
Machine Learning Operations (MLOps)

Jim Dowling
jdowling@kth.se



MLOps for Developing Machine Learning Products

▶ Get to a working ML system with a baseline ASAP, so that you can iteratively improve
it.

▶ A goal of MLOps is to improve both iteration speed and quality when developing ML

2 / 65



MLOps: what does Improving Iteration Speed mean?

▶ Safe incremental updates: make small changes to your source code with confidence
that your changes will not break anything (downstream clients, deployments on dif-
ferent platforms), performance regressions, etc)

▶ Tighter iteration loop: the time taken to run tests or experiments should not dominate
the time taken to make the source code changes

▶ A faster iteration loop makes developers happier and more productive

3 / 65



MLOps: iteratively Develop and Test ML Systems

▶ ML-enabled products evolve over time:
• The available input data (features) change over time

• The target you are trying to predict changes over time

• With the help of automation, how can quickly and reliably develop, test, and deploy
ML-enabled products without affecting their ongoing operation?

▶ We should aim to automate the testing and deployment of ML-enabled Products

4 / 65



MLOps: Automated Testing to Improve ML Product Quality

▶ The goal is to be able to reliably build:
• trustworthy features using feature pipelines and data

• a trustworthy model using your trustworthy features

• an AI-enabled product using trustworthy models and features

▶ To this end, features and models must be tested

▶ Tests should run automatically as part of a CI/CD workflow

5 / 65



Prediction Feedback to Improve ML Product Quality

▶ Acquire user feedback with a user-interface to quickly improve the quality of your
ML-enabled product and model

▶ Log predictions and features to enable developers to quickly find and understand the
root cause of poor quality predictions

▶ Compare historical predictions with outcomes (or proxy metrics for outcomes) to
inform when a model is stale

▶ Monitor feature or label drift to identify when a model needs to be re-trained

6 / 65



DevOps for reliable software development

▶ DevOps is a set of practices, tools, and a cultural philosophy that automate and in-
tegrate the processes between software development and IT teams. Key technologies
are version control, automated testing, versioning of production deployments.

7 / 65



Changes in either source code or Data can break your ML
Product

▶ In DevOps, changes in source code trigger automated testing and deployment.

▶ In MLOps, changes in either source code or incoming data trigger automated testing
and deployment.

8 / 65



A Complete MLOps Platform with Automated Testing

9 / 65



Lineage in MLOps

10 / 65



What was the root cause for the introduction of model bias?

11 / 65



Lineage in Hopsworks: from Data to Features to Models to
Deployments

12 / 65



Reproducible ML Assets makes for better Data Science

13 / 65



Reverse Lineage for Batch Inference Pipelines

14 / 65



Reverse Lineage for Online Inference

15 / 65



Data Versioning in Apache Hudi

▶ Lineage involves storing metadata about both state and pipeline executions of ver-
sioned ML Assets, enabling the discovery of the provenance of any given ML asset.

▶ Lineage facilitates Debugging, Analyzing, Cleaning of ML Assets and Pipelines, and
Reproducing ML Assets.

▶ If a stateful ML asset supports time-travel, you can track and recover its state at
a point in time in the past. Git provides time-travel for source code. Hudi provide
time-travel for data commits in cached Feature Groups in Hopsworks.

16 / 65



Versioning of ML Assets

17 / 65



Mutability of ML Assets in Hopsworks

18 / 65



Versioning of ML Assets in Hopsworks

19 / 65



Handling Versioning Challenges in Hopsworks

20 / 65



Versioning of Source Code
Packaging of Pipelines

21 / 65



Packaging Pipelines as Installable Python Artifacts

22 / 65



Manage OS package dependenices for Pipelines

23 / 65



Reuse Versioned Feature Code for Prod/Backfill Pipelines

24 / 65



Reuse On-Demand feature code in Training/Inference Pipelines

25 / 65



Model-Specific Transformation Pipelines in Scikit-Learn

26 / 65



Versioning of Data: Schemas and Commits

27 / 65



Schema Versioning (Data Contracts)

28 / 65



Data Versioning with Git

29 / 65



Data Versions in feature groups with Apache Hudi

30 / 65



Unit tests for Feature Logic
and integration tests for Feature Pipelines

31 / 65



ML Test Score Criteria by D. Sculley et al

32 / 65



ML Test Score Criteria by D. Sculley et al

33 / 65



Where can we add tests to Operational ML Systems?

34 / 65



Where can we add tests to Operational ML Systems?

35 / 65



Offline and Online Tests for Operational ML Systems

36 / 65



Unit tests for Features with Pytest

37 / 65



Refactor Feature Engineering Code into Testable Functions

38 / 65



Write Unit Tests for the Feature Functions

39 / 65



Recommended Pytest directory structure

40 / 65



Feature Pipeline Tests in a CI/CD Setup

41 / 65



Data Validation with Great Expectations

42 / 65



Data Validation with Great Expectations in Feature Pipelines

43 / 65



Feature Data Validation Rules

44 / 65



Great Expectations and Pandas DataFrames

45 / 65



Great Expectations and Pandas DataFrames

46 / 65



Feature Pipeline CI/CD Setup with Great Expectations

47 / 65



Testing Training Pipelines
and Model Deployments

48 / 65



Testing Training Pipelines and Models

49 / 65



Evaluating Models and Testing Training Pipelines

50 / 65



Model Performance Evaluation

51 / 65



Model Tests

52 / 65



Test a Model for Bias with Evaluation Sets

53 / 65



Integration (End-to-End) Tests for Training Pipelines

54 / 65



A/B Testing Model Deployments (Blue/Green Rollouts)

55 / 65



The “Big Red Button” enabled by MLOps

56 / 65



Model and Feature Monitoring

57 / 65



Data for AI Flywheel

58 / 65



Feature and Prediction Logging

59 / 65



Monitor Features, Labels, Predictions, Outcomes for Drift

60 / 65



What is practical to measure for Data Drift?

61 / 65



Case Study

62 / 65



Lyft Model/Feature Monitoring

63 / 65



Lyft - Performance Drift Detection

64 / 65



References

▶ Reliable Machine Learning: Applying SRE Principles to ML in Production, Murphy
et al, O’Reilly

▶ Designing Machine Learning Systems: An Iterative Process for Production-Ready
Applications, Chip Huyen, O’Reilly

65 / 65


