Feature Stores for Machine Learning

Jim Dowling
jdowling@kth.se

Operational DBs

Enterprise Data

Enterprise Data

" Data Warehouse

Bronze —

Snowflake / Databricks / BQ

_T—_Data LakTe_i_i

Images, Docs, Parquet, ete
§3/ADLS / GCS

and Feature Store

Data for ML

Feature Store

Hopsworks /
Feast/
others

Example e-commerce marketing data model

® Facts ® Dimensions

o Impressions o Campaign

o Clicks o Channel

o Email sends o Product Family

o Email opens o Product

o Website Visits o User Profile

o Website Visitors m OptOut
m Cost m GDPR
m Add-to-Carts m Location
m Conversions m Persona
m Revenue
m Profit

>

Data modelling: Fact and Dimension Tables

A popular Data Model for Data Warehouses is to have Fact and Dimension Tables

Examples of Facts: purchases, user clicks, user searches, songs played, embeddings
(recent user searches/sessions)

Examples of Dimensions: click dimension, location dimension, time dimension, cus-
tomer dimension, song dimension

Business events are modelled as Facts (aka measurements)

Idenify and save dimensions for your facts that are useful for analysis or prediction
services

Dimensions can be thought of as the columns you would expect to “group by"

Example credit-card fraud facts and dimensions in a Star

Schema

s Facttabe

o transactions : 3
e Dimension tables - beeemeezmeeeeaes :

o profiles cc_num et
o credit_cards ==
e This data modeling approach is known

as building a Star Schema
cc_num

t

o Easy to add new Dimension tables _ __________

o A Snowflake schema just hangs more : 3
dimensions off the Dimension tables L 1

Example credit-card fraud tables

Data for a prediction service to identify if a credit card transaction is suspected of fraud or not.

transactions table user_profile table credit_card_details table

Name ’ \ expiry_date —
Sex \3—747
Date of Birth - CENUIT] == - o o=
- —
city (o) —
card_owner —
tid datetime cc_num category amount long/lat
1 2022-09-61 11:24 1111 .. food 45.33 53N,6W
2 2022-09-01 13:24 1111 .. clothing 183.12 52N, 6W

Updated
once/hour

+1w

Updated
once/week

Our credit-card fraud tables are updated at different cadences

atetime

; category amount ; long/lat ; fraud
022-09-01 11:24 | food i 53N,6W i No

922-89-62 89:17 ; clothing i 5IN,6W i No

SIN, W

922-09-04 19:33 entertain

credit_cards

profiles
...
i ce_num expires +1d city
{11111 24/05 Dublin
[A Updated :

once/day

Our credit-card fraud tables are in 3rd normal form

transactions

datetime amount long/lat

2022-09-01 11:24

Join Key

profiles

i expires

24/05

Note: the Join Key is a part of the Primary Key of all our tables

The primary keys for our credit-card fraud tables

Composite

: long/lat

1 datetime : category : amount

2022-89-01 11:24 : food i 45.33

: clothing

entertain | 63.33

Primary Key profiles

26/09/74

Note: the Join Key is a part of the Primary Key of all our tables

Credit card number - the Join key for our credit-card fraud

tables

Composite
Primary Key

T provider

datetime ! category : amount

45.33

| food

entertain | 63.33

! clothing | 183.12

: long/lat

53N, BW

/——-| cc_num | Join Key

! fraud

credit_cards

! expires

Primary Key

transactions

profiles

Feature Pipeline for Credit Card Fraud Features

. 2 transactions
transactions

. Feature Pipeline ,
fil B . DataFi -2
proriles Model-Independent Feature Engineering atarrames =,

credit_cards)
> transactions_4h_aggs

Credit Card Transactions Feature Group

Key Primary Key Event Time

i cc_num
FRTTTI
ERTTTIN

FRLLTI

datetime
2022-09-01 11:24

2022-09-02 09:17

2022-09-04 19:33

Features

M -

category

food

clothing

entertain

amount

45.33

183.12

63.33

: long/lat
I 53N.6W
52NBW

L SINTW

Label

i fraud
I No

 No

Features

¥

days_until_card_expires

101

1010

1008

[}

age_at_transaction

a7
47

a7

sex

m

M

Tives_city
Dublin
Dublin

Dublin

Credit Card Transactions Feature Group - One Big Table

Our main Feature group is transactions. The columns for this one big table (OBT) have different
data sources, that are updated at different cadences. It is inefficient to update all columns in every
update, but less JOINs will be required for training data.

Updated Frequently Updated Less Frequently
Source: cc_transactions Source: credit_card Source: profile
tid | ccnum | datetime | category | amount lomg/lat | fraud | days_until_card_expires | age_at_transaction . sex lives_city
I T 2022-09-01 11:24 | food {4533 I SINEW i No 1011 47 M Dublin
2 1. 2022-09-0209:17 | clothing 18312 52NEW No 1010 47 im Dublin
3 M1 2022-09-04 19:33 | entertain 6333 SINTW yes 1008 a7 [Dublin
J

Credit Card Transactions - 4 hr Aggregations Feature Group

transactions_4h_aggs contains aggregated features computed over
a 4h time window for each credit card

Primary Key Event Time Features

cc_num datetime : loc_delta_mavg : trans_volume_mstd trans_volume_mavg trans_freq
S i 2022-08-01 11:24 : 53N 6w = 8

111 .. i 2022-09-02 09:17 ©OB2N6W 36 © 3 ‘5

IR i 2022-09-04 19:33 ©OBINTW D44 33 45 :

Decouple feature pipelines from Models with a Feature Store

Model-independent Model-specific

feature logic transformations
(Aggregations, data . gnd model .
: cleaning, binning, embed training/evaluation

data, feature crossing,

etc) :
Data Lake i : - Model 1
Feature Pipeline : . /

N

Feature Pipeline

Training Pipeline

Training Pipeline —— [Model 2
Feature Pipeline ‘ \ . .
/ Training Pipeline

Feature Pipeline T~ Model 3
Streaming Data ' : ‘ -

Data Warehouse t
Feature

Store

Database

The number of models is independent of the number of feature pipelines - features can be reused in different models.

One complex feature pipeline with both backfill and production

Prod Data
(daily, hourly, etc)

2. production
data

1 backfllwith
Historical Data one-complex-feature-pipeline.py Features
historical data

Feature Groups
feature_group_1

feature_group_N

Separate feature pipeline for backfill and production

Prod Data

Prod

Feature Pipeline

Feature Groups
feature_group_1

features

Historical Data

feature_group_N

Backfill
Feature Pipeline

DRY code warning!
Do not re-implement (or copy!) the feature logic from you backfill feature pipeline to your production
(prod) data feature pipeline, as there is a risk of them becoming inconsistent over time.

Separate feature pipeline for backfill and production with
shared code

1. Move all feature engineering code to shared Python module(s)
2. Write features to the same feature groups from backfill and production
feature pipelines

{ 2_cc_feature_pipeline.ipynb

from sml import cc_features, synthetic_data }\i
\Dataﬁr ame

sml/cc_features.py
sml/synthetic_data.py

Production [

DataFrame

1_backfill_cc_feature_groups.ipynb
CSV files import sml.cc_features

Feature pipelines write DataFrames to Feature Groups

A Feature Group is a table that stores feature data and metadata in a Feature Store
Feature pipelines use DataFrames to insert/update/delete rows in Feature Groups
Feature Groups are versioned - breaking schema changes requires a new version

STORE

HOPSWORKS FEATURE
E) W

Feature

Write DataFrames

Groups

Create a Feature Group in Hopsworks with Python

fg feature_store.create_feature_group(name="transactions",

version-1,
description="Credit Card Holder Details",
online_enabled=True,
primary_key=['cc_num'],
partition_key=['city'].
event_time='datetime',
statistics_config={

"enabled": True,

"histograms": True,

"correlations": True,

"exact_uniqueness": False,

"columns": [“amount”, “category”]

)

fg.insert(df) # The DataFrame provides the Schema

Feature Group - primary keys

e A Feature Group should define one or more columns as its primary key,
such that every row in the table can be uniquely identified
A primary key prevents duplicate data as each row is unique
A primary key enables a row of features to be retrieved with the Online API

fg = feature_store.create_feature_group(name="transactions",

primary_key=["cc_num'],

Feature Group - Event Time

Rows can be updated, but event_time columns enables a history of their values over time.

cc_num datetime sex lives_city
L s S We can now make time-travel
1111 2222 1974-09-26 06:00 M i Dublin B . .
P S e queries about our credit card holder:
e Where did the cc holder live on 2000-01-01?
e What was the cc holder’s gender on 2022-01-1?

11111 2222 © 2005-10-01 00:00

© 1111 2222 | 2023-01-10 10:00

fg = feature_store.create_feature_group(name="transactions",

event_time='datetime'

Note: with time-travel, the primary key no longer uniquely identifies each row.
Now, you need the combination of (primary_key, event_time). For this reason,
we often call the primary key the entity ID.

Feature Group - Event Time is not Ingestion Time

Event time is not the same as ingestion time

| datetime ‘ ingestion_time | sex i lives_city

© 1111 2222 ;. 1974-09-26 06:00 : 1994-10-10 11:15 M Dublin

1111 2222 2005-10-01 10:00 { 2005-10-12 00:00 M ¢ stockholm

© 1111 2222 2023-01-10 10:00 2023-10-10 11:00 Stockholm

‘ . ¢1d — —
u holder
‘ ' batch Job inserts ce-

ingestion_time

Move from Dublin to Slockholm4 l.!pdatg my details . T TEER T
2005-10-01 10:80 | event_time (including event_time for moving i i)
from Dublin to Stockholm) ENEeErionEC

Feature Group - Online Enabled

fg = feature_store.create_feature_group(name="transactions",

online_enabled=True,

)

Shared Schema

Feature Group

—
idempotent Online
& ordered FeatureGroup
ateast-once 4
DataFrame
single-writer SR
once

| EEEEE—

Offline
FeatureGroup
-

g Tip

If your features may be accessed
using Online Applications, set
online_enabled=True

Online API

low-latency, row-oriented, no event_time,
latest values

Offline API
high throughput, batch-oriented, event_time,
historical values (time-travel) supported

Feature Groups are stored internally with Hive (offline),
MySQL (onllne) schemas

;Pandas DType

§H1 ve Type :MySQL Type

LDOUBLE :DOUBLE :

é.ﬂo,a__t.;
\DECIMAL(PREC, SCALE) DECIMAL(PREC, SCALE) |
,;TIMESTAMP L VVEVTIMESTAMP H

gobject (str), {STRING VARCHAR (100)
‘object(np.unicode) : : :
‘object (list), object (ARRAV<TYPE> 7 VARBINARY(10@)/BLOB
E(np ndarray)

‘object (dict) STRUCT<NAME: TYPE, ...> VARBINARY(100)/BLOB

i b]ectl(b1nar¥? o 'BINARYl“ ‘VARBINARY(l@G)/BLOB

Source: https://docs.hopsworks.ai/3.0/user_guides/fs/feature_group/data_types/

Partitions: Efficient Queries over Offline Feature Groups storing
large amounts of data

partition_key

fg = feature_store.create_feature_group(
name="transactions",

i cc_num : event_time
| parcition key=Cdar', i e e v ot

YIRS [stockhnotn |
Cii. 20230110 1000 | stocknotn |

2005-16-01 10:00 Stockholm 1111 Dublin
1111 L : 2023-01-10 10:00 Stockholm
Worker1 e parallel processing s Worker2

&4 Tip
Ensure the size of the partitions is balanced or else some workers will do all the work, reducing performance.

Compute descriptive statistics over numerical features,
distributions for categorical features

fg = feature_store.create_feature_group(name="transactions",

statistics_config={
"enabled": True,
"histograms": True,
"correlations": True,
"exact_uniqueness": False,
"columns": [“amount”, “category”]

[Bk
amount Fractional
oca Ovarviow min 0,01 aistinct count 1961
max 2990837 completeness 1
@ | Ostapreview mean 421121664
sum 4847318770001
Feature statistics
e s dey B— statistics computed
a over the ‘amount’ and
. ‘category’ features
category stxing
ﬂ Activity
aistinct count 10
= completeness. 1

Storing Labels in Feature Groups

A Feature Group that contains labels looks like any other feature group
o The label column is a column like any other column
& A“Label Feature Group” typically contains an event_time column, indicating when
the label value was observed, and it is typically not onlined_enabled.
Labels are defined in Feature Views.

fg = feature_store.create_feature_group(name="transactions",
version-1,
description="Credit Card Fraud Labels",
primary_key=['tid', ‘cc_num’],
event_time='datetime',

: datetime

1 2023-01-10 10:00 i True

Feature Selection

month inflation_rate | income_growth day electricity_price

user_id event_time income age day weather

e |dentify (1) features with predictive power for your prediction problem and (2) the JOIN keys
e Avoid Feature Debt - features once added to a model are rarely removed and tend to accumulate
e Feature selection is as either part of a training pipeline or as offline experimentation

Which features from which Feature Groups have predictive power for my prediction problem?

Feature Selection with Scikit-Learn

Remove features with low variance
Recursive feature elimination

Feature selection using SelectFromModel
Sequential Feature Selection

https://scikit-learn.org/stable/modules/feature_selection.html#
Select the best features based on univariate statistical tests

from sklearn.datasets {import load_iris

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

X, y = load_iris(return_X_y=True)

X.shape

(150, 4)

X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
X_new.shape

(150, 2)

#Which 2 features were selected for the Iris Dataset?

Feature Selection with Uber's XRay Framework

Feature Ranking

Feature Pruning
Workflow Workflow
Original Feature X-Ray Feature - .
Detaser Enrichment Selection Mode! Training Result Inspecton
Manual
Validation
[—— Trim Down
} Feawres Based
Palete Feature on Importance

Ranking
-

Original baseline dataset with 75 features. X-Ray
evaluated 2k features from the feature store, and the E
best dataset had 15 features from the original dataset
and 27 features from the feature store.

» Original Features (75 originals)
37 Features (15 originals + 22 new)
o ® 75 Features (28 originals + 47 new)
.
[Images from Uber:

175 Features (76 ariginals + 99 new)

https://www.uber.com/en-EC/blog/optimal-feature-discovery-ml/]) : :

Nurm of features

Feature Selection with a Feature View

cc_trans_fraud cc_trans_fraud_4h

Feature Group Feature Group

select features
(cc_num, category, .., amount)

|
label = ["is_fraud”]
|

filter (country == “USA")
Optional Steps ‘

transform = { “amount” : min_max_scaler }

cc_trans_fraud_all
FeatureView

I
v ¥
Training Data Inference Data

Join Features together to create a Feature View

cc_trans_fraud cc_trans_fraud_4h

i cc_num :datetime ‘amount :category .. @ cc_num datetime ‘loc_delta_mavg itrans_freq:
: 2004-01-01 ‘1111 2 o ' ' 1

004-01-01 00:00

2004-01-02 06:00

(11112222 ... :2004-01-03 12:00 : ... 20[)4’—701—01; 12:6

Join on cc_num

Feature View (cc_trans_fraud_all)

‘amount category ‘loc_delta_mavg trans_freq I,
Datatype ' float string float float
Transformation | <min_max_scalar> :<none> ' <none> '<min_max_scalar>
Function :

Point-in-Time Correct Joins needed to create Training Data

cc_trans_fraud cc_trans_fraud_4h

;cc_num datetime amount :category:.. ‘cc_num | datetime loc_delta_mavg trans_freq
UGN 2P oo || FNEODW] TONE || [112222 | 200401010000 ... B
M12222... |2004-01-02 1:00 | ... 11112222 | 2004.01-02 0600 ..

11112222 ... | 2004-01-0312:00 | ... 11112222 .. 2004-01-03 1200 ...

J L J

Point-in-time (PiT) Correct JOIN

(no data leakage)

cc_trans_fraud_all l

datetime amount ‘category loc_delta_mavg :trans_freq

2004-01-01 10:00
2004-01-02 11:00

2004-01-03 12:00

Training Data

Create a Feature View

fg_trans fs.get_feature_group(“cc_trans_fraud”, version-1)
fg_trans_4h fs.get_feature_group(“cc_trans_fraud_4h”, version-1)
labels fs.get_feature_group(“labels”, version=1)
“query - labels.select_all().join(fg_trans.select_all() \ __ DSL tojoin features,
: .join(fg_trans_4h.select_all())) returns a Query object

fv fs.create_feature_view(name="cc_trans_fraud_all",
version-1,

_description="Credit Card Transactions",
label=['is_fraud],
query=query

Both label and query
~<— object needed to create
a Feature View

)

https://docs.hopsworks.ai/3.0/user_quides/fs/feature_view/overview/

Create a Feature View from your Selected Features

A Feature View contains a model’s input features (for training and inference)
A Feature View is metadata - the actual feature data is stored in Feature Groups
The Feature View provides both an Offline and an Online API
o The Offline APl is a batch API for reading historical feature data
o The Online APl is a row-oriented API for reading feature vectors using a primary key
(")

&% HOPSWORKS FEATURE
:{’ STORE

Read Feature Vectors
Online APl

Read Files/DataFrames
Offline API

Feature View Offline API: Create Training Data or Batch
Inference Data

e Create Training Data for Models
e Create Batch Inference (Scoring) Data for new data that arrives in Feature Groups via
feature pipelines

FeatureView
Time
| | ‘ I
TrainingData v1 Batch Scoring Data Batch Scoring Data
\ 2022/03/30 2022/03/31
train model score new batch data

Model

Feature View Offline API: Create Training Data

e Create Training Data for Models as
(1) Pandas DataFames or
(2) Files
You can also create train/validation/test splits (random or temporal)
For (2) files, you can specify the output file format and where the files should be stored.

(1) Pandas DataFrames

description = 'transactions fraud batch training dataset', - Create training data as

) ; Pandas DataFrames
: version, job = feature_view.create_training_data(
description = 'transactions_dataset_jan_feb', o
e e & Oead Create training data as
— 3

files in ‘csv’ file format

write_options = {"wait_for_job": False}

Random or Time-Series Split into Train/Test sets?

In the Iris lab, we performed a random split on the training data into train and test sets
For time-series data, like credit-card data, it is better to do a temporal split on the training data
o E.g., the train set is for the years 2015-2021, test set is for data from the year 2022

td version, td job = feature_view.create_train_test Sp11t(

tra1n start = "2015 01-01 00:00",

train_end = "2021-12-31 23:59", i Start/end timestamps for
test_start = "2022-01-01 00:00",] the train/test sets
test_ end = "2022-10-11 00:00", :

data format = CSV'

write opt1ons = { wa1t for]Ob' True}‘

Not efficient! Write as a
coalesce = True

—0 s CEEm e B —_ single CSV file

iX_trainA X_test, y_train, y_test =

5feature_view.get_train_test_splﬁt{td_version)

Read time-series splits of
TD as DataFrames

Feature View Online API: Retrieve Feature Vectors for Online
Models

e Retrieve a row containing features using the feature view and the primary key(s).
e Optionally specify passed_features that are features that come from the application, not from
the feature store.

user_id age credit_score
| 1234 | 38 200 |
From app Entered in From feature
sesion app webpage store

training_ data _version number 1is required if there are featurestore

Init the FV, so that transformation
use correct TD version state

keys = { “cc_num” : “1111 2222 3333 4444” }

Carray_ Retrieve feature vector for
passed_features = {"feature am: "value _a"} ~«——— scoring from feature store, with

““““““““““““““““ SOOI ‘feature_a’ as a supplied value

“model.predict(array_features)

Feature Selection Pipeline

If you want to automate feature selection, you should build a feature
selection pipeline that takes as input a set of candidate features, a feature
selection algorithm, an optional specification for training data (file format,
splits) and writes as output a Feature View and Training Data.

feature-selection-pipeline.py

Feature View &

Feature :-
> Features - Training Data

Store o

TD

s

S0 = Select features, Optimize Features, Training Data.

Model-Specific Transformations can be applied by Feature
Views (1/3)

Transformation functions are applied to features to (1) make their data compatible
with the model training algorithm or (2) to improve model performance

Transformation functions typically use state computed on the train set (e.g., the
arithmetic mean is used to normalize a numerical feature or the number of categories
is used to one-hot encode acategorical variable)

Model-specific transformations functions need identical implementations in the
training and inference pipelines. If the implementations differ, you may introduce
training-inference skew.

Training-inference skew is difficult to diagnose and fix, and causes models to perform
poorly.

Model-Specific Transformations can be applied by Feature
Views (2/3)

‘min_max_scaler fs.get_transformation_function(name="min_max _scaler"):
;label encoder fs.get transformat1on functwon(name "label encoder”)

Built-in
transformation functions
in Hopsworks

]transformat1on functions {

i "category": label_encoder,
"amount": min_max_scaler,
"trans_volume_mavg": min_max_scaler,

n "e s
trans_volume_mstd": min_max_scaler, Specify which transformation

"loc_delta_mavg": min_max_scaler, functions are applied to which
"trans_freq": min_max_scaler, features pp

"loc_delta_t_minus_1": min_max_scaler,
"time_delta_t_minus_1": min_max_scaler,
"age_at_transaction": min_max_scaler,
"days_until_card_expires": min_max_scaler,

feature_view fs.create_feature v1ew(
name-'cc_trans_fraud_all',
query=ds_query,
v LBbELSE L Fr AU L LABEL! D Apply the transformations
B _transformation_functions=transformation_functions <+—— to the features
) in the Feature View

Model-Specific Transformations can be applied by Feature
Views (3/3)

fv fs.get_feature_view(name='cc_trans_fraud_all', version=1)

Transformations are
applied before returning
the DataFrames

td_version needed to identify
state used by transformations.
(df_to_score = fv.batch data() Tansformations are applied
before returning the DataFrame

fv.init(td_version) .
_keys = {“cc_pum” : “1111.2222 3333 4444"} R Transformations are

carray_features = fv.get_feature_vector(keys=keys) «— applied before returning
o o o o S N the feature vector

model.predict(array_features)

Consistent Training/Inference Transformations with
Scikit-Learn

e Save the transformation pipeline object in the model registry along with the model
e Inthe inference pipeline, deserialize the transformation pipeline object
o Note: ensure the same version of scikit-learn that was used in training and is used in the

joblib.dump(model, model_dir + "cc_fraud/cc_frau
joblib.dump(transformer, model_dir + "cc_fraud[

iris_model mr.python.create_model(..)
iris_model.save(model_dir)

Same transformation pipeline
object used in training and

the_model = mr.get_model("cc_fraud_model", version=1) oniine Inference
model_dir = the_model.download() o B o
transformer = joblib.load(model_dir + "cc_fraud[cc_fraud_trans.pkl")1

model = joblib.load(model_dir + "cc_fraud/cc_fraud_model.pkl")

Example Notebook: https:/github.com/logicalclocks/hopsworks-tutorials/blob/master/iris/iris_sklearn.ipynb

Use Pretrained Models and Transfer Learning, where
appropriate

Pre-Trained Model Fine-Tuned Task
Word2vec . .
Glove Classification
I_Ehl Pretraining Skip-through Adaptation Sequence
inferSent .
|_ e B— Labeling
ULMFiT Q&A
GPT Transcription
BERT
Whi
isper o 0 g
05040
“There was no plot to speak Positive: 15%
of and there were no stars.” Transformer Classifier > Negative: 85%
(pretrained on wiki-103) (sentiment analysis)
Input: Output:

Movie Review L) Sentiment

Typical steps in a training pipeline that uses a Feature Store

KRNI R e R R K

Reads Publishes
training data model
Hopsworks

T-HATE = Model-Specific feature Transformations, Hyperparameter tuning, compile
model Architecture, Train model (fit to the data), Evaluate your model.

Experiment tracking tools help manage your training pipelines

e Use Experiment Tracking Platforms to track and organize training pipeline outputs

e Free Serverless Experiment Tracking Systems
o Weights and Biases

o
o Neptune
o MLFlow with Infinstor

e Open-source
Experiment Tracking Tools
o MLFlow
o Tensorboard

- RIS AS - TEmS TRRERAS48

ossa + asess + 08346 +

o33 1 azmes & assmarr ¢

nswsass + assoiz ases + asssus & osoaass + oses 1

oo ¢ e atnanT o aniss ¢ oasem ¢
st i

[Image from Neptune]

Common training pipeline pattern when using a Feature Store

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import xgboost as xgb

_train,X_test,y_train,y_test = : Get train and test data sets as
train_test_split(features, 'Labe'Ls. test_size=0.2) : features (X) and labels (y)

Use XGBoost as modelling algorithm
Train supervised ML classifier with
features and labels from train set

Generate predictions with model on
test features (X_test)

report d1ct = c'l_ass1f1cat1on _report(: Evaluate model performance by
y_test, y_pred, output_dict=True)] comparing predictions (y_pred) and
R TR R IR R TR R RERE labels (y_test) for the test set

Training Pipeline output - save your model to a Model Registry

project hopsworks. login()
mr project.get_model_registry()

model_dir-"4iris_model"
os.mkdir(model_d-ir)
joblib.dump(model, model_dir + "/iris_model.pkl")

‘ 1nput_examp1e Xtramsample() Cr Save an input example to be used for

“inpit_schera = Schema (X tram) ,,,,, o testing a model deployment
m_:tpq_t_sg_hema Schema(

«———— The Model APl is defined as a Schema
1 r-|s model mr . python create mcde'l(
version-1,
name-"jiris"

: mr.tensorflow.create_model(...)
mr.sklearn.create_model(...)

metrics {"accuracy” g metrw cs[accuracy]} "— Pass any dict of metrics here

model_schema-model_schema,
input_example=input_example,
description="Iris Flower Predictor")

All files in model_dir are stored in the
model registry, along with the model

iris_model.save(model_dir)

T

Governance
Owner ,Audit,
Access control
Metadata

Artifacts

Hopsworks is both a Metadata and Artifact Store

T T T

Feature Stats Model Desc Deployments

Min,Max,Mean, Owner, Metrics, Model status,

Std, Distribution Provenance, etc Performance
Features Models

l l

Hopsworks File System
(FeatureStore.db and Models directories in your Project)

Batch Inference Pipeline uses features from the Feature Store

(~Analytical ML Systems M
Feature Group A

PK . event_ts

. 12022-01-01 10:00

e 2022-01-01 11:00

Operational
. 5 2022-10-11 10:08 1 System

Dashboard

- e 2022-10-11 11:00 I

Feature Group B

Batch
Inference
Pipeline

e Feature View
PK .. event ts Filter: last 24
: hours of data

inference

data Store

predictions

e 2022-01-01 16:

L - 2022-10-11 10:00 \

- o 2022-10-11 11:00 ‘

Batch Inference Pipeline Code for Scoring Data from Last 24
hours

feature_view - fs.get_feature_view("cc_trans_fraud_all", 1)
feature_view.init_batch_scoring(training_dataset_version=1) «— nitwith TD version used by model

_‘start_date = (datetime.datetime.now() - ‘- Start timestamp for inference data
datetime.timedelta(hours=24)) |

.end t1me = datetwme datetwme now() «— End timestamp for inference data
‘transactions_df - feature_view.get_ bat“ch.dété(o — Get the inference data between the
.Start_time - start_time, end_time - end_time).. .. . start and end times as a DF
'features df = transactwons df 110c[s 3.] — Drop PK and helper columns

"mr = project.get_model_registry() H
‘the_model = mr.get_model("cc_fraud_model", version=1) : Download the model from the
‘model_dir = the_model.download() : model registry

:model = joblib.load(model_dir + "/cc_fraud_model.pkl") :

ipredictions = model.predict(features_df) «— Return predictions for inference data

References

» Feature Group Concepts, Feature Group Guide, APl Docs for Feature Groups-
https://docs.hopsworks.ai

» Data models - star schema - https://www.databricks.com/glossary/star-schema

» Credit Card Fraud - https://www.kaggle.com/datasets/kartik2112 /fraud-detection

