RNNs and Transformers

Jim Dowling
jdowling@kth.se
2022-11-23

Slides by Francisco J. Pena, Amir H. Payberah, and Jim Dowling

Let's Start With An Example

Google

their work
their books
their teachers
Feeling Lucky
their homework
their lecturer their new lecturer

- Language modeling is the task of predicting what word comes next.

Language Modeling (2/2)

- More formally: given a sequence of words $\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \cdots, \mathrm{x}^{(\mathrm{t})}$, compute the probability distribution of the next word $\mathrm{x}^{(\mathrm{t}+1)}$:

$$
\mathrm{p}\left(\mathrm{x}^{(\mathrm{t}+1)}=\mathrm{w}_{\mathrm{j}} \mid \mathrm{x}^{(\mathrm{t})}, \cdots \mathrm{x}^{(1)}\right)
$$

- w_{j} is a word in vocabulary $\mathrm{V}=\left\{\mathrm{w}_{1}, \cdots, \mathrm{w}_{\mathrm{v}}\right\}$.

- the students opened their
- How to learn a Language Model?
- Learn a n-gram Language Model!
- A n-gram is a chunk of n consecutive words.
- Unigrams: "the", "students", "opened", "their"
- Bigrams: "the students", "students opened", "opened their"
- Trigrams: "the students opened", "students opened their"
- 4-grams: "the students opened their"
- Collect statistics about how frequent different n-grams are, and use these to predict next word.

n-gram Language Models - Example

- Suppose we are learning a 4-gram Language Model.
- $\mathrm{x}^{(\mathrm{t}+1)}$ depends only on the preceding 3 words $\left\{\mathrm{x}^{(\mathrm{t})}, \mathrm{x}^{(\mathrm{t}-1)}, \mathrm{x}^{(\mathrm{t}-2)}\right\}$.
discard
condition on this

$$
\mathrm{p}\left(\mathrm{w}_{\mathrm{j}} \mid \text { students opened their }\right)=\frac{\text { students opened their } \mathrm{w}_{\mathrm{j}}}{\text { students opened their }}
$$

- In the corpus:
- "students opened their" occurred 1000 times
- "students opened their books occurred 400 times: $\mathrm{p}($ books \mid students opened their $)=0.4$
- "students opened their exams occurred 100 times: $\mathrm{p}($ exams \mid students opened their $)=0.1$

Problems with n-gram Language Models - Sparsity

$$
\mathrm{p}\left(\mathrm{w}_{\mathrm{j}} \mid \text { students opened their }\right)=\frac{\text { students opened their } \mathrm{w}_{\mathrm{j}}}{\text { students opened their }}
$$

- What if "students opened their w_{j} " never occurred in data? Then w_{j} has probability 0 !
- What if "students opened their" never occurred in data? Then we can't calculate probability for any w_{j} !
- Increasing n makes sparsity problems worse.
- Typically we can't have n bigger than 5 .

Problems with n-gram Language Models - Storage

$$
\mathrm{p}\left(\mathrm{w}_{\mathrm{j}} \mid \text { students opened their }\right)=\frac{\text { students opened their } \mathrm{w}_{\mathrm{j}}}{\text { students opened their }}
$$

- For "students opened their w_{j} ", we need to store count for all possible 4-grams.
- The model size is in the order of $0(\exp (\mathrm{n}))$.
- Increasing n makes model size huge.

Can We Build a Neural Language Model? (1/3)

- Recall the Language Modeling task:
- Input: sequence of words $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$
- Output: probability dist of the next word $p\left(x^{(t+1)}=w_{j} \mid x^{(t)}, \cdots, x^{(1)}\right)$
- One-Hot encoding
- Represent a categorical variable as a binary vector.
- All recodes are zero, except the index of the integer, which is one.
- Each embedded word $\mathbf{e}^{(\mathrm{t})}=\mathbf{E}^{\top} \mathbf{x}^{(\mathrm{t})}$ is a one-hot vector of size vocabulary size.

Can We Build a Neural Language Model? (2/3)

- A MLP model
- Input: words $\mathrm{X}^{(1)}, \mathrm{x}^{(2)}, \mathrm{x}^{(3)}, \mathrm{x}^{(4)}$
- Input layer: one-hot vectors $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \mathbf{e}^{(3)}, \mathbf{e}^{(4)}$
- Hidden layer: $\mathbf{h}=f\left(\mathbf{w}^{\top} \mathbf{e}\right), f$ is an activation function.
- Output: $\hat{\mathbf{y}}=\operatorname{sof} \operatorname{tmax}\left(\mathbf{v}^{\top} \mathbf{h}\right)$

Can We Build a Neural Language Model? (3/3)

- Improvements over n-gram LM:
- No sparsity problem
- Model size is $O(n)$ not $O(\exp (n))$
- Remaining problems:
- It is fixed 4 in our example, which is small
- We need a neural architecture that can process any length input

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (1/4)

- The idea behind Recurrent neural networks (RNN) is to make use of sequential data.
- Until here, we assume that all inputs (and outputs) are independent of each other.
- Independent input (output) is a bad idea for many tasks, e.g., predicting the next word in a sentence (it's better to know which words came before it).
- They can analyze time series data and predict the future.
- They can work on sequences of arbitrary lengths, rather than on fixed-sized inputs.

Recurrent Neural Networks (2/4)

- Neurons in an RNN have connections pointing backward.
- RNNs have memory, which captures information about what has been calculated so far.

Recurrent Neural Networks (3/4)

- Unfolding the network: represent a network against the time axis.
- We write out the network for the complete sequence.
- For example, if the sequence we care about is a sentence of three words, the network would be unfolded into a 3-layer neural network.
- One layer for each word.

Recurrent Neural Networks (4/4)

- $h^{(t)}=f\left(\mathbf{u}^{\top} \mathbf{x}^{(t)}+\mathrm{wh}^{(t-1)}\right)$, where f is an activation function, e.g., tanh or ReLU.
- $\hat{\mathrm{y}}^{(\mathrm{t})}=\mathrm{g}\left(\mathrm{vh}^{(\mathrm{t})}\right)$, where g can be the softmax function.
- cost $\left(\mathrm{y}^{(\mathrm{t})}, \hat{\mathrm{y}}^{(\mathrm{t})}\right)=$ cross_entropy $\left(\mathrm{y}^{(\mathrm{t})}, \hat{\mathrm{y}}^{(\mathrm{t})}\right)=-\sum \mathrm{y}^{(\mathrm{t})} \log \hat{\mathrm{y}}^{(\mathrm{t})}$
- $\mathrm{y}^{(\mathrm{t})}$ is the correct word at time step t , and $\hat{\mathrm{y}}^{(\mathrm{t})}$ is the prediction.

Recurrent Neurons - Weights (1/4)

- Each recurrent neuron has three sets of weights: \mathbf{u}, w, and v .

Recurrent Neurons - Weights (2/4)

- \mathbf{u} : the weights for the inputs $\mathbf{x}^{(\mathrm{t})}$.
- $\mathbf{x}^{(\mathrm{t})}$: is the input at time step t .
- For example, $\mathbf{x}^{(1)}$ could be a one-hot vector corresponding to the first word of a sentence.

Recurrent Neurons - Weights (3/4)

- w : the weights for the hidden state of the previous time step $\mathrm{h}^{(\mathrm{t}-1)}$.
- $\mathrm{h}^{(\mathrm{t})}$: is the hidden state (memory) at time step t .
- $\mathrm{h}^{(\mathrm{t})}=\tanh \left(\mathbf{u}^{\top} \mathbf{x}^{(\mathrm{t})}+\mathrm{wh}^{(\mathrm{t}-1)}\right)$
- $h^{(0)}$ is the initial hidden state.

Recurrent Neurons - Weights (4/4)

- v : the weights for the hidden state of the current time step $\mathrm{h}^{(\mathrm{t})}$.
- $\hat{\mathbf{y}}^{(\mathrm{t})}$ is the output at step t .
- $\hat{\mathbf{y}}^{(\mathrm{t})}=\operatorname{softmax}\left(\mathrm{vh}^{(\mathrm{t})}\right)$
- For example, if we wanted to predict the next word in a sentence, it would be a vector of probabilities across our vocabulary.

Layers of Recurrent Neurons

- At each time step t, every neuron of a layer receives both the input vector $\mathbf{x}^{(t)}$ and the output vector from the previous time step $\mathbf{h}^{(t-1)}$.

$$
\begin{gathered}
\mathbf{h}^{(\mathrm{t})}=\tanh \left(\mathbf{u}^{\top} \mathbf{x}^{(\mathrm{t})}+\mathbf{w}^{\top} \mathbf{h}^{(\mathrm{t}-1)}\right) \\
\mathbf{y}^{(\mathrm{t})}=\operatorname{sigmoid}\left(\mathbf{v}^{\top} \mathbf{h}^{(\mathrm{t})}\right)
\end{gathered}
$$

Deep RNN

- Stacking multiple layers of cells gives you a deep RNN.

Let's Back to Language Model Example

A RNN Neural Language Model (1/2)

- The input \mathbf{x} will be a sequence of words (each $\mathrm{x}^{(\mathrm{t})}$ is a single word).
- Each embedded word $\mathbf{e}^{(\mathrm{t})}=\mathbf{E}^{\top} \mathbf{x}^{(\mathrm{t})}$ is a one-hot vector of size vocabulary size.

A RNN Neural Language Model (2/2)

- Let's recap the equations for the RNN:
- $\mathrm{h}^{(\mathrm{t})}=\tanh \left(\mathbf{u}^{\mathrm{T}} \mathbf{e}^{(\mathrm{t})}+\mathrm{wh}^{(\mathrm{t}-1)}\right)$
- $\hat{\mathbf{y}}^{(t)}=\operatorname{softmax}\left(\mathrm{vh}^{(\mathrm{t})}\right)$
- The output $\hat{\mathbf{y}}^{(\mathrm{t})}$ is a vector of vocabulary size elements.
- Each element of $\hat{\mathbf{y}}^{(\mathrm{t})}$ represents the probability of that word being the next word in the sentence.

SORBMFOB THELOMA POST CHETES A POTATO

RNN Design Patterns

RNN Design Patterns - Sequence-to-Vector

- Sequence-to-vector network: takes a sequence of inputs, and ignore all outputs except for the last one.
- E.g., you could feed the network a sequence of words corresponding to a movie review, and the network would output a sentiment score.

Ignored outputs

RNN Design Patterns - Vector-to-Sequence

- Vector-to-sequence network: takes a single input at the first time step, and let it output a sequence.
- E.g., the input could be an image, and the output could be a caption for that image.

RNN Design Patterns - Sequence-to-Sequence

- Sequence-to-sequence network: takes a sequence of inputs and produce a sequence of outputs.
- Useful for predicting time series such as stock prices: you feed it the prices over the last N days, and it must output the prices shifted by one day into the future.
- Here, both input sequences and output sequences have the same length.

RNN Design Patterns - Encoder-Decoder

- Encoder-decoder network: a sequence-to-vector network (encoder), followed by a vector-to-sequence network (decoder).
- E.g., translating a sentence from one language to another.
- You would feed the network a sentence in one language, the encoder would convert this sentence into a single vector representation, and then the decoder would decode this vector into a sentence in another language.

RNN in TensorFlow

RNN in TensorFlow $(1 / 5)$

- Forecasting a time series
- E.g., a dataset of 10000 time series, each of them 50 time steps long.
- The goal here is to forecast the value at the next time step (represented by the X) for each of them.

- Use fully connected network

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[50, 1]),
    keras.layers.Dense(1)
])
model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)
model.evaluate(X_test, y_test, verbose=0)
# loss: 0.003993967570985357
```


RNN in TensorFlow (3/5)

- Simple RNN

```
model = keras.models.Sequential([
    keras.layers.SimpleRNN(1, input_shape=[None, 1])
])
model.compile(loss="mse", optimizer='adam')
history = model.fit(X_train, y_train, epochs=20)
model.evaluate(X_test, y_test, verbose=0)
# loss: 0.011026302369932333
```


RNN in TensorFlow (4/5)

- Deep RNN

```
model = keras.models.Sequential([
    keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),
    keras.layers.SimpleRNN(20, return_sequences=True),
    keras.layers.SimpleRNN(1)
])
model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)
model.evaluate(X_test, y_test, verbose=0)
# loss: 0.003197280486735205
```


RNN in TensorFlow (5/5)

- Deep RNN (second implementation)
- Make the second layer return only the last output (no return_sequences)

```
model = keras.models.Sequential([
    keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),
    keras.layers.SimpleRNN(20),
    keras.layers.Dense(1)
])
model.compile(loss="mse", optimizer="adam")
history = model.fit(X_train, y_train, epochs=20)
model.evaluate(X_test, y_test, verbose=0)
# loss: 0.002757748544837038
```


Training RNNs

- To train an RNN, we should unroll it through time and then simply use regular backpropagation.
- This strategy is called backpropagation through time (BPTT).

Backpropagation Through Time (1/3)

- To train the model using BPTT, we go through the following steps:
- 1. Forward pass through the unrolled network (represented by the dashed arrows).
- 2. The cost function is $C\left(\hat{\mathbf{y}}^{\mathrm{tmin}}, \hat{\mathbf{y}}^{\mathrm{tmin}+1}, \cdots, \hat{\mathbf{y}}^{\mathrm{tmax}}\right)$, where tmin and tmax are the first and last output time steps, not counting the ignored outputs.

Backpropagation Through Time (2/3)

- 3. Propagate backward the gradients of that cost function through the unrolled network (represented by the solid arrows).
- 4. The model parameters are updated using the gradients computed during BPTT.

Backpropagation Through Time (3/3)

- The gradients flow backward through all the outputs used by the cost function, not just through the final output.
- For example, in the following figure:
- The cost function is computed using the last three outputs, $\hat{\mathbf{y}}^{(2)}, \hat{\mathbf{y}}^{(3)}$, and $\hat{\mathbf{y}}^{(4)}$.
- Gradients flow through these three outputs, but not through $\hat{\mathbf{y}}^{(0)}$ and $\hat{\mathbf{y}}^{(1)}$.

X_{3}
\mathbf{x}_{τ}

KTH雨 54x)

BPTT Step by Step (5/20)

BPTT Step by Step (6/20)

\mathbf{x}_{3}
\mathbf{X}_{τ}

KTH雨 4.

BPTT Step by Step (7/20)

\mathbf{x}_{τ}

BPTT Step by Step (8/20)

\mathbf{X}_{τ}

BPTT Step by Step (9/20)

\mathbf{x}_{τ}

BPTT Step by Step (10/20)

BPTT Step by Step (11/20)

BPTT Step by Step (12/20)

$$
\begin{gathered}
\mathbf{s}^{(\mathrm{t})}=\mathbf{u}^{\mathrm{T}} \mathbf{x}^{(\mathrm{t})}+\mathrm{wh}^{(\mathrm{t}-1)} \\
\mathrm{h}^{(\mathrm{t})}=\tanh \left(\mathbf{s}^{(\mathrm{t})}\right) \\
\mathrm{z}^{(\mathrm{t})}=\operatorname{vh}^{(\mathrm{t})} \\
\hat{\mathrm{y}}^{(\mathrm{t})}=\operatorname{sof} \operatorname{tmax}\left(\mathrm{z}^{(\mathrm{t})}\right) \\
\mathrm{J}^{(\mathrm{t})}=\text { cross_entropy }\left(\mathrm{y}^{(\mathrm{t})}, \hat{\mathrm{y}}^{(\mathrm{t})}\right)=-\sum \mathrm{y}^{(\mathrm{t})} \log \hat{\mathrm{y}}^{(\mathrm{t})} \\
\underbrace{\hat{y}_{1}}_{U}
\end{gathered}
$$

BPTT Step by Step (13/20)

$$
\mathrm{J}^{(\mathrm{t})}=\text { cross_entropy }\left(\mathrm{y}^{(\mathrm{t})}, \hat{\mathrm{y}}^{(\mathrm{t})}\right)=-\sum \mathrm{y}^{(\mathrm{t})} \log \hat{\mathrm{y}}^{(\mathrm{t})}
$$

- We treat the full sequence as one training example.
- The total error E is just the sum of the errors at each time step.
- E.g., $E=J^{(1)}+J^{(2)}+\cdots+J^{(t)}$

BPTT Step by Step (14/20)

- $\mathrm{J}^{(\mathrm{t})}$ is the total cost, so we can say that a 1-unit increase in v , w or u will impact each of $\mathrm{J}^{(1)}, \mathrm{J}^{(2)}$, until $\mathrm{J}^{(t)}$ individually.
- The gradient is equal to the sum of the respective gradients at each time step t.
- For example if $\mathrm{t}=3$ we have: $\mathrm{E}=\mathrm{J}^{(1)}+\mathrm{J}^{(2)}+\mathrm{J}^{(3)}$

$$
\begin{aligned}
& \frac{\partial \mathrm{E}}{\partial \mathrm{v}}=\sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(t)}}{\partial \mathrm{v}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{v}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{v}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{v}} \\
& \frac{\partial \mathrm{E}}{\partial \mathrm{w}}=\sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(t)}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{w}} \\
& \frac{\partial \mathrm{E}}{\partial \mathrm{u}}=\sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(3)}}{\partial \mathrm{u}}=\frac{\partial J^{(3)}}{\partial \mathrm{u}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{u}}+\frac{\partial J^{(1)}}{\partial u}
\end{aligned}
$$

BPTT Step by Step (15/20)

- Let's start with $\frac{\partial \mathrm{E}}{\partial \mathrm{v}}$.
- A change in v will only impact $J^{(3)}$ at time $t=3$, because it plays no role in computing the value of anything other than $z^{(3)}$.

$$
\begin{aligned}
& \frac{\partial \mathrm{E}}{\partial \mathrm{v}}=\sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(\mathrm{t})}}{\partial \mathrm{v}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{v}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{v}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{v}} \\
& \frac{\partial \mathrm{~J}^{(3)}}{\partial \mathrm{v}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \hat{\mathrm{y}}^{(3)}} \frac{\partial \hat{\mathrm{y}}^{(3)}}{\partial \mathbf{z}^{(3)}} \frac{\partial \mathbf{z}^{(3)}}{\partial \mathrm{v}} \\
& \frac{\partial \mathrm{~J}^{(2)}}{\partial \mathrm{v}}=\frac{\partial \mathrm{J}^{(2)}}{\partial \hat{\mathrm{y}}^{(2)}} \frac{\partial \hat{\mathrm{y}}^{(2)}}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathrm{v}} \\
& \frac{\partial \mathrm{~J}^{(1)}}{\partial \mathrm{v}}=\frac{\partial \mathrm{J}^{(1)}}{\partial \hat{\mathrm{y}}^{(1)}} \frac{\partial \hat{\mathrm{y}}^{(1)}}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(1)}}{\partial \mathrm{v}}
\end{aligned}
$$

BPTT Step by Step (16/20)

- Let's compute the derivatives of $\frac{\partial J}{\partial \mathrm{w}}$ and $\frac{\partial J}{\partial \mathrm{u}}$, which are computed the same.
- A change in w at $\mathrm{t}=3$ will impact our cost J in 3 separate ways:

1. When computing the value of $h^{(1)}$.
2. When computing the value of $h^{(2)}$, which depends on $h^{(1)}$.
3. When computing the value of $h^{(3)}$, which depends on $h^{(2)}$, which depends on $h^{(1)}$.

BPTT Step by Step $(17 / 20)$

- we compute our individual gradients as:

$$
\begin{aligned}
& \sum_{t} \frac{\partial J^{(t)}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{w}} \\
& \frac{\partial \mathrm{~J}^{(1)}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(1)}}{\partial \hat{\mathbf{y}}^{(1)}} \frac{\partial \hat{\mathbf{y}}^{(1)}}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(1)}}{\partial \mathbf{h}^{(1)}} \frac{\partial \mathbf{h}^{(1)}}{\partial \mathbf{s}^{(1)}} \frac{\partial \mathbf{s}^{(1)}}{\partial \mathrm{w}}
\end{aligned}
$$

BPTT Step by Step $(18 / 20)$

- we compute our individual gradients as:

$$
\begin{aligned}
& \sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(\mathrm{t})}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{w}} \\
& \frac{\partial \mathrm{~J}^{(2)}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(2)}}{\partial \hat{\mathrm{y}}^{(2)}} \frac{\partial \hat{\mathrm{y}}^{(2)}}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathrm{h}^{(2)}} \frac{\partial \mathrm{h}^{(2)}}{\partial \mathbf{s}^{(2)}} \frac{\partial \mathbf{s}^{(2)}}{\partial \mathrm{w}}+ \\
& \frac{\partial \mathrm{J}^{(2)}}{\partial \hat{\mathrm{y}}^{(2)}} \frac{\partial \hat{\mathrm{y}}^{(2)}}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathrm{h}^{(2)}} \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{s}^{(2)}} \frac{\partial \mathbf{s}^{(2)}}{\partial \mathrm{h}^{(1)}} \frac{\partial \mathrm{h}^{(1)}}{\partial \mathbf{s}^{(1)}} \frac{\partial \mathbf{s}^{(1)}}{\partial \mathrm{w}}
\end{aligned}
$$

BPTT Step by Step (19/20)

- we compute our individual gradients as:

$$
\begin{aligned}
& \sum_{\mathrm{t}} \frac{\partial \mathrm{~J}^{(\mathrm{t})}}{\partial \mathrm{w}}=\frac{\partial \mathrm{J}^{(3)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(2)}}{\partial \mathrm{w}}+\frac{\partial \mathrm{J}^{(1)}}{\partial \mathrm{w}} \\
& \frac{\partial \mathrm{~J}^{(3)}}{\partial \mathrm{w}}= \\
& =\frac{\partial \mathrm{J}^{(3)}}{\partial \hat{\mathbf{y}}^{(3)}} \frac{\partial \hat{\mathrm{y}}^{(3)}}{\partial \mathbf{z}^{(3)}} \frac{\partial \mathbf{z}^{(3)}}{\partial \mathbf{h}^{(3)}} \frac{\partial \mathrm{h}^{(3)}}{\partial \mathbf{s}^{(3)}} \frac{\partial \mathbf{s}^{(3)}}{\partial \mathrm{w}}+ \\
& \quad \frac{\partial \mathrm{J}^{(3)}}{\partial \hat{\mathbf{y}}^{(3)}} \frac{\partial \hat{\mathrm{y}}^{(3)}}{\partial \mathbf{z}^{(3)}} \frac{\partial \mathbf{z}^{(3)}}{\partial \mathbf{h}^{(3)}} \frac{\partial \mathbf{h}^{(3)}}{\partial \mathbf{s}^{(3)}} \frac{\partial \mathbf{s}^{(3)}}{\partial \mathbf{h}^{(2)}} \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{s}^{(2)}} \frac{\partial \mathbf{s}^{(2)}}{\partial \mathrm{w}}+ \\
& \\
& \frac{\partial \mathrm{J}^{(3)}}{\partial \hat{\mathbf{y}}^{(3)}} \frac{\partial \hat{\mathrm{y}}^{(3)}}{\partial \mathbf{z}^{(3)}} \frac{\partial \mathbf{z}^{(3)}}{\partial \mathbf{h}^{(3)}} \frac{\partial \mathbf{h}^{(3)}}{\partial \mathbf{s}^{(3)}} \frac{\partial \mathbf{s}^{(3)}}{\partial \mathbf{h}^{(2)}} \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{s}^{(2)}} \frac{\partial \mathbf{s}^{(2)}}{\partial \mathbf{h}^{(1)}} \frac{\partial \mathbf{h}^{(1)}}{\partial \mathbf{s}^{(1)}} \frac{\partial \mathbf{s}^{(1)}}{\partial \mathrm{w}}
\end{aligned}
$$

- More generally, a change in w will impact our cost $\mathrm{J}^{(\mathrm{t})}$ on t separate occasions.

$$
\frac{\partial \mathrm{J}^{(\mathrm{t})}}{\partial \mathrm{w}}=\sum_{k=1}^{t} \frac{\partial \mathrm{~J}^{(\mathrm{t})}}{\partial \hat{\mathbf{y}}^{(\mathrm{t})}} \frac{\partial \hat{\mathrm{y}}^{(\mathrm{t})}}{\partial \mathbf{z}^{(\mathrm{t})}} \frac{\partial \hat{\mathbf{z}}^{(\mathrm{t})}}{\partial \mathrm{h}^{(\mathrm{t})}}\left(\prod_{j=\mathrm{k}+1}^{\mathrm{t}} \frac{\partial \mathrm{~h}^{(j)}}{\partial \mathbf{s}^{(j)}} \frac{\partial \mathbf{s}^{(j)}}{\partial \mathrm{h}^{(j-1)}}\right) \frac{\partial \mathrm{h}^{(\mathrm{k})}}{\partial \mathbf{s}^{(\mathrm{k})}} \frac{\partial \mathbf{s}^{(\mathrm{k})}}{\partial \mathrm{w}}
$$

RNN Problems

- Sometimes we only need to look at recent information to perform the present task.
- E.g., predicting the next word based on the previous ones.
- In such cases, where the gap between the relevant information and the place that it's needed is small, RNNs can learn to use the past information.
- But, as that gap grows, RNNs become unable to learn to connect the information.
- RNNs may suffer from the vanishing/exploding gradients problem.

RNN References

- Ian Goodfellow et al., Deep Learning (Ch. 10)
- Aurélien Géron, Hands-On Machine Learning (Ch. 15)
- Understanding LSTM Networks http://colah.github.io/posts/2015-08-Understanding-LSTMs
- CS224d: Deep Learning for Natural Language Processing http://cs224d.stanford.edu

Word Embeddings

Problem: Word embeddings are context-free

a	nice	walk	by	the	river	bank
$\left[\begin{array}{c}0.02 \\ \vdots \\ 0.02\end{array}\right]$	$\left[\begin{array}{c}0.03 \\ \vdots \\ -0.02\end{array}\right]$	$\left[\begin{array}{c}0.02 \\ \vdots \\ -0.07\end{array}\right]$	$\left[\begin{array}{c}-0.08 \\ \vdots \\ 0.03\end{array}\right]$	$\left[\begin{array}{c}-0.04 \\ \vdots \\ -0.03\end{array}\right]$	$\left[\begin{array}{c}-0.01 \\ \vdots \\ -0.04\end{array}\right]$	$\left[\begin{array}{c}-0.02 \\ \vdots \\ -0.03\end{array}\right]$

| walk |
| :--- | to the bank and get cash

$\left[\begin{array}{c}0.02 \\
\vdots \\
-0.07\end{array}\right]\left[\begin{array}{c}0.01 \\
\vdots \\
0.02\end{array}\right]\left[\begin{array}{c}-0.04 \\
\vdots \\
-0.03\end{array}\right]\left[\begin{array}{c}-0.02 \\
\vdots \\
-0.03\end{array}\right]\left[\begin{array}{c}-0.02 \\
\vdots \\
0.02\end{array}\right]\left[\begin{array}{c}-0.06 \\
\vdots \\
0.04\end{array}\right]\left[\begin{array}{c}0.01 \\
\vdots \\
-0.01\end{array}\right]$
[Peltarion, 2020]

Word Embeddings

Problem: Word embeddings are context-free

a	nice	walk	by	the	river	bank	walk	to	the	bank	and	get	cash
[0.02]	$[0.03]$	[0.02]	-0.00]	-0.04]	-0.01]	-0.02]	$0.02]$	[0.01]	-0.04]	-0.02]	-0.02]	[-0.06]	[0.01]
\vdots	\therefore		:	:	:			:	\vdots		.	:	\vdots
0.02	-0.02	-0.07	0.03	-0.03	-0.04	-0.03	-0.07	0.02	-0.03	-0.03	0.02	0.04	-0.01

Word Embeddings

Problem: Word embeddings are context-free
Solution: Create contextualized representation

From RNNs to Transformers

Problems with RNNs - Motivation for Transformers

- Sequential computations prevents parallelization
- Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal with long range dependencies
- Attention gives us access to any state...Maybe we don't need the costly recursion?
- Then NLP can have deep models, solves our computer vision envy!

Attention is all you need! [Vaswani, 2017]

- Sequence-to-sequence model for Machine Translation
- Encoder-decoder architecture
- Multi-headed self-attention
- Models context and no locality bias

[Vaswani et al., 2017]

Transformers Step-by-Step

Understanding the Transformer: Step-by-Step

Understanding the Transformer: Step-by-Step

No recursion, instead stacking encoder and decoder blocks

- Originally: 6 layers
- BERT base: 12 layers
- BERT large: 24 layers
- GPT2-XL: 48 layers
- GPT3: 96 layers

[Alammar, 2018]

The Encoder and Decoder Blocks

The Encoder Block

[Alammar, 2018]

Attention Preliminaries

Mimics the retrieval of a value v_{i} for a query q based on a key k_{i} in a database, but in a probabilistic fashion

Key \longrightarrow Value
Query q

Dot-Product Attention

- Queries, keys and values are vectors
- Output is a weighted sum of the values
- Weights are are computed as the scaled dot-product (similarity) between the query and the keys

$\operatorname{Attention}(q, K, V)=\sum_{i} \operatorname{Similarity}\left(q, k_{i}\right) \cdot v_{i}=\sum_{i} \frac{e^{q \cdot k_{i} / \sqrt{d_{k}}}}{\sum_{j} e^{q \cdot k_{j} / \sqrt{d_{k}}}} v_{i} \quad$| $\begin{array}{l}\text { Output is a } \\ \text { row-vector }\end{array}$ |
| :--- |

- Can stack multiple queries into a matrix Q

$$
\text { Attention }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d_{k}}}\right)^{\top} V \quad \begin{aligned}
& \text { Output is again } \\
& \text { a matrix }
\end{aligned}
$$

- Self-attention: Let the word embeddings be the queries, keys and values, i.e. let the words select each other

Self-Attention Mechanism

Self-Attention Mechanism

Self-Attention Mechanism in Matrix Notation

Multi-Headed Self-Attention

ATTENTION	ATTENTION	\ldots	ATTENTION
HEAD \#0	HEAD \#1	\ldots	Z_{7}
Z_{0}	Z_{1}		\square
\square	\square	\square	
\square	\square		

Self-Attention: Putting It All Together

[Alammar, 2018]

Attention Visualized

The Full Encoder Block

Encoder block consisting of:

- Multi-headed self-attention
- Feedforward NN (FC 2 layers)
- Skip connections
- Layer normalization - Similar to batch normalization but computed over features (words/tokens) for a single sample

[Alammar, 2018]

Encoder-Decoder Architecture - Small Example

[Alammar, 2018]

Complexity Comparison

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$

Results

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2			$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0} \mathbf{1 0}^{18}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 0}$		$2.3 \cdot 10^{19}$	

BERT

BERT

Bidirectional Encoder Representations from Transformers

- Self-supervised pre-training of Transformers encoder for language understanding
- Fine-tuning for specific downstream task

BERT Training Procedure

BERT Training Objectives

Masked Language Modelling

Next Sentence prediction

Sentence $\mathbf{A}=$ The man went to the store.
Sentence B = He bought a gallon of milk. Label = IsNextSentence

```
Sentence A = The man went to the store.
Sentence B= Penguins are flightless.
Label = NotNextSentence
```


BERT Fine-Tuning Examples

Sentence
 Classification

Question
Answering

Named Entity
Recognition

How good are transformers?

- Scaling up models size and amount of training data helps a lot
- Best model is 10B (!!) parameters
- Two models have already surpassed human performance!!!
- Exact pre-training objective (MLM, NSP, corruption) doesn't matter too much
- SuperGLUE benchmark:

Rank	Name	Model	URL	Score	BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	Wic	wsc	AX-g	AX-b
1	ERNIE Team - Baidu	ERNIE 3.0	[90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	92.7/94.7	68.6
2	Zirui Wang	T5 + UDG, Single Model (Google Brain)	π	90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	92.7/91.9	69.1
3	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	[90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
4	SuperGLUE Human Baselines	SuperGLUE Human Baselines	[89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
5	T5 Team - Google	T5	E	89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
6	Huawei Noah's Ark Lab	NEZHA-Plus	-	86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0

Practical Examples

BERT in low-latency production settings

6006IE Tech \arificial intellgence

Google is improving 10 percent of searches by understanding language context

Say hello to BERT
By Dieter Bohn | @backion | Oct 25, 2019, 3:01am EDT

Bing says it has been applying BERT since April

The natural language processing capabilities are now applied to all Bing queries globally.
George Nguyen on November 19, 2019 at 1:38 pm

Distillation

- Modern pre-trained language models are huge and very computationally expensive
- How are these companies applying them to low-latency applications?
- Distillation!
- Train SOTA teacher model (pre-training + fine-tuning)
- Train smaller student model that mimics the teacher's output on a large dataset on unlabeled data
- Distillation works much better than pre-training + fine-tuning with smaller model

Amazon Book Reviews

Transformers in TensorFlow using HuggingFace *

- The HuggingFace Library contains a majority of the recent pre-trained State-of-the-art NLP models, as well as over 4000 community uploaded models
- Works with both TensorFlow and PyTorch

Also check out our list of Community contributors and Organizations 9

Search models...	Tags: All \sim	Sort: Most downloads *

bert-base-uncased
deepset/bert-large-uncased-whole-word-masking-squadz
distilbert-base-uncased
dccuchile/bert-base-spanish-wwm-cased *
microsoft/xprophetnet-large-wikilee-cased-xglue-ntg
deepset/roberta-base-squadz *
jplu/tf-xlm-roberta-base *
cl-tohoku/bert-base-japanese-whole-word-masking
distilroberta-base *
bert-base-cased
$\times 1 m$-roberta-base *

Transformers in TensorFlow using HuggingFace ©

```
from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
model.evaluate(val_dataset.batch(16), verbose=0)
```


Transformers in TensorFlow using HuggingFace ©

```
from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
model.evaluate(val_dataset.batch(16), verbose=0)
```


Transformers in TensorFlow using HuggingFace ©

```
from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
model.evaluate(val_dataset.batch(16), verbose=0)
```


Transformers in TensorFlow using HuggingFace ©

```
from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf
dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)
model.evaluate(val_dataset.batch(16), verbose=0)
```


Wrap Up

Summary

- Transformers have blown other architectures out of the water for NLP
- Get rid of recurrence and rely on self-attention
- NLP pre-training using Masked Language Modelling
- Most recent improvements using larger models and more data
- Distillation can make model serving and inference more tractable

