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MLOps for Developing Machine Learning Products

▶ Get to a working ML system with a baseline ASAP, so that you can iteratively improve
it.

▶ A goal of MLOps is to improve both iteration speed and quality when developing ML
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MLOps: what does Improving Iteration Speed mean?

▶ Safe incremental updates: make small changes to your source code with confidence
that your changes will not break anything (downstream clients, deployments on dif-
ferent platforms), performance regressions, etc)

▶ Tighter iteration loop: the time taken to run tests or experiments should not dominate
the time taken to make the source code changes

▶ A faster iteration loop makes developers happier and more productive
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MLOps: iteratively Develop and Test ML Systems

▶ ML-enabled products evolve over time:
• The available input data (features) change over time

• The target you are trying to predict changes over time

• With the help of automation, how can quickly and reliably develop, test, and deploy
ML-enabled products without affecting their ongoing operation?

▶ We should aim to automate the testing and deployment of ML-enabled Products
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MLOps: Automated Testing to Improve ML Product Quality

▶ The goal is to be able to reliably build:
• trustworthy features using feature pipelines and data

• a trustworthy model using your trustworthy features

• an AI-enabled product using trustworthy models and features

▶ To this end, features and models must be tested

▶ Tests should run automatically as part of a CI/CD workflow
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Prediction Feedback to Improve ML Product Quality

▶ Acquire user feedback with a user-interface to quickly improve the quality of your
ML-enabled product and model

▶ Log predictions and features to enable developers to quickly find and understand the
root cause of poor quality predictions

▶ Compare historical predictions with outcomes (or proxy metrics for outcomes) to
inform when a model is stale

▶ Monitor feature or label drift to identify when a model needs to be re-trained
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DevOps for reliable software development

▶ DevOps is a set of practices, tools, and a cultural philosophy that automate and in-
tegrate the processes between software development and IT teams. Key technologies
are version control, automated testing, versioning of production deployments.
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Changes in either source code or Data can break your ML
Product

▶ In DevOps, changes in source code trigger automated testing and deployment.

▶ In MLOps, changes in either source code or incoming data trigger automated testing
and deployment.
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A Complete MLOps Platform with Automated Testing
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Lineage in MLOps
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What was the root cause for the introduction of model bias?
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Lineage in Hopsworks: from Data to Features to Models to
Deployments
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Reproducible ML Assets makes for better Data Science
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Reverse Lineage for Batch Inference Pipelines
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Reverse Lineage for Online Inference
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Data Versioning in Apache Hudi

▶ Lineage involves storing metadata about both state and pipeline executions of ver-
sioned ML Assets, enabling the discovery of the provenance of any given ML asset.

▶ Lineage facilitates Debugging, Analyzing, Cleaning of ML Assets and Pipelines, and
Reproducing ML Assets.

▶ If a stateful ML asset supports time-travel, you can track and recover its state at
a point in time in the past. Git provides time-travel for source code. Hudi provide
time-travel for data commits in cached Feature Groups in Hopsworks.
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Versioning of ML Assets
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Mutability of ML Assets in Hopsworks
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Versioning of ML Assets in Hopsworks
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Handling Versioning Challenges in Hopsworks
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Versioning of Source Code
Packaging of Pipelines
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Packaging Pipelines as Installable Python Artifacts
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Manage OS package dependenices for Pipelines
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Reuse Versioned Feature Code for Prod/Backfill Pipelines
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Reuse On-Demand feature code in Training/Inference Pipelines
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Model-Specific Transformation Pipelines in Scikit-Learn
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Versioning of Data: Schemas and Commits
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Schema Versioning (Data Contracts)
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Data Versioning with Git
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Data Versions in feature groups with Apache Hudi
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Unit tests for Feature Logic
and integration tests for Feature Pipelines
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ML Test Score Criteria by D. Sculley et al
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ML Test Score Criteria by D. Sculley et al
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Where can we add tests to Operational ML Systems?
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Where can we add tests to Operational ML Systems?
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Offline and Online Tests for Operational ML Systems
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Unit tests for Features with Pytest
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Refactor Feature Engineering Code into Testable Functions
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Write Unit Tests for the Feature Functions
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Recommended Pytest directory structure
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Feature Pipeline Tests in a CI/CD Setup
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Data Validation with Great Expectations
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Data Validation with Great Expectations in Feature Pipelines
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Feature Data Validation Rules
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Great Expectations and Pandas DataFrames

45 / 65



Great Expectations and Pandas DataFrames
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Feature Pipeline CI/CD Setup with Great Expectations
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Testing Training Pipelines
and Model Deployments
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Testing Training Pipelines and Models
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Evaluating Models and Testing Training Pipelines
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Model Performance Evaluation
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Model Tests
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Test a Model for Bias with Evaluation Sets
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Integration (End-to-End) Tests for Training Pipelines
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A/B Testing Model Deployments (Blue/Green Rollouts)
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The “Big Red Button” enabled by MLOps
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Model and Feature Monitoring
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Data for AI Flywheel
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Feature and Prediction Logging
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Monitor Features, Labels, Predictions, Outcomes for Drift
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What is practical to measure for Data Drift?
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Case Study
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Lyft Model/Feature Monitoring
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Lyft - Performance Drift Detection
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