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Enterprise Data and Feature Store

2 / 54



Example e-commerce marketing data model
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Data modelling: Fact and Dimension Tables

▶ A popular Data Model for Data Warehouses is to have Fact and Dimension Tables

▶ Examples of Facts: purchases, user clicks, user searches, songs played, embeddings
(recent user searches/sessions)

▶ Examples of Dimensions: click dimension, location dimension, time dimension, cus-
tomer dimension, song dimension

▶ Business events are modelled as Facts (aka measurements)

▶ Idenify and save dimensions for your facts that are useful for analysis or prediction
services

▶ Dimensions can be thought of as the columns you would expect to “group by”
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Example credit-card fraud facts and dimensions in a Star
Schema

5 / 54



Example credit-card fraud tables
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Our credit-card fraud tables are updated at different cadences
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Our credit-card fraud tables are in 3rd normal form

8 / 54



The primary keys for our credit-card fraud tables
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Credit card number - the Join key for our credit-card fraud
tables
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Feature Pipeline for Credit Card Fraud Features
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Credit Card Transactions Feature Group
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Credit Card Transactions Feature Group - One Big Table
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Credit Card Transactions - 4 hr Aggregations Feature Group
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Decouple feature pipelines from Models with a Feature Store
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One complex feature pipeline with both backfill and production
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Separate feature pipeline for backfill and production
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Separate feature pipeline for backfill and production with
shared code
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Feature pipelines write DataFrames to Feature Groups
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Create a Feature Group in Hopsworks with Python
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Feature Group - primary keys
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Feature Group - Event Time
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Feature Group - Event Time is not Ingestion Time
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Feature Group - Online Enabled
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Feature Groups are stored internally with Hive (offline),
MySQL (online) schemas
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Partitions: Efficient Queries over Offline Feature Groups storing
large amounts of data
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Compute descriptive statistics over numerical features,
distributions for categorical features
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Storing Labels in Feature Groups

28 / 54



Feature Selection
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Feature Selection with Scikit-Learn
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Feature Selection with Uber’s XRay Framework
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Feature Selection with a Feature View
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Join Features together to create a Feature View
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Point-in-Time Correct Joins needed to create Training Data
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Create a Feature View
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Create a Feature View from your Selected Features
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Feature View Offline API: Create Training Data or Batch
Inference Data
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Feature View Offline API: Create Training Data
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Random or Time-Series Split into Train/Test sets?
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Feature View Online API: Retrieve Feature Vectors for Online
Models
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Feature Selection Pipeline
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Model-Specific Transformations can be applied by Feature
Views (1/3)

▶ Transformation functions are applied to features to (1) make their data compatible
with the model training algorithm or (2) to improve model performance

▶ Transformation functions typically use state computed on the train set (e.g., the
arithmetic mean is used to normalize a numerical feature or the number of categories
is used to one-hot encode acategorical variable)

▶ Model-specific transformations functions need identical implementations in the
training and inference pipelines. If the implementations differ, you may introduce
training-inference skew.

▶ Training-inference skew is difficult to diagnose and fix, and causes models to perform
poorly.
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Model-Specific Transformations can be applied by Feature
Views (2/3)
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Model-Specific Transformations can be applied by Feature
Views (3/3)
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Consistent Training/Inference Transformations with
Scikit-Learn
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Use Pretrained Models and Transfer Learning, where
appropriate
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Typical steps in a training pipeline that uses a Feature Store
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Experiment tracking tools help manage your training pipelines
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Common training pipeline pattern when using a Feature Store
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Training Pipeline output - save your model to a Model Registry
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Hopsworks is both a Metadata and Artifact Store
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Batch Inference Pipeline uses features from the Feature Store
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Batch Inference Pipeline Code for Scoring Data from Last 24
hours
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References

▶ Feature Group Concepts, Feature Group Guide, API Docs for Feature Groups-
https://docs.hopsworks.ai

▶ Data models - star schema - https://www.databricks.com/glossary/star-schema

▶ Credit Card Fraud - https://www.kaggle.com/datasets/kartik2112/fraud-detection
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