
RNNs and Transformers

Jim Dowling
jdowling@kth.se

2022-11-23
Slides by Francisco J. Pena, Amir H. Payberah, and Jim Dowling

Let’s Start With An Example

1 / 67

2 / 67

Language Modeling (1/2)

▶ Language modeling is the task of predicting what word comes next.

3 / 67

Language Modeling (2/2)

▶ More formally: given a sequence of words x(1), x(2), · · · , x(t), compute the probability
distribution of the next word x(t+1):

p(x(t+1) = wj|x(t), · · · x(1))

▶ wj is a word in vocabulary V = {w1, · · · , wv}.

4 / 67

n-gram Language Models

▶ the students opened their

▶ How to learn a Language Model?

▶ Learn a n-gram Language Model!

▶ A n-gram is a chunk of n consecutive words.
• Unigrams: "the", "students", "opened", "their"
• Bigrams: "the students", "students opened", "opened their"
• Trigrams: "the students opened", "students opened their"
• 4-grams: "the students opened their"

▶ Collect statistics about how frequent different n-grams are, and use these to predict
next word.

5 / 67

n-gram Language Models - Example

▶ Suppose we are learning a 4-gram Language Model.
• x(t+1) depends only on the preceding 3 words {x(t), x(t−1), x(t−2)}.

p(wj|students opened their) =
students opened their wj
students opened their

▶ In the corpus:
• "students opened their" occurred 1000 times
• "students opened their books occurred 400 times:
p(books|students opened their) = 0.4

• "students opened their exams occurred 100 times:
p(exams|students opened their) = 0.1

6 / 67

Problems with n-gram Language Models - Sparsity

p(wj|students opened their) =
students opened their wj
students opened their

▶ What if "students opened their wj" never occurred in data? Then wj has prob-
ability 0!

▶ What if "students opened their" never occurred in data? Then we can’t calcu-
late probability for any wj!

▶ Increasing n makes sparsity problems worse.
• Typically we can’t have n bigger than 5.

7 / 67

Problems with n-gram Language Models - Storage

p(wj|students opened their) =
students opened their wj
students opened their

▶ For "students opened their wj", we need to store count for all possible 4-grams.

▶ The model size is in the order of O(exp(n)).

▶ Increasing n makes model size huge.

8 / 67

Can We Build a Neural Language Model? (1/3)

▶ Recall the Language Modeling task:
• Input: sequence of words x(1), x(2), · · · , x(t)
• Output: probability dist of the next word p(x(t+1) = wj|x(t), · · · , x(1))

▶ One-Hot encoding
• Represent a categorical variable as a binary vector.
• All recodes are zero, except the index of the integer, which is one.
• Each embedded word e(t) = E⊺x(t) is a one-hot vector of size vocabulary size.

9 / 67

Can We Build a Neural Language Model? (2/3)

▶ A MLP model
• Input: words x(1), x(2), x(3), x(4)

• Input layer: one-hot vectors e(1), e(2), e(3), e(4)

• Hidden layer: h = f(w⊺e), f is an activation function.
• Output: ŷ = softmax(v⊺h)

10 / 67

Can We Build a Neural Language Model? (3/3)

▶ Improvements over n-gram LM:
• No sparsity problem
• Model size is O(n) not O(exp(n))

▶ Remaining problems:
• It is fixed 4 in our example, which is small
• We need a neural architecture that can process
any length input

11 / 67

Recurrent Neural Networks (RNN)

12 / 67

Recurrent Neural Networks (1/4)

▶ The idea behind Recurrent neural networks (RNN) is to make use of sequential data.

• Until here, we assume that all inputs (and outputs) are independent of each other.
• Independent input (output) is a bad idea for many tasks, e.g., predicting the next word
in a sentence (it’s better to know which words came before it).

▶ They can analyze time series data and predict the future.

▶ They can work on sequences of arbitrary lengths, rather than on fixed-sized inputs.

13 / 67

Recurrent Neural Networks (2/4)

▶ Neurons in an RNN have connections pointing backward.

▶ RNNs have memory, which captures information about what has been calculated so
far.

14 / 67

Recurrent Neural Networks (3/4)

▶ Unfolding the network: represent a network against the time axis.
• We write out the network for the complete sequence.

▶ For example, if the sequence we care about is a sentence of three words, the network
would be unfolded into a 3-layer neural network.

• One layer for each word.

15 / 67

Recurrent Neural Networks (4/4)

▶ h(t) = f(u⊺x(t) + wh(t−1)), where f is an activation function, e.g., tanh or ReLU.

▶ ŷ(t) = g(vh(t)), where g can be the softmax function.

▶ cost(y(t), ŷ(t)) = cross entropy(y(t), ŷ(t)) = −
∑

y(t)logŷ(t)

▶ y(t) is the correct word at time step t, and ŷ(t) is the prediction.

16 / 67

Recurrent Neurons - Weights (1/4)

▶ Each recurrent neuron has three sets of weights: u, w, and v.

17 / 67

Recurrent Neurons - Weights (2/4)

▶ u: the weights for the inputs x(t).

▶ x(t): is the input at time step t.

▶ For example, x(1) could be a one-hot vector corresponding to the first word of a
sentence.

18 / 67

Recurrent Neurons - Weights (3/4)

▶ w: the weights for the hidden state of the previous time step h(t−1).

▶ h(t): is the hidden state (memory) at time step t.
• h(t) = tanh(u⊺x(t) + wh(t−1))
• h(0) is the initial hidden state.

19 / 67

Recurrent Neurons - Weights (4/4)

▶ v: the weights for the hidden state of the current time step h(t).

▶ ŷ(t) is the output at step t.

▶ ŷ(t) = softmax(vh(t))

▶ For example, if we wanted to predict the next word in a sentence, it would be a
vector of probabilities across our vocabulary.

20 / 67

Layers of Recurrent Neurons

▶ At each time step t, every neuron of a layer receives both the input vector x(t) and
the output vector from the previous time step h(t−1).

h(t) = tanh(u⊺x(t) +w⊺h(t−1))

y(t) = sigmoid(v⊺h(t))

21 / 67

Deep RNN

▶ Stacking multiple layers of cells gives you a deep RNN.

22 / 67

Let’s Back to Language Model Example

23 / 67

A RNN Neural Language Model (1/2)

▶ The input x will be a sequence of words (each x(t) is a single word).

▶ Each embedded word e(t) = E⊺x(t) is a one-hot vector of size vocabulary size.

24 / 67

A RNN Neural Language Model (2/2)

▶ Let’s recap the equations for the RNN:
• h(t) = tanh(u⊺e(t) + wh(t−1))
• ŷ(t) = softmax(vh(t))

▶ The output ŷ(t) is a vector of vocabulary size elements.

▶ Each element of ŷ(t) represents the probability of that
word being the next word in the sentence.

25 / 67

26 / 67

RNN Design Patterns

27 / 67

RNN Design Patterns - Sequence-to-Vector

▶ Sequence-to-vector network: takes a sequence of inputs, and ignore all outputs except
for the last one.

▶ E.g., you could feed the network a sequence of words corresponding to a movie
review, and the network would output a sentiment score.

28 / 67

RNN Design Patterns - Vector-to-Sequence

▶ Vector-to-sequence network: takes a single input at the first time step, and let it
output a sequence.

▶ E.g., the input could be an image, and the output could be a caption for that image.

29 / 67

RNN Design Patterns - Sequence-to-Sequence

▶ Sequence-to-sequence network: takes a sequence of inputs and produce a sequence
of outputs.

▶ Useful for predicting time series such as stock prices: you feed it the prices over the
last N days, and it must output the prices shifted by one day into the future.

▶ Here, both input sequences and output sequences have the same length.

30 / 67

RNN Design Patterns - Encoder-Decoder

▶ Encoder-decoder network: a sequence-to-vector network (encoder), followed by a
vector-to-sequence network (decoder).

▶ E.g., translating a sentence from one language to another.

▶ You would feed the network a sentence in one language, the encoder would convert
this sentence into a single vector representation, and then the decoder would decode
this vector into a sentence in another language.

31 / 67

RNN in TensorFlow

32 / 67

RNN in TensorFlow (1/5)

▶ Forecasting a time series

▶ E.g., a dataset of 10000 time series, each of them 50 time steps long.

▶ The goal here is to forecast the value at the next time step (represented by the X)
for each of them.

33 / 67

RNN in TensorFlow (2/5)

▶ Use fully connected network

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[50, 1]),

keras.layers.Dense(1)

])

model.compile(loss="mse", optimizer="adam")

history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)

loss: 0.003993967570985357

34 / 67

RNN in TensorFlow (3/5)

▶ Simple RNN

model = keras.models.Sequential([

keras.layers.SimpleRNN(1, input_shape=[None, 1])

])

model.compile(loss="mse", optimizer='adam')

history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)

loss: 0.011026302369932333

35 / 67

RNN in TensorFlow (4/5)

▶ Deep RNN

model = keras.models.Sequential([

keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),

keras.layers.SimpleRNN(20, return_sequences=True),

keras.layers.SimpleRNN(1)

])

model.compile(loss="mse", optimizer="adam")

history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)

loss: 0.003197280486735205

36 / 67

RNN in TensorFlow (5/5)

▶ Deep RNN (second implementation)

▶ Make the second layer return only the last output (no return sequences)

model = keras.models.Sequential([

keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(1)

])

model.compile(loss="mse", optimizer="adam")

history = model.fit(X_train, y_train, epochs=20)

model.evaluate(X_test, y_test, verbose=0)

loss: 0.002757748544837038

37 / 67

Training RNNs

38 / 67

Training RNNs

▶ To train an RNN, we should unroll it through time and then simply use regular
backpropagation.

▶ This strategy is called backpropagation through time (BPTT).

39 / 67

Backpropagation Through Time (1/3)

▶ To train the model using BPTT, we go through the following steps:

▶ 1. Forward pass through the unrolled network (represented by the dashed arrows).

▶ 2. The cost function is C(ŷtmin, ŷtmin+1, · · · , ŷtmax), where tmin and tmax are the
first and last output time steps, not counting the ignored outputs.

40 / 67

Backpropagation Through Time (2/3)

▶ 3. Propagate backward the gradients of that cost function through the unrolled
network (represented by the solid arrows).

▶ 4. The model parameters are updated using the gradients computed during BPTT.

41 / 67

Backpropagation Through Time (3/3)

▶ The gradients flow backward through all the outputs used by the cost function, not
just through the final output.

▶ For example, in the following figure:
• The cost function is computed using the last three outputs, ŷ(2), ŷ(3), and ŷ(4).
• Gradients flow through these three outputs, but not through ŷ(0) and ŷ(1).

42 / 67

BPTT Step by Step (1/20)

43 / 67

BPTT Step by Step (2/20)

44 / 67

BPTT Step by Step (3/20)

45 / 67

BPTT Step by Step (4/20)

46 / 67

BPTT Step by Step (5/20)

47 / 67

BPTT Step by Step (6/20)

48 / 67

BPTT Step by Step (7/20)

49 / 67

BPTT Step by Step (8/20)

50 / 67

BPTT Step by Step (9/20)

51 / 67

BPTT Step by Step (10/20)

52 / 67

BPTT Step by Step (11/20)

53 / 67

BPTT Step by Step (12/20)

s(t) = uTx(t) + wh(t−1)

h(t) = tanh(s(t))

z(t) = vh(t)

ŷ(t) = softmax(z(t))

J(t) = cross entropy(y(t), ŷ(t)) = −
∑

y(t)logŷ(t)

54 / 67

55 / 67

BPTT Step by Step (13/20)

J(t) = cross entropy(y(t), ŷ(t)) = −
∑

y(t)logŷ(t)

▶ We treat the full sequence as one training example.

▶ The total error E is just the sum of the errors at each time step.

▶ E.g., E = J(1) + J(2) + · · ·+ J(t)

56 / 67

BPTT Step by Step (14/20)

▶ J(t) is the total cost, so we can say that a 1-unit increase in v, w or u will impact
each of J(1), J(2), until J(t) individually.

▶ The gradient is equal to the sum of the respective gradients at each time step t.

▶ For example if t = 3 we have: E = J(1) + J(2) + J(3)

∂E

∂v
=
∑
t

∂J(t)

∂v
=

∂J(3)

∂v
+

∂J(2)

∂v
+

∂J(1)

∂v

∂E

∂w
=
∑
t

∂J(t)

∂w
=

∂J(3)

∂w
+

∂J(2)

∂w
+

∂J(1)

∂w

∂E

∂u
=
∑
t

∂J(3)

∂u
=

∂J(3)

∂u
+

∂J(2)

∂u
+

∂J(1)

∂u

57 / 67

BPTT Step by Step (15/20)

▶ Let’s start with ∂E
∂v .

▶ A change in v will only impact J(3) at time t = 3, because it plays no role in
computing the value of anything other than z(3).

∂E
∂v =

∑
t

∂J(t)

∂v = ∂J(3)

∂v + ∂J(2)

∂v + ∂J(1)

∂v

∂J(3)

∂v = ∂J(3)

∂ŷ(3)
∂ŷ(3)

∂z(3)
∂z(3)

∂v

∂J(2)

∂v = ∂J(2)

∂ŷ(2)
∂ŷ(2)

∂z(2)
∂z(2)

∂v

∂J(1)

∂v = ∂J(1)

∂ŷ(1)
∂ŷ(1)

∂z(1)
∂z(1)

∂v

58 / 67

BPTT Step by Step (16/20)

▶ Let’s compute the derivatives of ∂J
∂w and ∂J

∂u , which are computed the same.

▶ A change in w at t = 3 will impact our cost J in 3 separate ways:

1. When computing the value of h(1).
2. When computing the value of h(2), which depends on h(1).
3. When computing the value of h(3), which depends on h(2), which depends on h(1).

59 / 67

BPTT Step by Step (17/20)

▶ we compute our individual gradients as:

∑
t

∂J(t)

∂w = ∂J(3)

∂w + ∂J(2)

∂w + ∂J(1)

∂w

∂J(1)

∂w = ∂J(1)

∂ŷ(1)
∂ŷ(1)

∂z(1)
∂z(1)

∂h(1)
∂h(1)

∂s(1)
∂s(1)

∂w

60 / 67

BPTT Step by Step (18/20)

▶ we compute our individual gradients as:

∑
t

∂J(t)

∂w = ∂J(3)

∂w + ∂J(2)

∂w + ∂J(1)

∂w

∂J(2)

∂w = ∂J(2)

∂ŷ(2)
∂ŷ(2)

∂z(2)
∂z(2)

∂h(2)
∂h(2)

∂s(2)
∂s(2)

∂w +

∂J(2)

∂ŷ(2)
∂ŷ(2)

∂z(2)
∂z(2)

∂h(2)
∂h(2)

∂s(2)
∂s(2)

∂h(1)
∂h(1)

∂s(1)
∂s(1)

∂w

61 / 67

BPTT Step by Step (19/20)

▶ we compute our individual gradients as:

∑
t

∂J(t)

∂w = ∂J(3)

∂w + ∂J(2)

∂w + ∂J(1)

∂w

∂J(3)

∂w = ∂J(3)

∂ŷ(3)
∂ŷ(3)

∂z(3)
∂z(3)

∂h(3)
∂h(3)

∂s(3)
∂s(3)

∂w +

∂J(3)

∂ŷ(3)
∂ŷ(3)

∂z(3)
∂z(3)

∂h(3)
∂h(3)

∂s(3)
∂s(3)

∂h(2)
∂h(2)

∂s(2)
∂s(2)

∂w +

∂J(3)

∂ŷ(3)
∂ŷ(3)

∂z(3)
∂z(3)

∂h(3)
∂h(3)

∂s(3)
∂s(3)

∂h(2)
∂h(2)

∂s(2)
∂s(2)

∂h(1)
∂h(1)

∂s(1)
∂s(1)

∂w

62 / 67

BPTT Step by Step (20/20)

▶ More generally, a change in w will impact our cost J(t) on t separate occasions.

∂J(t)

∂w
=

t∑
k=1

∂J(t)

∂ŷ(t)
∂ŷ(t)

∂z(t)
∂ẑ(t)

∂h(t)

(
t∏

j=k+1

∂h(j)

∂s(j)
∂s(j)

∂h(j−1)

)
∂h(k)

∂s(k)
∂s(k)

∂w

63 / 67

RNN Problems

▶ Sometimes we only need to look at recent information to perform the present task.
• E.g., predicting the next word based on the previous ones.

▶ In such cases, where the gap between the relevant information and the place that
it’s needed is small, RNNs can learn to use the past information.

▶ But, as that gap grows, RNNs become unable to learn to connect the information.

▶ RNNs may suffer from the vanishing/exploding gradients problem.

64 / 67

RNN References

▶ Ian Goodfellow et al., Deep Learning (Ch. 10)

▶ Aurélien Géron, Hands-On Machine Learning (Ch. 15)

▶ Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs

▶ CS224d: Deep Learning for Natural Language Processing
http://cs224d.stanford.edu

65 / 67

Word Embeddings

Problem: Word embeddings are context-free

[Peltarion, 2020]

6 / 52

Word Embeddings

Problem: Word embeddings are context-free

[Peltarion, 2020]

7 / 52

Word Embeddings
Problem: Word embeddings are context-free
Solution: Create contextualized representation

[Peltarion, 2020]

8 / 52

From RNNs to Transformers

9 / 52

Problems with RNNs - Motivation for Transformers

I Sequential computations prevents parallelization
I Despite GRUs and LSTMs, RNNs still need attention mechanisms to deal with long

range dependencies
I Attention gives us access to any state…Maybe we don’t need the costly recursion?
I Then NLP can have deep models, solves our computer vision envy!

10 / 52

Attention is all you need! [Vaswani, 2017]

I Sequence-to-sequence model for
Machine Translation

I Encoder-decoder architecture
I Multi-headed self-attention

• Models context and no locality
bias

[Vaswani et al., 2017]

11 / 52

Transformers Step-by-Step

12 / 52

Understanding the Transformer: Step-by-Step

[Alammar, 2018]

13 / 52

Understanding the Transformer: Step-by-Step

No recursion, instead
stacking encoder and
decoder blocks

I Originally: 6 layers
I BERT base: 12 layers
I BERT large: 24 layers
I GPT2-XL: 48 layers
I GPT3: 96 layers

[Alammar, 2018]

14 / 52

The Encoder and Decoder Blocks

[Alammar, 2018]

15 / 52

The Encoder Block

[Alammar, 2018]

16 / 52

Attention Preliminaries

Mimics the retrieval of a value vi for a query q based on a key ki in a database,
but in a probabilistic fashion

17 / 52

Dot-Product Attention

I Queries, keys and values are vectors
I Output is a weighted sum of the values
I Weights are are computed as the scaled dot-product (similarity) between

the query and the keys

Attention(q,K ,V) =
∑

i
Similarity(q, ki) · vi =

∑
i

eq·ki/
√

dk∑
j eq·kj/

√
dk

vi
Output is a
row-vector

I Can stack multiple queries into a matrix Q

Attention(Q,K ,V) = softmax
(

QK>
√

dk

)
V Output is again

a matrix

I Self-attention: Let the word embeddings be the queries, keys and values,
i.e. let the words select each other

18 / 52

Self-Attention Mechanism

[Alammar, 2018]

19 / 52

Self-Attention Mechanism

[Alammar, 2018]

20 / 52

Self-Attention Mechanism in Matrix Notation

[Alammar, 2018]

21 / 52

Multi-Headed Self-Attention

[Alammar, 2018]

22 / 52

Multi-Headed Self-Attention

[Alammar, 2018]

23 / 52

Self-Attention: Putting It All Together

[Alammar, 2018]

24 / 52

Attention Visualized

[Alammar, 2018]

25 / 52

The Full Encoder Block

Encoder block consisting of:
I Multi-headed self-attention
I Feedforward NN (FC 2 layers)
I Skip connections
I Layer normalization - Similar to

batch normalization but computed
over features (words/tokens) for a
single sample

[Alammar, 2018]

26 / 52

Encoder-Decoder Architecture - Small Example

[Alammar, 2018]

27 / 52

Complexity Comparison

[Vaswani et al., 2017]

34 / 52

Results
Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 · 1020
GNMT + RL [31] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [8] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [26] 26.03 40.56 2.0 · 1019 1.2 · 1020
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 · 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [8] 26.36 41.29 7.7 · 1019 1.2 · 1021
Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.0 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value ✏ls = 0.1 [30]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0

BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty ↵ = 0.6 [31]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [31].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

8

[Vaswani et al., 2017]

35 / 52

BERT

36 / 52

BERT

Bidirectional Encoder Representations
from Transformers

I Self-supervised pre-training of
Transformers encoder for language
understanding

I Fine-tuning for specific downstream
task

37 / 52

BERT Training Procedure

[Devlin et al., 2018]

38 / 52

BERT Training Objectives

Masked Language Modelling

Next Sentence prediction

[Devlin et al., 2018]

39 / 52

BERT Fine-Tuning Examples

Sentence
Classification

Question
Answering

Named Entity
Recognition

[Devlin et al., 2018]

40 / 52

How good are transformers?
I Scaling up models size and amount of training data helps a lot
I Best model is 10B (!!) parameters
I Two models have already surpassed human performance!!!
I Exact pre-training objective (MLM, NSP, corruption) doesn’t matter too

much
I SuperGLUE benchmark:

[Raffel et al., 2019]

41 / 52

Practical Examples

42 / 52

BERT in low-latency production settings

[Devlin, 2020]

43 / 52

Distillation
I Modern pre-trained language

models are huge and very
computationally expensive

I How are these companies applying
them to low-latency applications?

I Distillation!
• Train SOTA teacher model

(pre-training + fine-tuning)
• Train smaller student model that

mimics the teacher’s output on a
large dataset on unlabeled data

I Distillation works much better than
pre-training + fine-tuning with
smaller model

[Devlin, 2020] [Turc, 2020]

44 / 52

Transformers in TensorFlow using HuggingFace

I The HuggingFace Library contains a
majority of the recent pre-trained
State-of-the-art NLP models, as well as
over 4 000 community uploaded models

I Works with both TensorFlow and PyTorch

45 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

46 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

47 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

48 / 52

Transformers in TensorFlow using HuggingFace

from transformers import BertTokenizerFast, TFBertForSequenceClassification}
from datasets import load_dataset
import tensorflow as tf

dataset = load_dataset("imdb").shuffle()
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

train_encodings = tokenizer(dataset['train']['text'], truncation=True, padding=True)
train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings), dataset['train']['label']))
val_dataset = ... // Analogously

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss)
model.fit(train_dataset.batch(16), epochs=3, batch_size=16)

model.evaluate(val_dataset.batch(16), verbose=0)

49 / 52

Wrap Up

50 / 52

Summary

I Transformers have blown other
architectures out of the water for
NLP

I Get rid of recurrence and rely on
self-attention

I NLP pre-training using Masked
Language Modelling

I Most recent improvements using
larger models and more data

I Distillation can make model serving
and inference more tractable

51 / 52

	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:

