data in validation sets.
- The training set is split into complementary subsets.
- Each model is trained against a different combination of these subsets and validated against the remaining parts.
- Once the model type and hyperparameters have been selected, a final model is trained using these hyperparameters on the full training set, and the test error is measured on the test set.

- Linear regression model $\hat{y} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$
 - Learning parameters **w**
 - Cost function J(w)
 - Learn parameters: normal equation, gradient descent (batch, stochastic, mini-batch)

Generalization

- Overfitting vs. underfitting
- Bias vs. variance
- Regularization: Lasso regression, Ridge regression, ElasticNet
- Hyperparameters and cross-validation

Classification

Evaluation of Classification Models (1/3)

- ► In a classification problem, there exists a true output y and a model-generated predicted output ŷ for each data point.
- ► The results for each instance point can be assigned to one of four categories:
 - True Positive (TP)
 - True Negative (TN)
 - False Positive (FP)
 - False Negative (FN)

Evaluation of Classification Models (2/3)

- True Positive (TP): the label y is positive and prediction \hat{y} is also positive.
- True Negative (TN): the label y is negative and prediction \hat{y} is also negative.

Evaluation of Classification Models (3/3)

- False Positive (FP): the label y is negative but prediction \hat{y} is positive (type I error).
- False Negative (FN): the label y is positive but prediction \hat{y} is negative (type II error).

Why Pure Accuracy Is Not A Good Metric?

- Accuracy: how close the prediction is to the true value.
- Assume a highly unbalanced dataset
- ► E.g., a dataset where 95% of the data points are not fraud and 5% of the data points are fraud.
- ► A a naive classifier that predicts not fraud, regardless of input, will be 95% accurate.
- ► For this reason, metrics like precision and recall are typically used.

It is the accuracy of the positive predictions.

$$ext{Precision} = ext{p}(ext{y} = 1 \mid \hat{ ext{y}} = 1) = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

- ▶ Is is the ratio of positive instances that are correctly detected by the classifier.
- Also called sensitivity or true positive rate (TPR).

Recall =
$$p(\hat{y} = 1 | y = 1) = \frac{TP}{TP + FN}$$

Recall = $\frac{1}{TP}$

- ► F1 score: combine precision and recall into a single metric.
- ► The *F*1 score is the harmonic mean of precision and recall.
- Whereas the regular mean treats all values equally, the harmonic mean gives much more weight to low values.
- ► *F*1 only gets high score if both recall and precision are high.

$$F1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}$$

- The confusion matrix is $K \times K$, where K is the number of classes.
- It shows the number of correct and incorrect predictions made by the classification model compared to the actual outcomes in the data.

Confusion Matrix - Example

$$TP = 3, TN = 5, FP = 1, FN = 2$$

$$Precision = \frac{TP}{TP + FP} = \frac{3}{3+1} = \frac{3}{4}$$

$$Recall (TPR) = \frac{TP}{TP + FN} = \frac{3}{3+2} = \frac{3}{5}$$

$$FPR = \frac{FP}{TN + FP} = \frac{1}{5+1} = \frac{5}{6}$$

Precision-Recall Tradeoff

- ▶ Precision-recall tradeoff: increasing precision reduces recall, and vice versa.
- Assume a classifier that detects number 5 from the other digits.
 - If an instance score is greater than a threshold, it assigns it to the positive class, otherwise to the negative class.
- Raising the threshold (move it to the arrow on the right), the false positive (the 6) becomes a true negative, thereby increasing precision.
- ► Lowering the threshold increases recall and reduces precision.

The ROC Curve (1/2) $% \left(1/2\right) \left(1/2$

- \blacktriangleright True positive rate (TPR) (recall): p($\hat{y}=1~|~y=1)^{-\text{Recall}=}$
- False positive rate (FPR): $p(\hat{y} = 1 | y = 0)$

The receiver operating characteristic (ROC) curves summarize the trade-off between the TPR and FPR for a model using different probability thresholds.

The ROC Curve (2/2) $% \left(2/2\right) \left(2/2$

- ► Here is a tradeoff: the higher the TPR, the more FPR the classifier produces.
- ► The dotted line represents the ROC curve of a purely random classifier.
- A good classifier moves toward the top-left corner.
- Area under the curve (AUC)

Decision Trees

Buying Computer Example (1/3)

▶ Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
÷	:		:	:	÷

- Predict if a new person buys a computer?
- Given an instance $\mathbf{x}^{(i)}$, e.g., $\mathbf{x}_1^{(i)} = \text{senior}$, $\mathbf{x}_2^{(i)} = \text{medium}$, $\mathbf{x}_3^{(i)} = \text{no}$, and $\mathbf{x}_4^{(i)} = \text{fair}$, then $\mathbf{y}^{(i)} = ?$

Buying Computer Example (2/3)

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
÷	:	:	:	÷	÷
youth middle_aged senior					
student? yes credit_rating?					
	no vas foir avcallant				

no

yes

yes

no

Buying Computer Example (3/3)

- Given an input instance $x^{(i)}$, for which the class label $y^{(i)}$ is unknown.
- ▶ The attribute values of the input (e.g., age or income) are tested.
- ► A path is traced from the root to a leaf node, which holds the class prediction for that input.
- E.g., input $\mathbf{x}^{(i)}$ with $\mathbf{x}_1^{(i)} = \text{senior}, \mathbf{x}_2^{(i)} = \text{medium}, \mathbf{x}_3^{(i)} = \text{no}, \text{ and } \mathbf{x}_4^{(i)} = \text{fair}.$

Decision Trees

- A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each internal node: denotes a test on an attribute
 - Each branch: represents an outcome of the test
 - Each leaf: holds a class label

Training Algorithm (1/2)

- ► Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).
 - Feature list: list of features $\{x_1^{(i)},\cdots,x_n^{(i)}\}$ of each data instance $x^{(i)}.$
 - Feature selection method: determines the splitting criterion.

Training Algorithm (2/2)

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in **D** are all of the same class, then node **N** becomes a leaf.
- ► 3. The algorithm calls feature selection method to determine the splitting criterion.
 - Indicates (i) the splitting feature $\boldsymbol{x}_k,$ and (ii) a split-point or a splitting subset.
 - The instances in D are partitioned accordingly.
- ▶ 4. The algorithm repeats the same process recursively to form a decision tree.

Training Algorithm - Termination Conditions

- ► The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ► 2. No remaining features on which the instances may be further partitioned.
- ▶ 3. There are no instances for a given branch, that is, a partition D_j is empty.
- In conditions 2 and 3:
 - Convert node N into a leaf.
 - Label it either with the most common class in D.
 - Or, the class distribution of the node tuples may be stored.

Ensembles

Wisdom of the Crowd

- Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.
- This is called the wisdom of the crowd.
- ► Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or regressors), often gets better estimations than with the best individual estimator.
- A group of estimators is an ensemble, and this technique is called Ensemble Learning.

- Two main categories of ensemble learning algorithms.
- Bagging
 - Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
 - E.g., random forest

Boosting

- Train estimators sequentially, each trying to correct its predecessor.
- E.g., adaboost and gradient boosting

- Random forest builds multiple decision trees that are most of the time trained with the bagging method.
- ▶ It, then, merges the trees together to get a more accurate and stable prediction.

- AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- Each estimator is trained on a random subset of the total training set.
- AdaBoost assigns a weight to each training instance, which determines the probability that each instance should appear in the training set.

Gradient Boosting (1/3)

- Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an ensemble, each one correcting its predecessor.
- ► However, instead of tweaking the instance weights at every iteration, this method tries to fit the new estimator to the residual errors made by the previous estimator.

Gradient Boosting (2/3)

- ► Let's go through a regression example using Gradient Boosted Regression Trees.
- Fit the first estimator on the training set.

```
tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
```

▶ Now train the second estimator on the residual errors made by the first estimator.

```
y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg2.fit(X, y2)
```


Gradient Boosting (3/3)

• Then we train the third estimator on the residual errors made by the second estimator.

```
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)
```

- ▶ Now we have an ensemble containing three trees.
- It can make predictions on a new instance simply by adding up the predictions of all the trees.

y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

- Decision tree
 - Top-down training algorithm
 - Termination condition
- Ensemble models
 - Bagging: random forest
 - Boosting: AdaBoost, Gradient Boosting

- ▶ Ian Goodfellow et al., Deep Learning (Ch. 4, 5)
- ► Aurélien Géron, Hands-On Machine Learning (Ch. 2, 3, 4)

Questions?