
Real-Time Machine Learning Systems

Jim Dowling
jdowling@kth.se



Real-Time and Interactive Systems with SLOs

2 / 51



Higher latency reduces usage of Interactive Systems

3 / 51



Example: Hugging Face Spaces with Stable Diffusion

4 / 51



Reduce Model Inference Latency with Distillation

5 / 51



Personalized Models require History and Context (Feature
Store)

6 / 51



Feature pipelines write to both the Online/Offline Feature
Stores

7 / 51



When writing, Ensure Consistency Between Offline and Online
Feature Stores

8 / 51



The Online Feature Store

9 / 51



Hopsworks: Write to Feature Groups, Read from Feature Views

10 / 51



Real-Time APIs for Writing and Reading to the Feature Store

11 / 51



Streaming/Training/Online-Inference Pipelines

12 / 51



Programming Frameworks for Streaming Feature Pipelines

13 / 51



Streaming Feature Pipelines - Windows (1/2)

14 / 51



Streaming Feature Pipelines - Windows (2/2)

15 / 51



PySpark Streaming Program

16 / 51



On-Demand Features

17 / 51



On-Demand Features - Example

18 / 51



Online or Interactive Applications

19 / 51



Making an Application “Intelligent” with a Model and Features

20 / 51



Online Inference and the Online Feature Store

21 / 51



KServe - Open-Source Model Serving Infrastructure

22 / 51



Example transformer.py program

23 / 51



Example predictor.py program

24 / 51



Putting it together in an Operational ML System

25 / 51



Online Feature/Prediction Monitoring

26 / 51



What should you monitor in a ML System?

27 / 51



Feature Drift

28 / 51



Feature Group Drift

29 / 51



Training Data Feature Shift

30 / 51



Models Degrade in Quality over Time

31 / 51



Label Shift

32 / 51



Concept Drift - where the model degrades over time

33 / 51



How to handle Concept Drift - Retrain models

34 / 51



Algorithm for Detecting and Retraining models

35 / 51



TikTok - online model retraining for recommendations

36 / 51



Real-Time Personalized
Recommendations/Search

37 / 51



Real-Time Personalized Recommender/Search Service

38 / 51



Embeddings can be used for Similarity Search with a VectorDB

39 / 51



What about Multi-Modal Similarity Search?

40 / 51



Training data for our Two-Tower Model will be User-Item
Interactions

41 / 51



Two Tower Model for Personalized Recommendations/Search

42 / 51



Build the ANN Index on Items. Similarity Search with user
queries on it.

43 / 51



Build the ANN Index on Items. Similarity Search with user
queries on it.

Click here to show animated insertions and lookups in a ANN with a Two-Tower
Model

44 / 51

https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search
https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search


Real-Time Retrieval and Ranking

45 / 51



Real-Time Retrieval and Ranking Online Infrastructure

46 / 51



Offline Infrastructure for Retrieval and Ranking

47 / 51



Model Training for Embeddings and Ranking Model

48 / 51



Extended Retrieval and Ranking Architecture

49 / 51



Model Serving with VectorDB and Feature Store

50 / 51



References

▶ Real-time machine learning: challenges and solutions by Chip Huyen

▶ Concept Drift by FastForwardLabs

▶ Scale faster with less code using Two Tower with Merlin by Nvidia

51 / 51

https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://concept-drift.fastforwardlabs.com/
https://medium.com/nvidia-merlin/scale-faster-with-less-code-using-two-tower-with-merlin-c16f32aafa9f

