
Automated Machine Learning (AutoML)

Slides by Amir H. Payberah
payberah@kth.se

The Machine Learning Process

▶ Building an ML model is an iterative, complex, and time-consuming process.

▶ It can take a lot of trial and error.

[Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges, 2019]

1 / 63

Automated vs. Manual Machine Learning

▶ AutoML: build models in a data-driven, intelligent, and purposeful way.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

2 / 63

3 / 63

AutoML Subproblems - Neural Architecture Search

▶ Represent and search all pipelines or neural nets, e.g., neural layers, interconnections,
etc.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

4 / 63

AutoML Subproblems - Hyperparameter Optimization

▶ Which hyperparameters are important? How to optimize them?

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

5 / 63

AutoML Subproblems - Meta-learning

▶ How can we transfer experience from previous tasks?

▶ Don’t start from scratch (search space is too large).

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

6 / 63

7 / 63

Hyper-Parameter Optimization (HPO)

8 / 63

AutoML Definition

▶ A denotes a ML algorithm with m hyperparameters.

▶ {A1, A2, · · · , An} is a set of ML algorithms.

▶ Λj is the domain of jth hyperparameter.

▶ Λ = Λ1 × Λ2 × · · · × Λm is the overall hyperparameter configuration space.

▶ θ ∈ Λ is a vector of hyperparameters.

▶ J(θ,Xtrain,Xvalid) is the loss of the ML model created by θ, trained on Xtrain, and
validated on Xvalid.

▶ Find the configuration that minimizes the expected loss on a dataset Xtrain:
θ∗ = argminθ∈Λ E(Xtrain,Xvalid)∼XJ(θ,Xtrain,Xvalid)

9 / 63

Types of Hyperparameters

▶ Continuous
• E.g., learning rate

▶ Integer
• E.g., number of hidden units

▶ Categorical
• E.g., choice of operator (Convolution, MaxPooling, DropOut, etc.)
• E.g., choice of activation function (ReLU, Leaky ReLU, tanh, etc.)

▶ Conditional
• E.g., convolution kernel size, if convolution layer is selected

10 / 63

Hyper-Parameter Optimization

▶ Black-box optimization
• Grid search
• Random search
• Population-based search
• Bayesian optimization

▶ Multi-fidelity optimization
• Modeling learning curve
• Bandit based

11 / 63

Hyper-Parameter Optimization

▶ Black-box optimization
• Grid search
• Random search
• Population-based search
• Bayesian optimization

▶ Multi-fidelity optimization
• Modeling learning curve
• Bandit based

12 / 63

Black-box Optimization - Grid and Random Search

[Hutter et al., Automated Machine Learning, 2019]

13 / 63

Black-box Optimization - Population-based Search

▶ They maintain a population, i.e., a set of configurations.

▶ Improve this population to obtain a new generation of better configurations.

▶ Achieve this by applying:
• Local perturbations (so-called mutations)
• Combinations of different members (so-called crossover)

▶ E.g., genetic algorithms, evolutionary algorithms, particle swarm optimization

14 / 63

Black-box Optimization - Bayesian Optimization (1/3)

▶ Start with a few (random) hyperparameter configurations.

▶ Fit a surrogate model to predict other configurations.

▶ An acquisition function drives the proposition of new points to test, in an exploration
and exploitation trade-off.

▶ Sample for the best configuration under that function.

[Hutter et al., Automated Machine Learning, 2019]

15 / 63

Black-box Optimization - Bayesian Optimization (2/3)

[Hutter et al., Automated Machine Learning, 2019]

16 / 63

Black-box Optimization - Bayesian Optimization (3/3)

[Hutter et al., Automated Machine Learning, 2019]

17 / 63

Hyper-Parameter Optimization

▶ Black-box optimization
• Grid search
• Random search
• Population-based search
• Bayesian optimization

▶ Multi-fidelity optimization
• Modeling learning curve
• Bandit based

18 / 63

Multi-fidelity Optimization

▶ Massive dataset sizes and complex models make blackbox performance evaluation
expensive.

▶ Probe a hyperparameter configuration on a small subset.

▶ Multi-fidelity methods use low fidelity approximations of the actual loss function to
minimize.

▶ These approximations introduce a tradeoff between optimization performance and
runtime.

19 / 63

Multi-fidelity Optimization - Modeling Learning Curves

▶ Learning curve extrapolation is used in predicting early termination for a particular
configuration.

▶ Models learning curves during hyper-parameter optimization.

▶ Decides whether to allocate more resources or to stop the training procedure for a
particular configuration.

▶ The learning process is terminated if the performance of the predicted configuration
is less than the performance of the best model trained so far in the optimization
process.

20 / 63

Multi-fidelity Optimization - Bandit-Based

▶ Successive halving algorithm (SHA)

▶ HyperBand

21 / 63

Multi-fidelity Optimization - SHA (1/4)

▶ Train on small subsets, infer which regions may be interesting to evaluate in more
depth.

▶ Randomly sample candidates and evaluate on a small data sample.

▶ E.g., retrain the 50% best candidates on twice the data.

[Hutter et al., Automated Machine Learning, 2019]

22 / 63

Multi-fidelity Optimization - SHA (2/4)

▶ Successive halving for eight algorithms/configurations.

▶ After evaluating all algorithms on 1/8 of the total budget, half of them are dropped
and the budget given to the remaining algorithms is doubled.

[Hutter et al., Automated Machine Learning, 2019]

23 / 63

Multi-fidelity Optimization - SHA (3/4)

24 / 63

Multi-fidelity Optimization - SHA (4/4)

▶ Successive halving suffers from the budget-vs-number of configurations trade off.

▶ Given a total budget, the user has to decide beforehand whether:
• to try many configurations and only assign a small budget to each, or
• to try only a few and assign them a larger budget.

▶ Assigning too small a budget can result in prematurely terminating good configura-
tions.

▶ Assigning too large a budget can result in running poor configurations too long and
thereby wasting resources.

25 / 63

Multi-fidelity Optimization - HyperBand (1/2)

▶ HyperBand combats SHA problem when selecting from randomly sampled configu-
rations.

▶ It divides the total budget into several combinations of number of configurations vs.
budget for each.

▶ Then it calls SHA on each set of random configurations.

26 / 63

Multi-fidelity Optimization - HyperBand (2/2)

▶ The inner loop invokes SHA for fixed values of n and r.

▶ The outer loop iterates over different values of n and r.

27 / 63

Neural Architecture Search (NAS)

28 / 63

Neural Architecture Search

▶ The process of automating architecture engineering.

▶ Search space: which architectures can be represented in principle.

▶ Search strategy: how to explore the search space.

▶ Performance estimation: to perform a standard training and validation of the archi-
tecture on data.

[Hutter et al., Automated Machine Learning, 2019]

29 / 63

Search Space

30 / 63

Search Space

▶ Which neural architectures a NAS approach might discover.

▶ Chain-structured neural network

▶ Multi-branch networks

▶ Repeated motifs

31 / 63

Chain-Structured Neural Network

▶ A sequence of n layers.

▶ The i’th layer Li receives its input from layer i− 1 and its output
serves as the input for layer i+ 1.

▶ Parameters of the search space:

• The (maximum) number of layers n.

• The type of operation every layer can execute, e.g., pooling, conv.

• Hyperparameters associated with the operation, e.g., number of filters,
kernel size and strides for a convolutional layer.

32 / 63

Multi-Branch Networks

▶ The input of layer i: a function gi(L
out
i−1, · · · , Lout0) of previous layer outputs.

▶ Special cases:

• The chain-structured networks: gi(L
out
i−1, · · · , Lout0) = Louti−1

• Residual networks, where previous layer outputs are summed:
gi(L

out
i−1, · · · , Lout0) = Louti−1 + Louti , j < i

• DenseNets, where previous layer outputs are out concatenated:
gi(L

out
i−1, · · · , Lout0) = concat(Louti−1, · · · , Lout0)

33 / 63

Repeated Motifs

▶ Normal cell: preservers the
dimensionality of the input.

▶ Reduction cell: reduces the
spatial dimension.

34 / 63

Search Strategy

35 / 63

Search Strategy

▶ Random search

▶ Reinforcement learning

▶ Gradient-based optimization

▶ Bayesian optimization

▶ Evolutionary methods

36 / 63

Random Search

▶ For each node in the DAG, determine what decisions must be made.
• Choose a node as input and a corresponding operation to apply to generate the
output of the node.

• E.g., node i can take the outputs of nodes 0 to node i− 1 as input.
• E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.

▶ Sample uniformly from the set of possible choices for each decision that needs to be
made.

▶ Moving from node to node.

[Li et al., Random Search and Reproducibility for Neural Architecture Search, 2020]

37 / 63

Evolutionary Methods

▶ Evolves a population of models, i.e., a set of (possibly trained) networks.

▶ In every evolution step, at least one model from the population is sampled and serves
as a parent to generate offsprings by applying mutations to it.

• E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip
connections, etc.

▶ After training the offsprings, their fitness (e.g., performance on a validation set) is
evaluated and they are added to the population.

▶ Evolutionary methods differ in how they sample parents, update populations, and
generate offsprings.

38 / 63

Reinforcement Learning

▶ Action: the generation of a neural architecture.

▶ Action space: the search space.

▶ Reward: based on an estimate of the performance of the trained architecture on
unseen data.

▶ Policy: different approaches.

39 / 63

Gradient-based Optimization

▶ The previous methods search over a discrete set of candidate architectures.

▶ Here, it relaxes the search space to be continuous, so that the architecture can be
optimized with respect to its validation set performance by gradient descent.

▶ We relax the categorical choice of a particular operation to a softmax over all possible
operations.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]

40 / 63

Bayesian Optimization (1/3)

▶ Find the architecture a ∈ A that maximizes f(a).

▶ Choose several architectures from A at random and evaluating f(a) for each of them.

▶ Based on these results, iteratively choose new architectures to evaluate.

▶ The full algorithm: T rounds of choosing an architecture ai and computing f(ai).

▶ The output is the architecture a∗ with the largest value of f(a∗) among all those
that were tried in the previous rounds.

41 / 63

Bayesian Optimization (2/3)

▶ Choose the next architecture in round i+ 1, given f(a1), · · · , f(ai).

▶ Assume f : A → [0, 1] follows a Gaussian Process (GP).

▶ Makes an assumption about the distribution f(A).

▶ The assumptions about the mean and variance of f(A) are constantly being updated
as the algorithm gathers more data in the form of f(a1), · · · , f(ai).

▶ Chooses the architecture with the greatest chance of giving a large improvement.

▶ The algorithm chooses ai+1 = argmaxa∈A max(0, E[f(a)−f∗]) = argmaxa∈A E[f(a)].

▶ f∗ is the best accuracy observed so far.

42 / 63

Bayesian Optimization (3/3)

▶ The top graph: three evaluations of f (blue circles), an estimate of f (solid red line),
and confidence intervals (dotted red lines).

▶ The bottom graph: the expected improvement value for each architecture. The
architecture with the largest expected improvement is chosen (blue x).

[https://medium.com/abacus-ai/an-introduction-to-bayesian-optimization-for-neural-architecture-search-d324830ec781]

43 / 63

Performance Estimation

44 / 63

Performance Estimation

▶ The search strategies need to estimate the performance of a given architecture A

they consider.

▶ The simplest way of doing this is to train A on training data and evaluate its perfor-
mance on validation data.

▶ However, training each architecture to be evaluated from scratch frequently yields
computational demands in the order of thousands of GPU days for NAS.

45 / 63

Reduce the Computational Burden

▶ Low-fidelity approximation

▶ Learning curve extrapolation

▶ One-shot architecture

46 / 63

BOHB: Robust and Efficient Hyperparameter
Optimization at Scale

47 / 63

BOHB: Bayesian Optimization and Hyperband

▶ Bayesian optimization (BO): for choosing the configuration to evaluate

▶ Hyperband (HB): for deciding how to allocate budgets

48 / 63

Bayesian Optimization vs. Random Search

▶ BO advantage: much improved final performance

49 / 63

Hyperband vs. Random Search

▶ HB advantage: much improved anytime performance

50 / 63

Combining Bayesian Optimization and Hyperband

▶ Best of both worlds: strong anytime and final performance

51 / 63

HBOB Algorithm

▶ Relies on HB to determine how many configurations to evaluate with which budget.

▶ Replaces the random selection of configurations at the beginning of each HB iteration
by a BO model-based search.

▶ Once the desired number of configurations for the iteration is reached, the SHA
procedure is carried out using these configurations.

52 / 63

A System for Massively Parallel
Hyperparameter Tuning

53 / 63

SHA

▶ SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top 1

ρ .

▶ It then increases the budget per configuration by a factor of ρ.

▶ Repeats until the maximum per-configuration budget of R is reached.

▶ SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

54 / 63

Asynchronous SHA (ASHA)

▶ ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

▶ ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

▶ If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

▶ Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

55 / 63

DARTS: Differentiable Architecture Search

56 / 63

Differentiable ARchiTecture Search (DARTS)

▶ Instead of searching over a discrete set of candidate architectures, we relax the search
space to be continuous.

▶ The architecture can be optimized with respect to its validation set performance by
gradient descent.

57 / 63

Search Space

▶ It searches for a computation cell as the building block of the final architecture.

▶ A cell is a DAG consisting of an ordered sequence of N nodes.

▶ Each node x(i) is a latent representation (e.g. a feature map in CNNs).

▶ Each directed edge (i, j) is associated with some operation o(i,j) that transforms
x(i).

▶ Each intermediate node is computed based on all of its predecessors:
x(j) =

∑
i<j o

(i,j)(xi)

58 / 63

Continuous Relaxation and Optimization

▶ Let O be a set of candidate operations, where each operation represents some func-
tion o to be applied to x(i).

▶ To make the search space continuous, it relaxes the categorical choice of a particular
operation to a softmax over all possible operations:

o(i,j)(x) =
∑

o∈O
exp(α

(i,j)
o)∑

o′∈O exp(α
(i,j)

o′)
o(x)

▶ The operation mixing weights for a pair of nodes (i, j) are parameterized by a vector
α(i,j) of dimension |O|.

▶ At the end of search, a discrete architecture can be obtained by replacing each mixed

operation o(i,j) with the most likely operation, i.e., o(i,j) = argmaxo∈O α
(i,j)
o .

59 / 63

Summary

60 / 63

Summary

▶ Hyperparameter optimization
• Black-box optimization
• Multi-fidelity optimization

▶ Nural architecture search
• Search space
• Search strategy
• Performance estimation

61 / 63

Reference

▶ Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges,
2019

▶ Falkner et al., BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
2018

▶ Li et al., A System for Massively Parallel Hyperparameter Tuning, 2020

▶ Liu et al., DARTS: Differentable Architecture Search, 2019

62 / 63

Questions?

63 / 63

