T oo
38 OCH KONST 235
B o8
R o

Introduction

Jim Dowling
jdowling@kth.se
2022-11-10
Slides by Amir H. Payberah

Biological Neurons (1/2)

>

Brain architecture has inspired artificial neural networks.

v

A biological neuron is composed of

e Cell body, many dendrites (branching extensions), one axon (long extension), synapses

v

Biological neurons receive signals from other neurons via these synapses.

v

When a neuron receives a sufficient number of signals within a few milliseconds, it
fires its own signals.

Cell body

/L\ Synaptic terminals

Golgi apparatus
Endoplasmic
reticulum

Mitochondrion Dendrite

A
/ % Dendritic branches

Biological Neurons (2/2)

» Biological neurons are organized in a vast network of billions of neurons.

» Each neuron typically is connected to thousands of other neurons.

A Simple Artificial Neural Network

» One or more binary inputs and one binary output

» Activates its output when more than a certain number of its inputs are active.

C=A C=AAB C=AVB

[A. Geron, 0’Reilly Media, 2017]

The Linear Threshold Unit (LTU)

>

Inputs of a LTU are numbers (not binary).

v

Each input connection is associated with a weight.

v

Computes a weighted sum of its inputs and applies a step function to that sum.

> Z = WXy + WoXo + -+ WpXp = WIX

v

§ = step(z) = step(wTx)

The Perceptron

» The perceptron is a single layer of LTUs.
» The input neurons output whatever input they are fed.
» A bias neuron, which just outputs 1 all the time.
» If we use logistic function (sigmoid) instead of a step function, it computes a con-
tinuous output. Outputs
*, Output
LTU - ' layer
Bias Neuron v Input
(always outputs 1) ! layer

Input Neuron’

(passthrough) 1 2

How is a Perceptron Trained? (1/2)

> The Perceptron training algorithm is inspired by Hebb's rule.

» When a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger.

Outputs
, Output e |
LTU - ! layer | Orgamzatmn |
- : of 4
= | BEHAVIOR |
Bias Neuron \ Input ‘ A Nelrpycllgic ey |
(always outputs 1) ! layer ; byD.0.HEBE |

Input Neuron’
(passthrough) %4 X3
Inputs

>

How is a Perceptron Trained? (2/2)

Feed one training instance x to each neuron j at a time and make its prediction §.

Update the connection weights.

Outputs

J() = cross entropy(yJaYJ)
W,

next 0J(w
() _ i =M M Bias Neuron
Wi (always outputs 1)

Input Neuron"
. . . (passthrough)
wi j: the weight between neurons i and j. Inputs
x;: the ith input value.
§;: the jth predicted output value.

y;: the jth true output value.

n: the learning rate.

Perceptron in TensorFlow

L3

TensorFlow

e
FKTH Y

R

Bias Neuron
(always outputs 1)

Input Neuron’
(passthrough)

Inputs

n_neurons = 3
n_features = 2

model = keras.models.Sequential()
model.add(keras.layers.Dense(n_neurons, input_shape=(n_features,), activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=30)

Multi-Layer Perceptron (MLP)

Perceptron Weakness (1/2)

» Incapable of solving some trivial problems, e.g., XOR classification problem. Why?

Outputs
A B AXORB ~ \‘ Output
i

0 0] / layer
0 1 1 -

Bias Neuron *\ Input
1 0 1 (always outputs 1)) - layer
1 1 0 Input Neuron’

(passthrough) %4 X3
Inputs

= = O O
= O = O
<
Il
O~ O

Perceptron Weakness (2/2)

Outputs
\\‘ Output
) layer
Bias Neuron *, Input
(always outputs 1) _ ! layer
Input Neuron
(passthrough) %1 X,
Inputs
0 O 0
0 1 1 ~
X=11 o Y=11 § = step(z),z = wixy + w2x2 + b
1 1 0

» If we minimize J(w), we obtain wy =0, wo =0, and b = %

» But, the model outputs 0.5 everywhere.

Multi-Layer Perceptron (MLP)

» The limitations of Perceptrons can be eliminated by stacking multiple Perceptrons.

» The resulting network is called a Multi-Layer Perceptron (MLP) or deep feedforward
neural network.

Feedforward Neural Network Architecture

» A feedforward neural network is composed of:
e One input layer
¢ One or more hidden layers
e One final output layer

» Every layer except the output layer includes a bias neuron and is fully connected to
the next layer.

How Does it Work?

» The model is associated with a directed acyclic graph
describing how the functions are composed together.

» E.g., assume a network with just a single neuron in each layer.

» Also assume we have three functions £(1) | £(2) and
£(3) connected in a chain: § = f(x) = £®) (@ (£(M(x)))

» £(1) is called the first layer of the network.

» £(2) is called the second layer, and so on.

» The length of the chain gives the depth of the model.

XOR with Feedforward Neural Network (1/3)

XOR with Feedforward Neural Network (2/3)

—1.5 —0.5 0O O
—0.5 0.5 0o 1
out, = XWJ +b, = [02 O h = step(outs) = | o 1
0.5 1.5 1 1

XOR with Feedforward Neural Network (3/3)

—0.5 0

0.5 1

out =wjh+b, = 05 step(out) = .
0

—0.5

How to Learn Model Parameters W?

Feedforward Neural Network - Cost Function

» We use the cross-entropy (minimizing the negative log-likelihood) between the train-
ing data y and the model's predictions § as the cost function.

cost(y,§) Zyjlog yJ

Gradient-Based Learning (1/2)

» The most significant difference between the linear models we have seen so far and
feedforward neural network?

» The non-linearity of a neural network causes its cost functions to become non-convex.
» Linear models, with convex cost function, guarantee to find global minimum.
e Convex optimization converges starting from any initial parameters.

J(w)
A

Plateau

H
- lobal
Local minimum Globa

minimum

Gradient-Based Learning (2/2)

Stochastic gradient descent applied to non-convex cost functions has no such con-
vergence guarantee.

It is sensitive to the values of the initial parameters.

For feedforward neural networks, it is important to initialize all weights to small
random values.

The biases may be initialized to zero or to small positive values.

Training Feedforward Neural Networks

» How to train a feedforward neural network?

» For each training instance x(}) the algorithm does the following steps:
1. Forward pass: make a prediction (compute () = £(x(1))).

2. Measure the error (compute cost (5%, y(¥))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).

> It's called the backpropagation training algorithm

Output Unit (1/3)

» Linear units in neurons of the output layer.
» Output function: §; = wjh +b;.

» Cost function: minimizing the mean squared error.

Output Unit (2/3)

» Sigmoid units in neurons of the output layer (binomial classification).
» Output function: §5 = o(w]h + by).

» Cost function: minimizing the cross-entropy.

Output Unit (3/3)

» Softmax units in neurons of the output layer (multinomial classification).
» Output function: §; = softmax(wjh +b;).

» Cost function: minimizing the cross-entropy.

"\ Softmax
, output layer
.

", Hidden layer
2/ ! (e.g., ReLU)

Hidden Units

> In order for the backpropagation algorithm to work properly, we need to replace the
step function with other activation functions. Why?

» Alternative activation functions:

1. Logistic function (sigmoid): o(z) = H%

2. Hyperbolic tangent function: tanh(z) = 20(2z) — 1
3. Rectified linear units (ReLUs): ReLU(z) = max(0, z)

Activation functions Derivatives

o 1.0

05 o4 08
e — Step / \
- . " 0.6
00 PR Logit
— Tanh 04
-+ RelU
—05 0.2 S SR S N
/ 0.0 S SRS

-4 -2 4 : -4 -2 4

Feedforward Network in TensorFlow

L3

TensorFlow

OcH KoN:

n_output =
n_hidden =
n_features

model

model.
model.

model.
model.

"\ Softmax
, output layer
.

", Hidden layer
) (e.g.,, ReLU)

& w

2

= keras.models.Sequential ()
add (keras.layers.Dense(n_hidden, input_shape=(n_features,), activation="relu"))
add (keras.layers.Dense(n_output, activation="softmax"))

compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
fit(X_train, y_train, epochs=30)

Dive into Backpropagation Algorithm

Chain Rule of Calculus (1/2)

>

Assume x € R, and two functions £ and g, and also assume y = g(x) and z =
£(y) = £(g(x)).

The chain rule of calculus is used to compute the derivatives of functions, e.g., z,
formed by composing other functions, e.g., g.

v

v

Then the chain rule states that g—z = dzdy
X dy dx

v

Example:
z=1(y) =5y* and y = g(x) =x* + 7
dz dzdy
dx dy dx
d d
2 — 20y and ¥ = 3x?
dy dx

dz
o 20y° x 3x? = 20(x® +7) x 3x2
X

Chain Rule of Calculus (2/2)

» Two paths chain rule.

z = £(y1,y2) where y; = g(x) and y2 = h(x)
0z _ 0z Oy1 , 0z Oy2
Ox Oy, 0x Oy, Ox

Backpropagation

» Backpropagation training algorithm for MLPs

» The algorithm repeats the following steps:

1. Forward pass
2. Backward pass

Backpropagation - Forward Pass

» Calculates outputs given input patterns.

» For each training instance
e Feeds it to the network and computes the output of every neuron in each consecutive
layer.
e Measures the network’s output error (i.e., the difference between the true and the
predicted output of the network)
e Computes how much each neuron in the last hidden layer contributed to each output
neuron'’s error.

Backpropagation - Backward Pass

» Updates weights by calculating gradients.

» Measures how much of these error contributions came from each neuron in the
previous hidden layer

e Proceeds until the algorithm reaches the input layer.

» The last step is the gradient descent step on all the connection weights in the network,
using the error gradients measured earlier.

Backpropagation Example

>

Two inputs, two hidden, and two output neurons.

v

Bias in hidden and output neurons.

v

Logistic activation in all the neurons.

v

Squared error function as the cost function.

b1.35 b2 60
1

b1.35 b2 60
1

netyy = wixXy + woxs + by = 0.15 X 0.05 + 0.2 X 0.1 4+ 0.35 = 0.3775
1 o 1

1 + enetny - 1 + 60‘3775
outyy = 0.59688

outns = = 0.59327

b1.35 b2 60
1

netoy1 = wsoutpi + wgoutys + by = 0.4 X 0.59327 + 0.45 X 0.59688 4+ 0.6 = 1.1059

1 1
outor = 1 + efetor - 1+ el-1059 =0.75136

outez = 0.77292

b1.35 b2 60
1

1 2 1 2
Eo1 = E(targetm — outputet)” = 5(0.01 — 0.75136)“ = 0.27481
Eo2 = 0.02356

1 2
Erotal = _ (target — output)® = Eoi + Ecp = 0.27481 + 0.02356 = 0.29837

Backpropagation - Backward Pass - Output Layer (1/6)

» Consider ws
» We want to know how much a change in ws affects the total error (6%7;:11)
» Applying the chain rule

output
hi

w5

“rgm wé ﬁa E 1 = %(target o - out,,)*
Eiota =Ec1+Eq
b2

OEtotal OEtota1 Ooutot » Oneto1

Ows Ooutor Oneto1 Ows

Backpropagation - Backward Pass - Output Layer (2/6)

» First, how much does the total error change with respect to the output? (g‘v‘#"gi)

output
ht

w5

uu'gul w6 E . = Y(target - out,)?

Epta =Ec1 +Eoe

OEtotal o OEtotal « Joutoet « Oneto1
Ows Ooutoy Oneto1 Ows

1 2 1 2
Etotal = E(targetﬂ — oute1)” + E(targetog — oute2)

aEtotal
8011‘001

1
= 725(target01 — oute1) = —(0.01 — 0.75136) = 0.74136

Backpropagation - Backward Pass - Output Layer (3/6)

» Next, how much does the out,; change with respect to its total input neto;?

douts
(Dnersy)

output
hi

w5

nu:;m wb E . = %(target - out,,)*

Ewota =Eo1 *Eoz

OEtotal o OEtotal % OJoutoy « Oneto1
Ows Ooutoy Oneto1 Ows

1

outey = ————
o1 1 + efnetol

Ooute

= outoer (1 — outoer) = 0.75136(1 — 0.75136) = 0.18681

Onetot

Backpropagation - Backward Pass - Output Layer (4/6)

01}et°1)

» Finally, how much does the total net,; change with respect to ws? (i

output
hi

w5

g —e ﬁa Eon = ltargeto; - out)*
Eta =Eq1 +Eq2
b2

1

aEtotal 8Etcta1 6011t01 « 8net01

Ows Ooutos Onetor Ows

netyy = ws X outp1 + wg X outns + b

Onetoy

— outn1 = 0.59327

8W5

Backpropagation - Backward Pass - Output Layer (5/6)

» Putting it all together:

output
ht

w5

uu'gul w6 ﬁa E . = Y(target - out,)?
Eta “Ep1 +Eop
b2

1

OEtotal OEtotal Joutoet « Oneto1

Ows Ooutos Oneto1 Ows
aEtotal

= 0.74136 x 0.18681 x 0.569327 = 0.08216

Ous

Backpropagation - Backward Pass - Output Layer (6/6)

» To decrease the error, we subtract this value from the current weight.

> We assume that the learning rate is 7 = 0.5.

W) e OBttt 4 o5y 0.08216 — 0.35891
Ous
w{*%) = 0.40866
W) — 05113
w{*%) = 0.56137

Backpropagation - Backward Pass - Hidden Layer (1/8)

» Continue the backwards pass by calculating new values for wy, wy, w3, and wa.

» For wy we have:

OEtotal OEtotal Ooutpi » Onetpy

oWy a OJouty1 Onetp oWy

b1.35 b2 60
1

Backpropagation - Backward Pass - Hidden Layer (2/8)

» Here, the output of each hidden layer neuron contributes to the output of multiple
output neurons.

aEtotal
8outh1

» E.g., outy affects both out,; and out,s, so needs to take into consideration

its effect on the both output neurons.

OEtota1 _ OEtotal _ Ooutni » Onetp1
8w1 aoutm (‘?nethl HW1
aEtotal o anl anQ

Ooutni Ooutni Ooutpi

Backpropagation - Backward Pass - Hidden Layer (3/8)

» Starting with -2Est

(7outh1

Epta =Eqi+Eoz

OEtotal _ OEo1 OEo2
Ooutpy n Ooutpy doutpy
OEot OEo1 Ooutoy Onetot
Ooutn; Ooutor Onetoy Oouty
OBar _ 0.74136, outor _ , 1ge81

Odoutoy Onetot

netyy = ws X outp1 + wg X outps + b

Backpropagation - Backward Pass - Hidden Layer (4/8)

» Plugging them together.

Ewota =Ec1 +Eoz

OEo1 OEo1 Ooute Onetoy
= x = 0.74136 x 0.18681 X 0.40 = 0.0554

Ooutpi Oouto Onetoy Ooutpi

OE
2 _ _0.01905
OJoutyy
OE OE OE
total _ TRol Y92 .0554 + —0.01905 = 0.03635

Ooutn; Ooutn: Ooutyy

Backpropagation - Backward Pass - Hidden Layer (5/8)

Joutyy
Onety1

» Now we need to figure out

Eota =Eci+Eoz

aEtotal o 8Etcta1 % aOUthl « Bnethl
6W1 Boutm 6neth1 8W1
1

1 + efnetm

outp =

doutyy

= outps (1 — outpny) = 0.59327(1 — 0.59327) = 0.2413

Onety1

Epta =Eqi+Eoz

OEtota1 _ OEtotal _ Ooutni » Onetn1
8W1 Boutm 6neth1 8W1
netp1 = w1Xy + waXo + by
Onety1
Oy

=X1 = 0.05

Epta =E1+Eop

OEtota1 _ OEtotal _ Ooutni « Onetn1
Oy Oouty Onetyn1 Oy
aEtotal

Owy

= 0.03635 x 0.2413 X 0.05 = 0.00043

Backpropagation - Backward Pass - Hidden Layer (8/8)

» We can now update wy.

» Repeating this for wy, w3, and wy.

Eiota =Ec1+Eoz

o) gy Pl 16 05 x 0.00043 — 0.14978
Owq
w{*%) = 0.19956
(ext) _ 024975
W) = 0.2995

Summary

Summary

» LTU

» Perceptron

» Perceptron weakness

» MLP and feedforward neural network

» Gradient-based learning

» Backpropagation: forward pass and backward pass

» Qutput unit: linear, sigmoid, softmax

» Hidden units: sigmoid, tanh, relu

Reference

» lan Goodfellow et al., Deep Learning (Ch. 6)

» Aurélien Géron, Hands-On Machine Learning (Ch. 10)

Questions?

