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Modern Enterprise Data and ML Infrastructure
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Monolithic ML Pipeline

@ A pipeline is a program that takes and input and produces an output

@® End-to-end ML Pipelines are a single pipeline that transforms raw data into features
and trains and scores the model in one single program
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Problems with Monolithic ML Pipelines

They are often not modular - their components are not modular and cannot be
independently scaled or deployed on different hardware (e.g., CPUs for feature engi-
neering, GPUs for model training).

They are difficult to test - production software needs automated tests to ensure
features and models are of high quality.

They tightly couple the execution of feature engineering, model training, and infer-
ence steps - running them in the same pipeline program at the same time.

They do not promote reuse of features/models/code. The code for computing fea-
tures (feature logic) cannot be easily disentangled from its pipeline jungle.




Modular water pipes in a Google Datacenter. Instead of one giant water pipe (our
monolithic notebook), separate water pipes reduce the blast radius if one fails. Color
coding makes it easier to debug problems in a da
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Pipelines as Modular Programs

Modularity involves structuring your code such that its functionality is separated into
independent classes and/or functions that can be more easily reused and tested.

Modules should be placed in accessible classes or functions, keeping them small and
easy to understand and document.

Modules enable code to be more easily reused in different pipelines.

Modules enable code to be more easily independently tested, enabling the easier and
earlier discovery of bugs.




Supervised ML Pipeline Stages

train(features, labels)— > model

model(features)— > predictions
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ML Pipeline Stages in a Serverless Machine Learning System
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ML Pipeline Stages - Data Sources
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Connect to Data Sources and Read Raw Data

» Discover data sources, securely connect to heterogeneous data sources

» Manage dependencies such as connectors and drivers

» Manage connection information securely: network endpoint, database/table names,
authentication credentials such as API keys or credentials (username/password)




Heterogeneous Data Sources

: Type of Data Examples
. Tabular data Customer, transactions, marketing, sales, etc

Unstructured data images, sound, video

Free-text search data application/service logs

. Documents / Objects JSON
. Graph data Social network graphs

: Time-series data Performance metrics

Queued data Messages, events

REST APIs Salesforce, Hubspot, etc

Web scraped Electricity prices, air quality




File Formats for different Data Sources

Type of Data

Unstructured data

' Free-text search

: Documents

: Graph data

Time-series data

j Queued data

ERESTAPB

: Web scraped

: REST API with API I(ey

F|Ie Formats

images, sound, video
application/service logs
;JSON

Soc:|al networks

: N/A

Example Systems

Snowflake, Databricks, BQ,
* Redshift, S3, ADLS, GCS

. $3,GCS, ADLS, HDFS

Elasticsearch, Solr

InfluxDB Prometheus

: Kafka Kinesis

Saas Platform

: Web5|tes publlshlng data




ML Pipeline Stages - Feature Pipelines
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Feature Pipelines

feature-pipeline.py

Input Data — —> Feature(s) ---—---- > Feature

v Store

VACE = Validate, Aggregate, Compress (dimensionality reduction), Extract (Binning, Crosses, etc)




Feature Pipelines

» A feature pipeline is a program that orchestrates the execution of feature engineering
steps on input data to create feature values.

Examples of feature engineering steps:

» Clean, validate, data

» Data de-duplication, pseudononymization, data wrangling

> Feature extraction, aggregations, dimensionality reduction, feature binning, feature
crosses




Tabular Data

Column (feature)
Table (feature group) /—<
credit_card_number amount location
A111 2222 3333 4444 $142.34 Sao Paulo
[ 1111 2222 3333 4444 $12.34 Rio De Janeiro J
Row / 1111 2222 3333 4444 $66.29 Stockholm
vector’
( ) 1111 2222 3333 4444 $112.33 Stockholm
ul
/" _______J /
Data (feature) value

Primary Key
(Entity ID)




@KTH Tabular Data as Features, Labels, Entity (or Primary) Keys,
Event Time

’ ~y ‘ S OIS N OTTTTTTETE R STTTTTTTTT R
,' Entity Key | ! event_time | ! Feature ] ! Feature ] ! Label 1
; L il i L .
credit_card_number  event_time amount location Fraud
1111 2222 3333 4444 2022-01-01 08:44 $142.34 Sao Paulo False
1111 2222 3333 4444 2022-01-01 19:44 $12.34 Rio De Janeiro False
T K
| 1111 2222 3333 4444 2022-01-01 20:44 $66.29 Stockholm True Row
e —t -
I
1111 2222 3333 4444 2022-01-01 20:55 :$112.33 Stockholm \ 1True
T T T Tt T
\ VY N N RN ’

Feature Vector




£33 1 Tabular Data in Pandas
e
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| Object | | Datetime | | Floated4 | | Object | |  Boal |

| 1 1

H - - - - .

credit card_number  event time amount location Fraud

1111 2222 3333 4444 2022-01-01 08:44 $142.34 Sao Paulo False

1111 2222 3333 4444 2022-01-01 19:44 $12.34 Rio De Janeiro False
{ RoW |
| 1111 2222 3333 4444 2022-01-01 20:44 $66.29 Stockholm Tiue ,

1111 2222 3333 4444 2022-01-01 20:55 $112.33 Stockholm True
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Exploratory Data Analysis in Pandas

Useful EDA Commands
df.head()

df.describe()
”df“[cc.).ll.l..lniﬁue()
“df.tcc.:.ll‘r;uﬁiql.le()
..df.;.ishul.l.()..su;n()

df|col].value_counts()

sns.histplot(...)

x
Description

Returns the first few rows of df.

Returns descriptive statistics for df. Use with numerical features.

Returns ali va.lue“s U|.1.iq.|;|e fnor.i.a cc.J.Iur.nn,.col, in df.

Return;s th.e ﬁ;.lm.lse.r“of.;.ln.i.tiut.-:. ve;iue.s fér a column, col, in df.

Return;s th.e r;.um.l.ne.r..of.;'lu.l.l.vé.lue“s iﬁ all.columns in df.

Returns th.e n;.lm.ﬁer..of.;fal;..les“ fo.r.wi.th different values. Use with bc.»th l.'1ur.1.'|er;’.ca.|.
and categorical variables.

Plot a histogram for a DataFrame or selected columns using Seaborn.




Aggregations in Pandas

| Aggregation
df.count()
df.first(), df.last()
df.mean(), df.median()
df.min(), df.max()
df.std(), df.var()
df.mad()

df.prod()

| df.sum()

Description

Count the number of rows

First and last rows

Mean and median

Minimum and maximum
Standard deviation and variance
Mean absolute deviation
Product of all rows

Sum of all rows




Rolling Windows in Pandas

What is the 7 day rolling max/mean of the credit card transaction amounts?

# For rolling windows in Pandas, first set a DateTime column as index to the df

Credit-Card Transactions

IIIIIIII L Illll |||llll| | IIIII
Time

df.rolling('1D') .amount.max() | | II

1-day

df.rolling('1W') .amount.mean() LIII I 1 s IIJ

1-week
LllI'llI I | I||I| IIIIIIII | IIIIIJ
1-month

df.rolling('30D").amount.min()




w41 Feature binning

Customer Age Groups

“0-21"

“22-39"

o 200,000 400,000




Feature Crosses

» A feature cross is a synthetic feature formed by multiplying (crossing) two or more
features. By multiplying features together, you encode nonlinearity in the feature
space.

» For example, imagine we are looking for credit card fraud activity within a geographic
region (e.g., a city district), how would we capture that as a feature?

» We could cross to a geographic area (binned latitude and binned longitude - a grid
identifying a city district) with the level of credit card activity within that geographic
area.

Binned Binned cc_spend_1hr

Cafitude | Longitude b-lat@b-long® cc_spend_1hr

XX & yy&8000|

XX vy 8000




Embeddings as Features

of the semantics of the input.

An embedding is a lower dimension representation of a sparse input that retains some

» An embedding store (vector database) stores semantically similar inputs close to-
gether in the embedding space. You can implement “similarity search” by finding
embeddings close in embedding space. You can even apply arithmetic on embeddings

to discover semantic relationships.
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Image Embeddings enable Similarity Search




ML Pipeline Stages - Feature Store
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Store Features

There are two general ways people manage features and labels for both training and
serving:

» (1) Compute features on-demand as part of the model training or batch inference
pipeline.

» (2) Use a feature store to store the features so that they can be reused across
different models for both training and inference. For online models that require
features with either historical or contextual information, feature stores are typically
used.




ML Pipeline Stages - Training Pipelines

Inference - - Predictions

Pipeline

Connect
to Data
Sources

Feature
Pipeline

reusable Feature transformed
features Store features

raw
data

Model

Training
Pipeline




Feature Types

credit_card_number event_time amount location Fraud

<primary_key> <event_time> <numerical fe I eg I fe <label> I
1111 2222 3333 4444  2022-01-01 08:44 $142.34 Sao Paulo False

1111 2222 3333 4444  2022-01-01 19:44 $12.34 Rio De Janeiro False

1111 2222 3333 4444  2022-01-01 20:44 $66.29 Stockholm True

1111 2222 3333 4444  2022-01-01 20:55 $112.33 Stockholm Tue

Reference: https://www.hopsworks.ai/post/feature-types-for-machine-learning




Feature Types Taxonomy

Feature Type

/ - \“\\

™~

- Categorical i Array . Numerical
“./,_,./(\\;_,\_ g ’//\\

Ordinal ‘ ‘ Nominal | ‘Embedding‘ List ‘ ‘Interval‘ ‘ Ratio ‘




Model Training Pipelines

training-pipeline.py
Untransformed
Feature - - L Model
. Input Features T H A T E > Model ---> (
Store Registry
T-HATE =

Transform features, Hyperparameter tuning, model Architecture, Train model (fit to data), Evaluate your model.




Model-Dependent Transformations

e Transformations for data compatibility
o Convert non-numeric features into numeric
o Resize inputs to a fixed size

e Transformations to improve model performance

o Many models perform badly if numerical
features do not follow a normal (Gaussian)
distribution

o  Tokenization or lower-casing of text
features

o Allowing linear models to introduce
non-linearities into the feature space

Probability

0.006

0.005

0.004

0.003

0.002

0.001

0.000
0

log transformation function
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Exponential distribution

Normal distribution
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Reference: https://developers.google.com/machine-learning/data-
prep/transform /introduction
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Transformations in Pandas

sns.histplot(df norm)
] <AxesSubplot:ylabel='Count'>
50
£ amount
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columns = ['amount']
> df_exp = pd.DataFrame(data = array, columns = columns)

1 # Min-Max Normalization in Pandas

2 df_norm = (df_exp-df_exp.min())/(df_exp.max()-df_exp.min())
i df_norm.head()




Different types of Transformations

Type of Transformation ML Algorithms that may need Transformations
Scaling to Minimum And Maximum values Linear regression
Scaling To Median And Quantiles Logistic regression

Gaussian Transformation K Nearest neighbours

Logarithmic Transformation
9 Neural networks

Reciprocal Transformation . . . .
Support vector machines with radial bias kernel

Square Root Transformation functions

Exponential Transformation Principal components analysis

Box Cox Transformation Linear discriminant analysis




Model Training with Train and Test Sets

Training Data (df_features, df_labels)

|
! '

Train set Test set
(X_train, y_train) (X_test, y_test)
train model on train set } ---------------- -—‘ evaluate model on test set
C T herate
X_train = training set features X_test is test set features

y_train = training set labels y_test is test set labels




Model Training with Train and Test Sets in Scikti-Learn

from sklearn.model_selection import train_test split
from sklearn.metrics import classification_report
import xgboost as xgb

train, X_te Get train and test data sets as

features (X) and labels (y)

Use XGBoost as madelling algorithm
Train supervised ML classifier with
features and labels from train set

Generate predictions with model on
test features (X_test)

Evaluate model perfermance by
comparing predictions (y_pred) and
labels (y_test) for the test set




Model Training is an Iterative Process

EDA and Model Hyperparameter

Architecture Tuning Model Evaluation

.




Model-Centric Iteration to Improve Model Performance

Possible steps to improve your model performance:

» Try out a different supervised ML learning algorithm (e.g., random forest, feedforward
deep neural network, Gradient-boosted decision tree)

» Try out new combinations of hyperparameters (e.g., number of training epochs, the
learning rate, number of layers in a deep neural network, adjust regularizations such
as Dropout or BatchNorm)

» Evaluate your model on a validation set (keeping a separate holdout test set for final
model performance evaluation)




Data-Centric Iteration to Improve Model Performance

Steps to improve your model

» Add or remove features to or from your model (feature selection)

v

Add more training data

v

Remove poor quality training samples

v

Improve the quality of existing training samples (e.g., using Cleanlab or Snorkel)

v

Rank the importance of the training samples (Active Learning)




Train, Validation, and Test Sets

» Random splits of the training data when the data is not time-series data

» Time-series splits of the training data when the data is time-series data
Training Data
70%
15%

Validation
Set




Model Training is an lterative Process

Training Data (df_features, df_labels)

|

Train set i Validation set Test set
(X_train, y_train) ¢ (X_val,y_val) . (X_test, y_test)

y_pred = model.predict(X_test)
metrics = evaluate(y_test, y_pred)

-

model = .

model. fit(X_train, y_train)fF---= y_pred = model.predict(X_val)

metrics = classification_report(y_val, y_pred)

L ) A

iterate & improve

evaluate




ML Pipeline Stages - Inference Pipelines
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Eeature , Untransformed

Input Features
Store P

Batch Inference Pipeline

Model
Registry

batch-inference-pipeline.py

a8k

—

TPO = Transform features, Predict, Output.

Predictions

Prediction
Results




Online Inference Pipeline

3 precomputed

untransformed features

rvj transformed
: featt
Application |--> Request — T eatures

: transformer. py

Model
Registry
model
 model-deployment
P predictions p
predictor.py

TPP = Transform the input request into features, Predict using input features and the
model, Post-process predictions, before output results.




Serverless ML with Python

>

Write Feature, Training, and Inference Pipelines in Python

v

Orchestrate the execution of Pipelines using Serverless Compute Platforms

v

Store features and models in a serverless feature/model store

v

Run a User Interface (Ul), written in Python, on serverless infrastructure




Serverless Compute Platforms

Serverless Python Functions Orchestration Platforms
e Modal s Modal
e GitHub Actions e GitHub Actions
e render. com e Astronomer (Airflow)
e pythonanywhere.com e Dagster
e replit.com e Prefect
e deta.sh e Azure Data Factory
e linode.com ¢ Amazon Managed Workflows for
e hetzner.com Apache Airflow (MWAA)
e digitalocean.com e Google Cloud Composer
e AWS lambda functions e Databricks Workflows
e Google Cloud Functions



Serverless Feature Stores and Model Registry/Serving

Feature Stores
» Hopsworks
Model Registry and Serving

» Hopsworks
» AWS Sagemaker

» Databricks

» Google Vertex




Serverless User Interfaces

» Hugging Faces Spaces

» Streamlit Cloud




Iris Flower Dataset

https://github.com/ID2223KTH /id2223kth.github.io/tree/master/src/serverless-ml-
intro

» 4 input features: sepal length, sepal width, petal length, petal width
» label (target): Iris Flower Type (one of Setosa, Versicolor, Virginica)

» Only 150 samples in the dataset




Serverless Iris with Modal, Hopsworks, and Hugging Face

Modal

Modal

Hugging Face

app.py

iris-training-pi
pipeline.py

Iris Flower Data ]
iris.csv i

iris-feature-pipi
peline.py

S ——

features

features featur:es model & model
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pu41 Iris Flowers: Feature Pipeline with Modal and Hopsworks

¥ och KoNsT

import os

import modal

stub = modal.Stub()

hopsworks_image = modal.Image.debian_slim().pip_install(["hopsworks"])

@stub.function(image=hopsworks_image, schedule=modal.Period(days=1), \
secret=modal.Secret.from_name (" jim-hopsworks-ai"))
def £():
import hopsworks
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
iris_df = pd.read_csv("https://repo.hops.works/master/hopsworks-tutorials/data/iris.csv")
iris_fg = fs.get_or_create_feature_group( name="iris_modal", version=1,
primary_key=["sepal_length","sepal_width","petal_length","petal_width"],
description="Iris flower dataset")
iris_fg.insert(iris_df)

if __name__ == "__main__":
with stub.run():

£0)




Training Pipeline with Modal and Hopsworks

@stub.function(image=hopsworks_image, schedule=modal.Period(days=1),\
secret=modal.Secret.from_name (" jim-hopsworks-ai"))
def £(0):
# lots of imports
project = hopsworks.login()
fs = project.get_feature_store()
try:
feature_view = fs.get_feature_view(name="iris_modal", version=1)
except:
iris_fg = fs.get_feature_group(name="iris_modal", version=1)
query = iris_fg.select_all()
feature_view = fs.create_feature_view(name="iris_modal",
version=1,
description="Read from Iris flower dataset",
labels=["variety"],
query=query)
X_train, X_test, y_train, y_test = feature_view.train_test_split(0.2)
model = KNeighborsClassifier(n_neighbors=2)
model.fit(X_train, y_train.values.ravel())




Training Pipeline (ctd)

y_pred = model.predict(X_test)
metrics = classification_report(y_test, y_pred, output_dict=True)
results = confusion_matrix(y_test, y_pred)
df_cm = pd.DataFrame(results, [’True Setosa’, ’True Versicolor’, ’True Virginica’],
[’Pred Setosa’, ’Pred Versicolor’, ’Pred Virginica’])
cm = sns.heatmap(df_cm, annot=True)
fig = cm.get_figure()
joblib.dump(model, "iris_model/iris_model.pkl")
fig.savefig("iris_model/confusion_matrix.png")
input_schema = Schema(X_train)
output_schema = Schema(y_train)
model_schema = ModelSchema(input_schema, output_schema)
mr = project.get_model_registry()
iris_model = mr.python.create_model(
name="iris_modal",
metrics={"accuracy" : metrics[’accuracy’]},
model_schema=model_schema,
description="Iris Flower Predictor")
iris_model.save("iris_model")
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Interactive Inference Pipeline with Hugging Face/Hopsworks

model = mr.get_model("iris_modal", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/iris_model.pkl")

def iris(sepal_length, sepal_width, petal_length, petal_width):
input_list = []
input_list.append(sepal_length)
input_list.append(sepal_width)
input_list.append(petal_length)
input_list.append(petal_width)
res = model.predict(np.asarray(input_list).reshape(l, -1))
flower_url = "https://raw.githubusercontent.com/.../assets/" + res[0] + ".png
return Image.open(requests.get(flower_url, stream=True).raw)

demo = gr.Interface(
fn=iris, title="Iris Flower Predictive Analytics", allow_flagging="never",
description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
inputs=[ gr.inputs.Number(default=1.0, label="sepal length (cm)"),
gr.inputs.Number (default=1.0, label="sepal width (cm)"),
gr.inputs.Number (default=1.0, label="petal length (cm)"),
gr.inputs.Number (default=1.0, label="petal width (cm)"),],
outputs=gr.Image (type="pil"))
demo.launch()




Questions?
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