
Serverless Machine Learning

Jim Dowling
jdowling@kth.se

2022-11-04

Enterprise AI Value Chain

1 / 54

Modern Enterprise Data and ML Infrastructure

2 / 54

Monolithic ML Pipeline

3 / 54

Problems with Monolithic ML Pipelines

▶ They are often not modular - their components are not modular and cannot be
independently scaled or deployed on different hardware (e.g., CPUs for feature engi-
neering, GPUs for model training).

▶ They are difficult to test - production software needs automated tests to ensure
features and models are of high quality.

▶ They tightly couple the execution of feature engineering, model training, and infer-
ence steps - running them in the same pipeline program at the same time.

▶ They do not promote reuse of features/models/code. The code for computing fea-
tures (feature logic) cannot be easily disentangled from its pipeline jungle.

4 / 54

Modularity enables more Robust and Scalable Systems

Modular water pipes in a Google Datacenter. Instead of one giant water pipe (our
monolithic notebook), separate water pipes reduce the blast radius if one fails. Color
coding makes it easier to debug problems in a damaged water pipe.

5 / 54

Pipelines as Modular Programs

▶ Modularity involves structuring your code such that its functionality is separated into
independent classes and/or functions that can be more easily reused and tested.

▶ Modules should be placed in accessible classes or functions, keeping them small and
easy to understand and document.

▶ Modules enable code to be more easily reused in different pipelines.

▶ Modules enable code to be more easily independently tested, enabling the easier and
earlier discovery of bugs.

6 / 54

Supervised ML Pipeline Stages

train(features, labels)− > model

model(features)− > predictions

7 / 54

ML Pipeline Stages in a Serverless Machine Learning System

8 / 54

ML Pipeline Stages - Data Sources

9 / 54

Connect to Data Sources and Read Raw Data

▶ Discover data sources, securely connect to heterogeneous data sources

▶ Manage dependencies such as connectors and drivers

▶ Manage connection information securely: network endpoint, database/table names,
authentication credentials such as API keys or credentials (username/password)

10 / 54

Heterogeneous Data Sources

11 / 54

File Formats for different Data Sources

12 / 54

ML Pipeline Stages - Feature Pipelines

13 / 54

Feature Pipelines

14 / 54

Feature Pipelines

▶ A feature pipeline is a program that orchestrates the execution of feature engineering
steps on input data to create feature values.

Examples of feature engineering steps:

▶ Clean, validate, data

▶ Data de-duplication, pseudononymization, data wrangling

▶ Feature extraction, aggregations, dimensionality reduction, feature binning, feature
crosses

15 / 54

Tabular Data

16 / 54

Tabular Data as Features, Labels, Entity (or Primary) Keys,
Event Time

17 / 54

Tabular Data in Pandas

18 / 54

Exploratory Data Analysis in Pandas

19 / 54

Aggregations in Pandas

20 / 54

Rolling Windows in Pandas

21 / 54

Feature binning

22 / 54

Feature Crosses

▶ A feature cross is a synthetic feature formed by multiplying (crossing) two or more
features. By multiplying features together, you encode nonlinearity in the feature
space.

▶ For example, imagine we are looking for credit card fraud activity within a geographic
region (e.g., a city district), how would we capture that as a feature?

▶ We could cross to a geographic area (binned latitude and binned longitude - a grid
identifying a city district) with the level of credit card activity within that geographic
area.

23 / 54

Embeddings as Features
▶ An embedding is a lower dimension representation of a sparse input that retains some

of the semantics of the input.

▶ An embedding store (vector database) stores semantically similar inputs close to-
gether in the embedding space. You can implement “similarity search” by finding
embeddings close in embedding space. You can even apply arithmetic on embeddings
to discover semantic relationships.

24 / 54

ML Pipeline Stages - Feature Store

25 / 54

Store Features

There are two general ways people manage features and labels for both training and
serving:

▶ (1) Compute features on-demand as part of the model training or batch inference
pipeline.

▶ (2) Use a feature store to store the features so that they can be reused across
different models for both training and inference. For online models that require
features with either historical or contextual information, feature stores are typically
used.

26 / 54

ML Pipeline Stages - Training Pipelines

27 / 54

Feature Types

Reference: https://www.hopsworks.ai/post/feature-types-for-machine-learning

28 / 54

Feature Types Taxonomy

29 / 54

Model Training Pipelines

30 / 54

Model-Dependent Transformations

Reference: https://developers.google.com/machine-learning/data-
prep/transform/introduction

31 / 54

Transformations in Pandas

32 / 54

Different types of Transformations

33 / 54

Model Training with Train and Test Sets

34 / 54

Model Training with Train and Test Sets in Scikti-Learn

35 / 54

Model Training is an Iterative Process

36 / 54

Model-Centric Iteration to Improve Model Performance

Possible steps to improve your model performance:

▶ Try out a different supervised ML learning algorithm (e.g., random forest, feedforward
deep neural network, Gradient-boosted decision tree)

▶ Try out new combinations of hyperparameters (e.g., number of training epochs, the
learning rate, number of layers in a deep neural network, adjust regularizations such
as Dropout or BatchNorm)

▶ Evaluate your model on a validation set (keeping a separate holdout test set for final
model performance evaluation)

37 / 54

Data-Centric Iteration to Improve Model Performance

Steps to improve your model

▶ Add or remove features to or from your model (feature selection)

▶ Add more training data

▶ Remove poor quality training samples

▶ Improve the quality of existing training samples (e.g., using Cleanlab or Snorkel)

▶ Rank the importance of the training samples (Active Learning)

38 / 54

Train, Validation, and Test Sets

▶ Random splits of the training data when the data is not time-series data

▶ Time-series splits of the training data when the data is time-series data

39 / 54

Model Training is an Iterative Process

40 / 54

ML Pipeline Stages - Inference Pipelines

41 / 54

Batch Inference Pipeline

42 / 54

Online Inference Pipeline

43 / 54

Serverless ML with Python

▶ Write Feature, Training, and Inference Pipelines in Python

▶ Orchestrate the execution of Pipelines using Serverless Compute Platforms

▶ Store features and models in a serverless feature/model store

▶ Run a User Interface (UI), written in Python, on serverless infrastructure

44 / 54

Serverless Compute Platforms

45 / 54

Serverless Feature Stores and Model Registry/Serving

Feature Stores

▶ Hopsworks

Model Registry and Serving

▶ Hopsworks

▶ AWS Sagemaker

▶ Databricks

▶ Google Vertex

46 / 54

Serverless User Interfaces

▶ Hugging Faces Spaces

▶ Streamlit Cloud

47 / 54

Iris Flower Dataset

https://github.com/ID2223KTH/id2223kth.github.io/tree/master/src/serverless-ml-
intro

▶ 4 input features: sepal length, sepal width, petal length, petal width

▶ label (target): Iris Flower Type (one of Setosa, Versicolor, Virginica)

▶ Only 150 samples in the dataset

48 / 54

Serverless Iris with Modal, Hopsworks, and Hugging Face

49 / 54

Iris Flowers: Feature Pipeline with Modal and Hopsworks

import os

import modal

stub = modal.Stub()

hopsworks_image = modal.Image.debian_slim().pip_install(["hopsworks"])

@stub.function(image=hopsworks_image, schedule=modal.Period(days=1), \

secret=modal.Secret.from_name("jim-hopsworks-ai"))

def f():

import hopsworks

import pandas as pd

project = hopsworks.login()

fs = project.get_feature_store()

iris_df = pd.read_csv("https://repo.hops.works/master/hopsworks-tutorials/data/iris.csv")

iris_fg = fs.get_or_create_feature_group(name="iris_modal", version=1,

primary_key=["sepal_length","sepal_width","petal_length","petal_width"],

description="Iris flower dataset")

iris_fg.insert(iris_df)

if __name__ == "__main__":

with stub.run():

f()

50 / 54

Training Pipeline with Modal and Hopsworks

@stub.function(image=hopsworks_image, schedule=modal.Period(days=1),\

secret=modal.Secret.from_name("jim-hopsworks-ai"))

def f():

lots of imports

project = hopsworks.login()

fs = project.get_feature_store()

try:

feature_view = fs.get_feature_view(name="iris_modal", version=1)

except:

iris_fg = fs.get_feature_group(name="iris_modal", version=1)

query = iris_fg.select_all()

feature_view = fs.create_feature_view(name="iris_modal",

version=1,

description="Read from Iris flower dataset",

labels=["variety"],

query=query)

X_train, X_test, y_train, y_test = feature_view.train_test_split(0.2)

model = KNeighborsClassifier(n_neighbors=2)

model.fit(X_train, y_train.values.ravel())

51 / 54

Training Pipeline (ctd)

y_pred = model.predict(X_test)

metrics = classification_report(y_test, y_pred, output_dict=True)

results = confusion_matrix(y_test, y_pred)

df_cm = pd.DataFrame(results, [’True Setosa’, ’True Versicolor’, ’True Virginica’],

[’Pred Setosa’, ’Pred Versicolor’, ’Pred Virginica’])

cm = sns.heatmap(df_cm, annot=True)

fig = cm.get_figure()

joblib.dump(model, "iris_model/iris_model.pkl")

fig.savefig("iris_model/confusion_matrix.png")

input_schema = Schema(X_train)

output_schema = Schema(y_train)

model_schema = ModelSchema(input_schema, output_schema)

mr = project.get_model_registry()

iris_model = mr.python.create_model(

name="iris_modal",

metrics={"accuracy" : metrics[’accuracy’]},

model_schema=model_schema,

description="Iris Flower Predictor")

iris_model.save("iris_model")

52 / 54

Interactive Inference Pipeline with Hugging Face/Hopsworks
model = mr.get_model("iris_modal", version=1)

model_dir = model.download()

model = joblib.load(model_dir + "/iris_model.pkl")

def iris(sepal_length, sepal_width, petal_length, petal_width):

input_list = []

input_list.append(sepal_length)

input_list.append(sepal_width)

input_list.append(petal_length)

input_list.append(petal_width)

res = model.predict(np.asarray(input_list).reshape(1, -1))

flower_url = "https://raw.githubusercontent.com/.../assets/" + res[0] + ".png"

return Image.open(requests.get(flower_url, stream=True).raw)

demo = gr.Interface(

fn=iris, title="Iris Flower Predictive Analytics", allow_flagging="never",

description="Experiment with sepal/petal lengths/widths to predict which flower it is.",

inputs=[gr.inputs.Number(default=1.0, label="sepal length (cm)"),

gr.inputs.Number(default=1.0, label="sepal width (cm)"),

gr.inputs.Number(default=1.0, label="petal length (cm)"),

gr.inputs.Number(default=1.0, label="petal width (cm)"),],

outputs=gr.Image(type="pil"))

demo.launch()

53 / 54

Questions?

Acknowledgements
Some of the images are used with permission from Hopsworks AB.

54 / 54

