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Real-Time and Interactive Systems with SLOs
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Higher latency reduces usage of Interactive Systems
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Example: Hugging Face Spaces with Stable Diffusion
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Reduce Model Inference Latency with Distillation
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Personalized Models require History and Context (Feature
Store)
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Feature pipelines write to both the Online/Offline Feature
Stores
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When writing, Ensure Consistency Between Offline and Online
Feature Stores
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The Online Feature Store
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Hopsworks: Write to Feature Groups, Read from Feature Views
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Real-Time APIs for Writing and Reading to the Feature Store
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Streaming/Training/Online-Inference Pipelines
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Programming Frameworks for Streaming Feature Pipelines
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Streaming Feature Pipelines - Windows (1/2)
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Streaming Feature Pipelines - Windows (2/2)
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PySpark Streaming Program
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On-Demand Features

17 / 51



On-Demand Features - Example
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Online or Interactive Applications
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Making an Application “Intelligent” with a Model and Features
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Online Inference and the Online Feature Store
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KServe - Open-Source Model Serving Infrastructure
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Example transformer.py program
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Example predictor.py program
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Putting it together in an Operational ML System
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Online Feature/Prediction Monitoring
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What should you monitor in a ML System?
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Feature Drift

28 / 51



Feature Group Drift

29 / 51



Training Data Feature Shift
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Models Degrade in Quality over Time
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Label Shift
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Concept Drift - where the model degrades over time

33 / 51



How to handle Concept Drift - Retrain models
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Algorithm for Detecting and Retraining models
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TikTok - online model retraining for recommendations
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Real-Time Personalized
Recommendations/Search
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Real-Time Personalized Recommender/Search Service
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Embeddings can be used for Similarity Search with a VectorDB
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What about Multi-Modal Similarity Search?
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Training data for our Two-Tower Model will be User-Item
Interactions
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Two Tower Model for Personalized Recommendations/Search
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Build the ANN Index on Items. Similarity Search with user
queries on it.
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Build the ANN Index on Items. Similarity Search with user
queries on it.

Click here to show animated insertions and lookups in a ANN with a Two-Tower
Model
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https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search
https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search


Real-Time Retrieval and Ranking
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Real-Time Retrieval and Ranking Online Infrastructure
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Offline Infrastructure for Retrieval and Ranking
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Model Training for Embeddings and Ranking Model
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Extended Retrieval and Ranking Architecture
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Model Serving with VectorDB and Feature Store
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https://medium.com/nvidia-merlin/scale-faster-with-less-code-using-two-tower-with-merlin-c16f32aafa9f

