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MLOps for Developing Machine Learning Products

> Get to a working ML system with a baseline ASAP, so that you can iteratively improve
it.

» A goal of MLOps is to improve both iteration speed and quality when developing ML
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MLOps: what does Improving Iteration Speed mean?

» Safe incremental updates: make small changes to your source code with confidence
that your changes will not break anything (downstream clients, deployments on dif-
ferent platforms), performance regressions, etc)

» Tighter iteration loop: the time taken to run tests or experiments should not dominate
the time taken to make the source code changes

> A faster iteration loop makes developers happier and more productive




MLOps: iteratively Develop and Test ML Systems

» ML-enabled products evolve over time:
e The available input data (features) change over time

e The target you are trying to predict changes over time

e With the help of automation, how can quickly and reliably develop, test, and deploy
ML-enabled products without affecting their ongoing operation?

» We should aim to automate the testing and deployment of ML-enabled Products




MLOps: Automated Testing to Improve ML Product Quality

» The goal is to be able to reliably build:
e trustworthy features using feature pipelines and data

e a trustworthy model using your trustworthy features

e an Al-enabled product using trustworthy models and features

» To this end, features and models must be tested

» Tests should run automatically as part of a CI/CD workflow




Prediction Feedback to Improve ML Product Quality

Acquire user feedback with a user-interface to quickly improve the quality of your
ML-enabled product and model

Log predictions and features to enable developers to quickly find and understand the
root cause of poor quality predictions

Compare historical predictions with outcomes (or proxy metrics for outcomes) to
inform when a model is stale

Monitor feature or label drift to identify when a model needs to be re-trained




DevOps for reliable software development

» DevOps is a set of practices, tools, and a cultural philosophy that automate and in-
tegrate the processes between software development and IT teams. Key technologies
are version control, automated testing, versioning of production deployments.
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Changes in either source code or Data can break your ML
Product

» In DevOps, changes in source code trigger automated testing and deployment.

» In MLOps, changes in either source code or incoming data trigger automated testing
and deployment.
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A Complete MLOps Platform with Automated Testing
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Lineage in MLOps
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What was the root cause for the introduction of model bias?

| Bias discovered in model predictions! |

Trace backwards with lineage
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The data in this commit to this Feature Group introduced the bias




Lineage in Hopsworks: from Data to Features to Models to
Deployments

Source Data
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Reproducible ML Assets makes for better Data Science
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Reverse Lineage for Batch Inference Pipelines

Peata | transactions v1_| |_user_profie v1_|
Feature Groups ransactions_v user_prortile_v
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Reverse Lineage for Online Inference
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Data Versioning in Apache Hudi

> Lineage involves storing metadata about both state and pipeline executions of ver-
sioned ML Assets, enabling the discovery of the provenance of any given ML asset.

> Lineage facilitates Debugging, Analyzing, Cleaning of ML Assets and Pipelines, and
Reproducing ML Assets.

» If a stateful ML asset supports time-travel, you can track and recover its state at
a point in time in the past. Git provides time-travel for source code. Hudi provide
time-travel for data commits in cached Feature Groups in Hopsworks.
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Versioning of ML Assets
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Mutability

of ML Assets in Hopsworks

ML Asset

Mutable Data

Mutable Metadata

Feature Groups

Mutable Hudi tables

Description, tags, Feature Views

Description, tags, Training Datasets,

Deployments

Mutable (Hot-swappable models)

Feature Views Immutable Batch Inference Datasets
Training Data Immutable Description, tags

Models Immutable Description, tags

Maodel

Description, tags

Prediction Logs

Immutable

N/A




Versioning of ML Assets in Hopsworks

Logs

ML Asset Sche_ma Data. How to reproduce
Versions Versions
Feature Yes Hudi Re-run the feature pipeline
Groups Commits with the same backfill data
F:_eature Yes No Re-run the same feature view creation commands
Views
Training Data | Yes No :I'he parent feature view can recreate training
atasets.
Models Yes No Re-run the training pipeline with the same training
data,hyperparams, and random number seeds
Model Deploy the same model name/version with the same
No No .
Deployments transformer/predictor code
Prediction No No Not possible if model is stochastic. Emulate by

re-running inference pipeline on prediction requests.
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Handling Versioning Challenges in Hopsworks

Scenario or Problem

Hopsworks Behavior

New run of a feature pipeline

New commit(s) are made to the feature group(s)

Change in how a feature is computed

Create a new feature group version and backfill the
new feature group version.

Breaking Schema Change in a Feature
Group

Create a new feature group version and backfill the
new feature group version.

Successful run of a training pipeline

A new version of a model is added to the Model Registry.

New Model version Deployed

Connect the new model version to any online feature groups
required by the model.

Training/Inference Skew for
Model-Specific Transformations

Run the exact same transformation code in training and
inference pipelines with the same python dependencies.

Training/Inference Skew for On-Demand
Feature Logic

Run the same versioned on-demand feature code in training
and inference pipelines with the same python dependencies.

A/B test new models with Blue/Green
rollouts

Serving infrastructure supports both the old and new versions
of models and online feature groups.

Model deployment upgrade/rollback

Support older and newer versions of online feature groups
and models with synchronized upgrade/ rollback.




Versioning of Source Code
Packaging of Pipelines
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Packaging Pipelines as Installable Python Artifacts

Python Artifact

Versioning

Wheel

A name and a version for the wheel file.
Also needs the URI to the wheel file.

PyPi or Conda

Name, version of Python Library.
Also needs the URL to the PyPior Conda server.

Python module in Git Repo

A URI to afile in a Git repository, including the branch or tag for
the release.

Python package

A URI to a directory in a Git repository, including the branch or tag
for the release.
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bl Manage OS package dependenices for Pipelines

Packaging Versioning Example Platforms

Prebuilt The system needs to be able to build and deploy | Kubeflow

Containers the container image to a Docker Repository

Custom Define a Dockerfile, build and test the container Kubeflow

Container Images image, and deploy to a secure Docker Repository.

PyPi or Conda Define Python dependencies in source code ora | Hopsworks, MLFlow, Databricks,

Requirements requirements.txt file. The system Installs the Modal, Hugging Face Spaces, AWS
Python dependencies on top of a base container | Chalice, GitHub Actions, and many
image. more

apt install You can specify libraries to "apt install’ on top of Modal, Github Actions

commands a base container image.




Reuse Versioned Feature Code for Prod/Backfill Pipelines

e Both production and backfill feature pipelines should use (1) the same Python
library versions (requirements.txt) and (2) run the same feature engineering
code (same sml package). Use the same GitHub Repo and branch/tag for both

pipelines.

.

2_cc_feature_pipeline.ipynb

from sml import cc_features, synthetic_data

Production

- -
CsV files

|
:

sml/cc_features.py
sml/synthetic_data.py
requirements.txt

repo: fealurestoreorg/serverless-mi/
branch: v0.2

1_backfill_cc

feature_groups.ipynb
import sml.cc_features
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\ DataFrame

Feature Store

DataFrame




Reuse On-Demand feature code in Training/Inference Pipelines

e Sometimes features have to be computed on-demand as UDFs in Python.
e E.g,the haversine_distance(..) featurein sml/cc_features.pyis
computed both in training and in an online inference pipeline.

Online Serving Infrastructure

request
o features .
Appllcatlon transformer.py predictor.py
response prediction(s)
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Model-Specific Transformation Pipelines in Scikit-Learn

e Pickle and save your sklearn transformer object or sklearn pipeline object
e Save the pickled object to the model repository along with your versioned model
e Inyour batch or online inference pipeline, download the model and transformer
object, and apply same transformations as were applied in training
e Ensure you have the same library versions (e.g., same sklearn version) in
both training and inference pipelines

Inference Plpeline )
sklearn, version 1.1.3 ~—__download + unpickle
\ J \‘fr?forme{pkf

Model Registry

N pickle and upload

— — Model Training Pipeline transformer.pk!
Features sklearn, version 1.1.3

Inference




Versioning of Data: Schemas and Commits
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Schema Versioning (Data Contracts)

¢ In Hopsworks, you can make non-breaking schema changes that do not require

updating the schema version.
e Appending features with a default value is a non-breaking schema change

from hsfs, feature import Feature

features [
Feature(name-"4d",type-"int",online_type-"1int"),
Feature(name-"name"  type-"string" online_type-"varchar(20)")]

fg = fs.get_feature_group(name="example", version=1)
fg.append_features(features)

e Breaking schema changes require updating the schema version for a Feature Group.

fgl fs.create_feature_group(name-"example”, version-1)

df = fgl.read()
fg2 fs.create_feature_group(name=-"example”, version=2, features=new_features, ..)

fg2.insert(df) #bockfill

the new feature group with dota from the prev version




Data Versioning with Git

¢ Versioning code and data together using Git, such as Data Version
Control (DVC).

e Warning: DVC is impractical and inefficient for large amounts of data, as
it only stores pointers to blobs (binary large objects) in Git.

Blob storage registry

code config data model
(pointer) (pointer)

HEAD
L HEAD*

{ HEAD"n




Data Versions in feature groups with Apache Hudi

Feature Group
(Hudi)
Write DataFrame | [ ]

Commit-0002
Commit-0001

- card anasctions

View Commits in the °
Hopsworks Ul in the “Activity” .
tab of a Feature Group




Unit tests for Feature Logic
and integration tests for Feature Pipelines
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ML Test Score Criteria by D. Sculley et al

Feature Tests
e Test that the distributions of each feature match your expectations
Test the relationship between each feature and the target
Test the cost of each feature (e.g., latency)
Test all code that creates input features

Model Tests

Test that every model specification undergoes a code review

Test the relationship between offline proxy metrics and the actual impact metrics
Test the impact of each tunable hyperparameter

Test the effect of model staleness

Test against a simpler model as a baseline

Test model quality and model bias using important data slices (evaluation sets)

hitps:/iwww.eecs tufts edu/~dsculley/papers/ml_test score.pdf

Eric Breck Shanging Cai Eric Nielsen Michael Salib D. Sculley, Proceedings of IEEE Big Data (2017)




ML Test Score Criteria by D. Sculley et al

Infrastructure Tests
e Integration test the feature, training, and inference pipelines.
Test the reproducibility of model training.
Test model quality before attempting to serve it.
Test models via a canary process before production serving.
Test that a model deployment can be safely rolled back to a previous version.

Monitoring Tests

Test data quality for features in feature pipelines

Test that data invariants hold in training and serving inputs

Test that your training and serving features compute the same values

Test for model staleness

Test for NaNs or infinities appearing in your model during training or serving
Test for regressions in prediction quality on served data

https:/iwww.eecs tufts. edu/~dsculley/papersiml_test score.pdf

Eric Breck Shanging Cai Eric Nielsen Michael Salib D. Sculley, Proceedings of IEEE Big Data (2017)




Where can we add tests to Operational ML Systems?

—

Batch/
Operational
Services

ELT/ETL Pipelines
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Where can we add tests to Operational ML Systems?

Batch/
Operational
Services

Predictions

Model
Serving

ELT/ETL Pipelines

Data Lake /
Warehouse

| 1

Feature
Pipeline
-
—

Model-Specific Transfoermations

Maodel
Registry

Training
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Offline and Online Tests for Operational ML Systems

pytest
Feature Logic Feature Model-Specific
Unit Tests Pipeline Tests Transformation Tests

Great Expectations KServe & Hopsworks
Model Bias Runtime Data  Asynchronous Model A/B Model/Feature
Tests Validation Data Validation Testing Menitoring

Offline Tests

Online Tests




create Pull Request (github )

Unit tests for Features with Pytest

Unit tests are used to test individual functions

o You run the function with a given input, and expect a certain output
In ML, unit tests can be used to validate Feature Logic, On-Demand
Features, and Model-Specific Transformation Functions

PyTest

def inc(x):
return x + 1

def test_answer():
assert inc(3)

run PyTest

Q Jenkins

itHub Actions

git push



Refactor Feature Engineering Code into Testable Functions

def compute_features(df : Dataframe): -> Dataframe
if config["region"] == "UK":

df["holidays"] is_uk_holiday(df["year"], df[" week"])
else:

df["holidays"] is_holiday(df["year"], df["week"])

df["avg_3wk_spend"] = df["spend"].rolling(3).mean()

df["acquisition_cost"] = df["spend"] / df["signups"] This feature logic
df["spend_shift_3weeks"] = df["spend"].shift(3) ?Oes not contain
df["special_featurel"] - compute_bespoke_feature(df) independently

df["spend_b"] multiply_columns(df["acquisition_cost'], df['B']) testable features
return df

df - loader.load_actuals(dates) # e.g. spend, signups
df compute_features(df)

feature_group = fs.get_feature_group(“customer_features”, version=1)
feature_group.insert(df)

Example from Hamilton




Write Unit Tests for the Feature Functions

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
"mRolling 3 week average spend."""
return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
"""The cost per signup in relation to spend."""
return spend / signups

@pytest.fixture Unit Test
def get_spends(self) -> pd.DataFrame:
return pd.DataFrame([[20, 40], [5, 4], [4, 10],
columns=["spends", "signups", "spend_per_signup"])

def test_spend_per_signup(get_spends : Callable):
df = get_spends
df("res"] = spend_per_signup(df["spends"), df("signups")]
pd.testing.assert_series_equal(df["res"], df["spend_per_signup"])




Recommended Pytest directory structure

root

F
|

|
|
F
|
|
|

F
|
F
|

features
F feature engineering.py
F on demand features.py
L custom transformations.py
pipelines

L feature-pipeline.py
L training-pipeline.py
L batch-inference-pipeline.py

test_features
L test features.py
test pipeline

L test pipelines.py

Reusable feature code is defined as a
Python function inside a module

Python programs that are run as Pipelines

Pytest unit tests for feature functions

Pytest integration tests for pipelines




Pull Request Trigger

CI/CD (Jenkins)
runs PyTest

Manual Testing

PyTest

Feature Pipeline Tests

in a CI/CD Setup

Main Branch

feature-test

pipeline-test

Feature
pipeline

feature-test

!I

pipeline-test

Feature
pipeline

E\\g’
Subsampled
_ Data

AN
STAGING
-.,_ﬁEATURE STDRF- ~

You need a Feature Store to
run a feature pipeline test




Data Validation with Great Expectations
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Data Validation with Great Expectations in Feature Pipelines

Great Expectations

=+ pata Sources

- Expectation Suite
Applications

Services
{ Validate '/-7_1
f—(/\% Fonee ) #) HOPSWORKS

Pipeline Monitor ._\(il-ouf:s/-

Validation Reports

Data

warehouse
Unstructured
Data




Feature Data Validation Rules

Validate the features of every prediction request against a set of
expectations on that data.

Type checks — passing a string of “1" instead of the integer 1

Value ranges — -10 for a distance or 1000 for an age

Missing values for a required feature

Set membership — an unknown value for a categorical feature

Table expectations — checking that all the expected feature names are
present




Great Expectations and Pandas DataFrames

Pandas Dataframe

l -

Expectation







Pull Request Trigger

Main Branch

feature-test

cl/cp (J
runs PyTest

Manual Testing

PyTest

pipeline-test

Feature
pipeline

—

Great
Expectations

=

N {

feature-test
Feature

pipeline-test

pipeline

=
Subsampled
_Data

Great
Expectations

Feature Pipeline CI/CD Setup with Great Expectations

STAGING
FEATURE STORE
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Testing Training Pipelines
and Model Deployments
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Testing Training Pipelines and Models

Save the hyperparams and training data used to train the model,
Only deploy a model that outperforms an existing model
deployment (or baseline), assuming both trained on same dataset.

e Only deploy a model if it is free from bias and trained on ethical data.

Training Pipeline

(e

FEATURE STORE

|

MODEL REGISTRY

Trigger for New model
creating published
new model FY

Train Model Evaluate Model Bias Tests

Performance Tests




Evaluating Models and Testing Training Pipelines

e Evaluate Metrics of your model for acceptable performance
e Post-Training Tests on the model’s learned behavior and potential for Bias
e Compare performance with existing models before deployment

o Compare the performance of existing models in the Model Registry,
and only deploy the new model to production if it is better than existing
models and all evaluating and testing metrics

¢ End-to-end test the training pipeline that trains and deploys a model to
ensure correct operation

https:i/eugeneyan.com/writing/testing-mil/




Model Performance Evaluation

Evaluate the performance of your model on a test set

e This typically results in an evaluation report including:
- performance of an established metric on a test set,

for example, Area under Curve of Receiver Operating Characteristic
(AUC ROC)

- plots such as precision-recall graphs,
o8
o operational statistics such as .
inference latency. S
"
g
S
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False Positive Rate

ROC Curve




Model Tests

e Post-Train Tests
o Model tests are run on a model after it has been trained

e Expected Behavior Tests
o Test known invariants in model behavior, such as for the Titanic
Survival Dataset, women are more likely to survive than men.

e Bias Tests
o You should test if a model is free from bias by evaluating its
performance on subsets of the test data (evaluation sets) that
represent different groups that could be at risk of bias.




Test a Model for Bias with Evaluation Sets

Build Evaluation Sets - filters on training data (e.g., gender,
ethnicity, geography) and evaluate the model performance on
each evaluation set, looking for significant performance differences

Feature View

Time
‘| Train Set Test Set /
|
\
filter(region="...")
Emea | | North Asia
America

Evaluation Sets




Pull Request Trigger

@ Jenkins
PyTest

Manual Trigger

PyTest

Integration (End-to-End) Tests for Training Pipelines

Main Branch

bias,behaviour, e -
performance tests
Maodel Training

Evaluate and ]

deployment-test |—

Training Data

Validate Model |7_‘ - _
\ N S

Staging
Model Registry

Evaluation
Sets (for Bias)

bias,behaviour,
performance tests | .
e

Training Data

Evaluation
Sets (for Bias)




A/B Testing Model Deployments (Blue/Green Rollouts)

connect pre-computed
features to models

oo
HTTPS Network / Blue: model-A1
i Endpoint —T__
ey Green: model-A2
(mirrored)

deploy model-A2
with 18% of traffic

|
Hopsworks




The “Big Red Button” enabled by MLOps

Models

fraud_v2

fraud_v1

Feature Groups Feature Views

user_profile_v1

I's -,
Upgrade ransactions_v
o~ 0 i

Feature Groups

user_profile_v1
transactions_v1




Model and Feature Monitoring
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Data for Al Flywheel

more data -> better models -> more users -> more data-> ..

feature/prediction logs

Prediction Feature
Service Pipeline

Feature
Store

Online API Offline API

Model
Training




Feature and Prediction Logging

e Logs of predictions and features can be used for:
o Debugging
o Model/Feature/Performance Monitoring
o To create new training data for models
e You should log untransformed feature values and predictions
o Log before model-specific transformations & reverse_transform predictions

feature/prediction logs

Prediction

Service Feature

Store




Monitor Features, Labels, Predictions, Outcomes for Drift

Feature Pipeline Drift Operational Feature Drift
Q(X) I=P(X) Q(X) 1= P(X)
A A
Id h) Id N

Feature Pipeline

Training Data Inference Features Outcomes
(P(X), P(y)) Q(X) Qly)

Feature Groups
P(X). P(y)

New Features
Qx)

Feature Store
Concept Drift
Qly} 1= Q(y)
- -~ Predictions
P(X) and Q(X) are the distribution of existing and Model Q)
new feature values, respectively.

Q(y) and Q(§) are the distribution of outcomes and

predictions, respectively. Label Shift
Q(y) 1= Ply)




What is practical to measure for Data Drift?

Feature Pipeline Drift
o The distribution of a feature in a DataFrame that is being written
to a Feature Group is significantly different from the distribution
of that feature stored in the Feature Group.

Operational Feature Drift (aka Covariate Shift)
o The distribution of a feature in a window of Inference Data is significantly
different from the distribution of that feature in the models’ training data.

e Label Shift
o The distribution of a window of label data in inference is significantly different
from the distribution of that label in the models’ training data.

Concept Drift
o The outcomes are significantly different from the model’s predictions.




Case Study
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Lyft Model /Feature Monitoring

“For our online use-case in which we only validate a single feature vector (row)
at a time, an implementation with less overhead was required. The [monitoring]
is performed async to make the latency impact on model scoring negligible.”

Asynchronous Monitoring of Online Models at Lyft

Feature 1 Feature 1 Statistics

Feature 2 Feature 2 Statistics Feature Anomaly Detection

Feature n Featura n Statistics Volume Anomaly Detection

Model 1

Monitoring
Dashboards

Prediction | Prediction 1 Statistics B

-Gt
W Computation

. Output to User




Lyft - Performance Drift Detection

e Automate as much as possible.
e Monitoring is a defensive investment
e Monitoring will reduce shipping velocity slightly

Metrics Query (SQL}

Validation Fails

Model Configurations Metrics Compute Metrics Validation Paging System

Validation Rule
(JSON)

- nput from User
Monitoring W Computation

Dashboards . store
W Output to User
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