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Let's Start With An Example
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the students opened their

=

their work

their books

their teachers Feeling Lucky
their homework
their lecturer
their new lecturer
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Language Modeling (1/2)

» Language modeling is the task of predicting what word comes next.

books

/ / laptops
\\ exams

minds

the students opened their




Language Modeling (2/2)

» More formally: given a sequence of words x(1), x(?) ...  x(*) compute the probability
distribution of the next word x(t+1):

p(X(t+1) pry WJ |X(t)’ . e X(l))

» wj is a word in vocabulary V = {wy, - ,wy}.
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n-gram Language Models

>

the students opened their ___

v

How to learn a Language Model?

v

Learn a n-gram Language Model!

v

A n-gram is a chunk of n consecutive words.

e Unigrams: "the", "students", "opened", "their"

e Bigrams: "the students", "students opened", "opened their"
e Trigrams: "the students opened", "students opened their"

e 4-grams: "the students opened their"

v

Collect statistics about how frequent different n-grams are, and use these to predict
next word.




n-gram Language Models - Example

> Suppose we are learning a 4-gram Language Model.
« x(**1) depends only on the preceding 3 words {x(*), x(t=1) x(t=2)}

?

bep c-the-eloek=the students opened their
discard %_’
condition on this

students opened their w;

;|students opened their) =
pluystn . ) students opened their

» In the corpus:

e "students opened their" occurred 1000 times

e "students opened their books occurred 400 times:
p(books|students opened their) = 0.4

* "students opened their exams occurred 100 times:
p(exams|students opened their) = 0.1




Problems with n-gram Language Models - Sparsity

students opened their w;
p(wj|students opened their) = P j

students opened their

» What if "students opened their w;" never occurred in data? Then w; has prob-
ability 0!

> What if "students opened their" never occurred in data? Then we can't calcu-
late probability for any w;!

> Increasing n makes sparsity problems worse.
e Typically we can't have n bigger than 5.




Problems with n-gram Language Models - Storage

students opened their w;

ws|students opened their) = .
p(w;| P ) students opened their

» For "students opened their wj;", we need to store count for all possible 4-grams.

» The model size is in the order of 0(exp(n)).

> Increasing n makes model size huge.




Can We Build a Neural Language Model? (1/3)

» Recall the Language Modeling task:

« Input: sequence of words x(), x(2) ... x(¥)
e QOutput: probability dist of the next word p(x(tH) =y [x(®) ... ()

» One-Hot encoding
» Represent a categorical variable as a binary vector.
e All recodes are zero, except the index of the integer, which is one.
« Each embedded word e(®) = ETx(*) is a one-hot vector of size vocabulary size.

ened

op
students \ \

word V

x® students = [1, 0, 0, 0, O, 0, .., 0]
X®@  opemea = [0, 1, 0, 0, 0, 0, .., O]
x®  their -~ [0, 0, 1, 0, 0, 0, .., 0]

x® ook - [0, 0, 0, 1, 0, 0, ., O]




Can We Build a Neural Language Model? (2/3)

> A MLP model
e Input: words x(i),x(Q),X(?’),x(‘l) books
o Input layer: one-hot vectors e(!), e(?) e(®) (4 s
e Hidden layer: h = £f(wTe), £ is an activation function.
¢ Output: § = softmax(vTh) —_—
v
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Can We Build a Neural Language Model? (3/3)

» Improvements over n-gram LM:

e No sparsity problem books

» Model size is 0(n) not 0(exp(n)) l faptops
» Remaining problems: o H 0

e |t is fixed 4 in our example, which is small ’ v mo

e We need a neural architecture that can process

any length input (e00000000000]
w
e e® e® e®

(o000 0000 0000 0000]

sl e

the students  opened their
2z (2 3 @




Recurrent Neural Networks (RNN)
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Recurrent Neural Networks (1/4)

» The idea behind Recurrent neural networks (RNN) is to make use of sequential data.

e Until here, we assume that all inputs (and outputs) are independent of each other.
e Independent input (output) is a bad idea for many tasks, e.g., predicting the next word
in a sentence (it's better to know which words came before it).

» They can analyze time series data and predict the future.

» They can work on sequences of arbitrary lengths, rather than on fixed-sized inputs.




Recurrent Neural Networks (2/4)

» Neurons in an RNN have connections pointing backward.

» RNNs have memory, which captures information about what has been calculated so
far.

j
0

X




Recurrent Neural Networks (3/4)

» Unfolding the network: represent a network against the time axis.
* We write out the network for the complete sequence.
» For example, if the sequence we care about is a sentence of three words, the network
would be unfolded into a 3-layer neural network.
e One layer for each word.
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Recurrent Neural Networks (4/4)

» h(t) = £(uTx(®) —|—wh(t*1)), where f is an activation function, e.g., tanh or ReLU.
vh(*)), where g can be the softmax function.

» cost(y(®), §(!)) = cross_entropy(y*), §(*)) = — 3" y®)10g§(®)

» y(t) is the correct word at time step t, and §(*) is the prediction.

A
Y o1

O y

<

h

r
1




Recurrent Neurons - Weights (1/4)

» Each recurrent neuron has three sets of weights: u, w, and v.

?
0

X




Recurrent Neurons - Weights (2/4)

» u: the weights for the inputs x(t),
» x(*): is the input at time step t.

» For example, x(!) could be a one-hot vector corresponding to the first word of a
sentence.
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Recurrent Neurons - Weights (3/4)

» w: the weights for the hidden state of the previous time step h(t~1),

» h(®): is the hidden state (memory) at time step t.
e h®) = tanh(uTx®) 4 wn(t=1)
« h(® is the initial hidden state.

é §e-n VA A (t+1)
v VT -1 VT ® "T (t+1)
h w h h h




Recurrent Neurons - Weights (4/4)

» v: the weights for the hidden state of the current time step h(t).
» §(*) is the output at step t.
» §(*) = softmax(vh(*))

» For example, if we wanted to predict the next word in a sentence, it would be a
vector of probabilities across our vocabulary.




Layers of Recurrent Neurons

» At each time step t, every neuron of a layer receives both the input vector x(*) and
the output vector from the previous time step h(t=1),

h(*) = tanh(uTx(*) + wTh(*=1)
y(®) = sigmoid(vTh(*))

y(o) 9(1 ) 9(2) e o) §® o)

PR GO 3 ® 2@




Deep RNN

» Stacking multiple layers of cells gives you a deep RNN.

5
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Let's Back to Language Model Example
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A RNN Neural Language Model (1/2)

» The input x will be a sequence of words (each x(*) is a single word).

» Each embedded word e(®) = ETx(*) is a one-hot vector of size vocabulary size.

books

laptops
word V
a 200

x® students = [1, 0, 0, 0, 0, O, .., 0]

opened
students

X@  openea = [0, 1, 0, 0, O, 0, .., 0]
x®  tmeir - [0, 0, 1, 0, 0, 0, .., O]
X vk = 0, 0, 0, 1, 0, 0, ., O]

the students  opened their
() @ () @




A RNN Neural Language Model (2/2)

> Let's recap the equations for the RNN: s
« h®) = tanh(uTe®) + wh(t—1) m
« §(*) = softmax(vh(®) Sl

» The output §(*) is a vector of vocabulary size elements.

» Each element of §(*) represents the probability of that
word being the next word in the sentence.

the students  opened their
M) 2 23 @
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RNN Design Patterns
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RNN Design Patterns - Sequence-to-Vector

» Sequence-to-vector network: takes a sequence of inputs, and ignore all outputs except
for the last one.

» E.g., you could feed the network a sequence of words corresponding to a movie
review, and the network would output a sentiment score.




RNN Design Patterns - Vector-to-Sequence

» Vector-to-sequence network: takes a single input at the first time step, and let it
output a sequence.

» E.g., the input could be an image, and the output could be a caption for that image.

) (1 () (©)

!

(0)




RNN Design Patterns - Sequence-to-Sequence

» Sequence-to-sequence network: takes a sequence of inputs and produce a sequence
of outputs.

» Useful for predicting time series such as stock prices: you feed it the prices over the
last N days, and it must output the prices shifted by one day into the future.

» Here, both input sequences and output sequences have the same length.




RNN Design Patterns - Encoder-Decoder

» Encoder-decoder network: a sequence-to-vector network (encoder), followed by a
vector-to-sequence network (decoder).

» E.g., translating a sentence from one language to another.

» You would feed the network a sentence in one language, the encoder would convert
this sentence into a single vector representation, and then the decoder would decode
this vector into a sentence in another language.

Encoder R Decoder




RNN in TensorFlow
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RNN in TensorFlow (1/5)

» Forecasting a time series
» E.g., a dataset of 10000 time series, each of them 50 time steps long.

» The goal here is to forecast the value at the next time step (represented by the X)
for each of them.

S A A A
SRVRG v araw

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
t t t




RNN in TensorFlow (2/5)

> Use fully connected network

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[50, 1]),
keras.layers.Dense (1)

D

model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)
# loss: 0.003993967570985357




RNN in TensorFlow (3/5)

» Simple RNN

model = keras.models.Sequential([
keras.layers.SimpleRNN(1, input_shape=[None, 1])
D

model.compile(loss="mse", optimizer='adam')
history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)
# loss: 0.011026302369932333




RNN in TensorFlow (4/5)

» Deep RNN

model = keras.models.Sequential([
keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),
keras.layers.SimpleRNN(20, return_sequences=True),
keras.layers.SimpleRNN(1)

ID)

model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)
# loss: 0.003197280486735205




RNN in TensorFlow (5/5)

» Deep RNN (second implementation)

» Make the second layer return only the last output (no return_sequences)

model = keras.models.Sequential ([
keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 11),
keras.layers.SimpleRNN(20),
keras.layers.Dense (1)

D

model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)
# loss: 0.002757748544837038




Training RNNs
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Training RNNs

» To train an RNN, we should unroll it through time and then simply use regular
backpropagation.

» This strategy is called backpropagation through time (BPTT).




Backpropagation Through Time (1/3)

» To train the model using BPTT, we go through the following steps:
» 1. Forward pass through the unrolled network (represented by the dashed arrows).

» 2. The cost function is C(yt™in, gtmintl ... §tmax) \here tmin and tmax are the
first and last output time steps, not counting the ignored outputs.

~2) ~(3) A(4)
C(Y()’Y( )'Y )
Y@ #4 ’\lr“"

mmm




Backpropagation Through Time (2/3)

» 3. Propagate backward the gradients of that cost function through the unrolled
network (represented by the solid arrows).

» 4. The model parameters are updated using the gradients computed during BPTT.

52 oB) (@)

c¥ YY)
Y@ \(‘4 ’\lr“"
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Backpropagation Through Time (3/3)

» The gradients flow backward through all the outputs used by the cost function, not
just through the final output.

» For example, in the following figure:

e The cost function is computed using the last three outputs, §(®, 63 and §*.
« Gradients flow through these three outputs, but not through §(® and g(1).

5@ +3) @)
c¥ VY
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BPTT Step by Step (1/20)

SNt by = (Uxe + Wheoy)




BPTT Step by Step (2/20)




BPTT Step by Step (3/20)




BPTT Step by Step (4/20)




BPTT Step by Step (5/20)




BPTT Step by Step (6/20)




BPTT Step by Step (7/20)




BPTT Step by Step (8/20)

Vi V2 y3
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BPTT Step by Step (9/20)

yi V2 y3
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BPTT Step by Step (10/20)




BPTT Step by Step (11/20)

Y1 y2 V3 V-
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BPTT Step by Step (12/20)

s(®) — uTx(®) 4 yu(t—1)
n(*) = tanh(s(*)
2(t) — yp(®)
#(*) = softmax(z")

J®) = cross,entropy(y(t),?(t)) == Zy(t)logf’(t)
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BPTT Step by Step (13/20)

J®) = cross._ entropy( Zy t)logy

We treat the full sequence as one training example.

v

v

The total error E is just the sum of the errors at each time step.

» Eg,E= J) + 32 4+t 3(t)




BPTT Step by Step (14/20)

» J(t) is the total cost, so we can say that a 1-unit increase in v, w or u will impact
each of J), 33 until 3¢) individually.

» The gradient is equal to the sum of the respective gradients at each time step t.

» For example if t = 3 we have: E = J®) + 32 4 303)

OE 230 93@) 932 930
v " v ov + ov * ov
OE 230 93@) 932 950
ow " ow  Ow - ow N Oow
OE 23®) 953G 93 N 230

ou ou Ou + Ou Ou




BPTT Step by Step (15/20)

» Let's start with g—E.
v

» A change in v will only impact J®) at time t = 3, because it plays no role in

computing the value of anything other than z(®). N2l 32 V3

OE __ 83®) _ 93® | 93@ | 531 | o
=2 v = ov T oov T ov ‘ ' Vo
913 933 830) 5,(3) N )

v ay(3) 92G) ov by fi

03 932 953 §z(2) (3)‘];: L f;g

v T 9@ 92 v

81 93 a3 (1) v\\& Ul &% ol
ov o9y az(l) ov




BPTT Step by Step (16/20)

> Let's compute the derivatives of %57 and g—J, which are computed the same.

u
» A change in w at t = 3 will impact our cost J in 3 separate ways:
1. When computing the value of h(1).

2. When computing the value of h(®, which depends on h(%).
3. When computing the value of h(®), which depends on h(®, which depends on h(1).

OE

Ullee  Ullav Ul|lao




BPTT Step by Step (17/20)

» we compute our individual gradients as: " v s
! v %
03 93 032 o31)
ow — Ow + ow ow M)
N A LAY Y
910 931 831 §z(1) gn(1) gs(t) ! o= 2 =
ow 951 9z(1) on(t) 9s(t) Ow ow aw
X1 X2 X3




BPTT Step by Step (18/20)

» we compute our individual gradients as:

93®) _ 93® | 53@ | 53 e %

ow — Ow ow ow
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BPTT Step by Step (19/20)

» we compute our individual gradients as:
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BPTT Step by Step (20/20)

» More generally, a change in w will impact our cost J(*) on t separate occasions.

93 L 930) g5 ga(®) o oon() 9s() \ on® §sk)
ow 2 95® 0z on® \ 11 556) onG-1 | 9s® o
k=1 j=k+1




RNN Problems

» Sometimes we only need to look at recent information to perform the present task.
* E.g., predicting the next word based on the previous ones.

v

In such cases, where the gap between the relevant information and the place that
it's needed is small, RNNs can learn to use the past information.

v

But, as that gap grows, RNNs become unable to learn to connect the information.

v

RNNs may suffer from the vanishing/exploding gradients problem.




RNN References

>

lan Goodfellow et al., Deep Learning (Ch. 10)

Aurélien Géron, Hands-On Machine Learning (Ch. 15)

v

v

Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs

(CS224d: Deep Learning for Natural Language Processing
http://cs224d.stanford.edu

v




Word Embeddings

Problem: Word embeddings are context-free

a nice || walk by the | | river | | bank |
0.02 0.03 0.02 -0.00 -0.04 -0.01 -0.02 0.02 0.01 0.04 0.02 0.02] 0.06| 0.01
0.02 0.02 0.07| 0.03 0.03 0.04 0.03| 0.07 0.02 0.03 0.03| 0.02 0.04 0.01

[Peltarion, 2020]




[Peltarion, 2020]




Word Embeddings

Problem: Word embeddings are context-free
Solution: Create contextualized representation

a nice by get | | cash
0.02 0.03 -0.00| -0.06 0.01
0.02 0.02 0.03 \ , 0.04| |[-0.01

Attention
0.29| [e.48| |e.51 0.30| [-0.13 |e.29| |[e.29 / \ 0.32 [0.39| |e.37 0.38 0.60| |0.46| |0.39
0.19 -0.04 0.03| .08 0.15 0.13 e.10 0.37 0.20 0.34 0.02 0.19 0.24 -0.08|
= = = =
promenade waterside goto cash-machine

[Peltarion, 2020]




From RNNs to Transformers



Problems with RNNs - Motivation for Transformers

>

Sequential computations prevents parallelization

Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal with long
range dependencies

v

v

Attention gives us access to any state..Maybe we don't need the costly recursion?

v

Then NLP can have deep models, solves our computer vision envy!




Attention is all you need! [Vaswani, 2017]

Output
Probabilities

([Add & Norm J
Feed
Forward
(Add & Norm }
Multi-Head

» Sequence-to-sequence model for
Machine Translation

. == !
» Encoder-decoder architecture l e ol |
» Multi-headed self-attention Nx
Masked
» Models context and no locality = e
bias | (Y=
Positional A Positional
Encoding ¥ Encoding
Input Output
I Embedding | Embedding I
Inputs Outputs
(shifted right)

[Vaswani et al., 2017]
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Transformers Step-by-Step
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Understanding the Transformer: Step-by-Step

| am a student

4

( )

ENCODERS » DECODERS

[Alammar, 2018]
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Understanding the Transformer: Step-by-Step

I am a student

No recursion, instead . .
stacking encoder and [ ENCODER ] [ DECODER ]

decoder blocks (————;;ﬁ;;————] (““;;ﬁ;;————]
> Originally: 6 layers (—m:m (—DEczDER—]
» BERT base: 12 layers (____J_____j (_____L____j
BERT large: 24 layers p— —
GPT2-XL: 48 layers (__jEF;___] (“‘;ﬁ;?“j

v

v

L)

GPT3 96 Iayers \ ENCODER [ DECODER l

v

NPUT | Je ui étudiant

[Alammar, 2018]
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The Encoder and Decoder Blocks

( Feed Forward )

i

( Self-Attention )

r'y

T

[Alammar, 2018]




The Encoder Block

, R ( Feed Forward )
—— 4 ry

( Feed Forward ) ( Encoder-Decoder Attention J
Y r'y

( Self-Attention J ( Self-Attention J
t t

[Alammar, 2018]




Attention Preliminaries

Mimics the retrieval of a value v; for a query g based on a key k; in a database,
but in a probabilistic fashion

Query q Value v;

(Do | m—’v — aay




Dot-Product Attention

» Queries, keys and values are vectors
» Qutput is a weighted sum of the values

» Weights are are computed as the scaled dot-product (similarity) between
the query and the keys

Attention(q, K, V) ZS|m|Iar|ty (q, ki) - v, Z

e9-ki/\/dx U Output is a
> ed-ki/ Vi ! row-vector

» Can stack multiple queries into a matrix Q

KT : :
Attention(Q, K, V) = softmax Q vV Output. is again
\/CTk a matrix

» Self-attention: Let the word embeddings be the queries, keys and values,
e. let the words select each other




Self-Attention Mechanism

Input Thinking Machines

Embedding x: [ L

Queries o [ o I wa
Keys k[T ke[ WK
Values vm v,[]:D wv

[Alammar, 2018]




Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/d; )

Softmax

Self-Attention Mechanism

Thinking
x: [T
o [T
« [
vi [
g1 e ki=

Machines
x. [
q2 D:l:‘
ke [T
v [
qieke =

[Alammar, 2018]




Self-Attention Mechanism in Matrix Notation

X wa Q

Q KT

v
’ - ) softmax( BEB ) @ ) BEH
e

X wv \') i E}E{}

[Alammar, 2018]
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Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

[Alammar, 2018]
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Multi-Headed Self-Attention

[Alammar, 2018]
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Self-Attention: Putting It All Together

W@
X \ON Qo
B HE
W@
W+K Qq
W,V =, K

[Alammar, 2018]
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Attention Visualized

Layer:| 5 §|Attention:| Input - Input $

The_ The_
animal_ animal_
didn_ didn_
t t
cross_ cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_

tire
d. d

[Alammar, 2018]




The Full Encoder Block

4 4
f( Add & Normalize )\
Encoder block consisting of: :
. X : ( Feed Forward ) ( Feed Forward )
» Multi-headed self-attention R S —
z‘_ z.—
» Feedforward NN (FC 2 layers) I\ 4
» Skip connections 5|, Layernorn( FHH + BEEED
» Layer normalization - Similar to gl 7Y Iy
o ol EnEs o
batch normalization but computed z|:
' ( Self-Attention )
over features (words/tokens) for a ¢ T ) )
. aeaoXiE I Ry . [
Slngle Sample POSITIONAL é é
ENCODING
1 I 5
Thinking Machines

[Alammar, 2018]




Encoder-Decoder Architecture - Small Example

ENCODER #2

ENCODER #1

Add & Normalize

( Feed Fcrward ) ( Feed Forward )

Add & Normalize

3 Softmax
) + 4
Linear )
7y
-------- > DECODER #2
) * t
T »b( Add & Normalize )

Self-Attention

D

Qs o )

_)

/,»(

Add & Normalize

D)

4 [
( Feed Forward ) ( Feed Forward )

)

POSITIONAL
ENCODING

X1

Thinking

X2

Machines

DECODER #1

E‘ ( Feed Forward ) ( Feed Forward )

Add & Normalize )

[} 4

Encoder-Decoder Attention

[Alammar, 2018]
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Complexity Comparison

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) o(1) 0(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) 0(1) O(logk(n))

[Vaswani et al., 2017]
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Results

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 - 1020
GNMT + RL [31] 24.6 39.92 2.3-10% 14.10%
ConvS2S [8] 25.16  40.46 9.6-1018  1.5.102°
MOoE [26] 26.03 40.56 2.0-10 1.2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%° 1.1-10%!
ConvS2S Ensemble [8] 26.36 41.29 7.7-1019  1.2.10%!
Transformer (base model) 27.3 38.1 3.3-.10'8
Transformer (big) 28.4 41.0 2.3-10"

[Vaswani et al., 2017]
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BERT




BERT

Bidirectional Encoder Representations
from Transformers

» Self-supervised pre-training of
Transformers encoder for language
understanding

» Fine-tuning for specific downstream
task



/@ m 2 Start/End Sph

Masked Sentence A o Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

[Devlin et al., 2018]
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BERT Training Objectives

Masked Language Modelling

store gallon
the man went to the [MASK] to buy a [MASK] of milk

Next Sentence prediction

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

Sentence A = The man went to the store.

[Devlin et al., 2018]
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BERT Fine-Tuning Examples

Sentence Question Named Entity
Classification Answering Recognition

Class Label Start/End Span

— =
Bl
BERT ERT
Ele]- ElEalE]- G

Question Paragraph Single Sentence

Sentence A Sentence B

[Devlin et al., 2018]
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How good are transformers?

» Scaling up models size and amount of training data helps a lot
» Best model is 10B (!!) parameters
» Two models have already surpassed human performance!!!

» Exact pre-training objective (MLM, NSP, corruption) doesn’'t matter too
much

» SuperGLUE benchmark:

Rank Name Model URL  Score BoolQ CB COPA MutiRC ReCoRD RTE  WiC  WSC AX-g  AXb

1 ERNIE Team - Baidu ERNIE 3.0 [ 906 910 986/99.2  97.4 B886/632 947042 926 774 973 927947 686

4+ 2 Ziiwang T5 + UDG, Single Model (Google Brain) 2y 904 914 958/97.6 980 B88.3/630 942935 930 779 966 927919  69.1
4= 3 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 = 903 904 957/976 984 8820637 945041 932 775 959 9330938  66.7
4 SuperGLUE Human Baselines  SuperGLUE Human Baselines = 89.8 890 958989 1000 818519 917913 936 800 1000 99.3997  76.6

4 5 T5Team-Google TS5 2y 893 912 939/968 948 B88.1/633 941934 925 769 938 927919 656
4 6 HuaweiNoah's Ark Lab NEZHA-Plus = 867 878 94.4/960 936 B846/551 90.1/896 891 746 932 8717744 580

[Raffel et al., 2019]
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Practical Examples
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BERT in low-latency production settings

GODGLE \ TECH ARTIFICIAL INTELLIGENCE ‘\
Google is improving 10 percent of searches by
understanding language context

Say hello to BERT

By Dieter Bohn | @backlon | Oct 25, 2019, 3:01am EDT

Bing says it has been applying BERT since April
The natural language processing capabilities are now applied to all Bing queries
globally.

George Nguyen on November 19,2019 at 1:38 pm

[Devlin, 2020]
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Distillation

Modern pre-trained language
models are huge and very
computationally expensive

How are these companies applying
them to low-latency applications?
Distillation!

e Train SOTA teacher model
(pre-training + fine-tuning)

e Train smaller student model that
mimics the teacher’'s output on a
large dataset on unlabeled data

Distillation works much better than
pre-training + fine-tuning with
smaller model

88

86

84

82

80

Amazon Book Reviews

Teacher
= Pre-trained Distillation
—+ Pre-training+Fine-tuning

78
Tiny Mini Small Medium Base

2L 4L 4L 8L 12L
128H 256H 512H 512H 768H

[Devlin, 2020] [Turc, 2020]
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Transformers in TensorFlow using HuggingFace &)

%  HUGGING FACE

. Back to home

All Models and checkpoints

Also check out our list of Community contributors ¥ and
Organizations @ .

» The HuggingFace Library contains a
majority of the recent pre-trained
State-of-the-art NLP models, as well as
over 4 000 community uploaded models

» Works with both TensorFlow and PyTorch

Tags:All~  Sort: Most downloads ~

cased-whole-word-masking-squad2




el Transformers in TensorFlow using HuggingFace &)

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model .evaluate(val_dataset.batch(16), verbose=0)
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Wrap Up




Summary

» Transformers have blown other

architectures out of the water for
NLP

> Get rid of recurrence and rely on
self-attention

» NLP pre-training using Masked
Language Modelling

> Most recent improvements using
larger models and more data

» Distillation can make model serving
and inference more tractable
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