Real-Time Machine Learning Systems

Jim Dowling
jdowling@kth.se

Real-Time and Interactive Systems with SLOs

e Areal-time system processes messages in a bounded amount of time.

e The upper bound on the time available to process the request or event
is defines how “real-time” by the system requirements.

e Due to the best-effort nature of the Internet Protocol, Internet Services provide
service level objectives (SLOs) for the maximum latency for processing data.

e Interactive (user-facing) systems have SLOs - they need to return results before
users decide that the service is too slow and stops using it.

[Image from http://retis.sssup.it/~giorgio/courses/rts/rts.html]

& & s &
S/ S/ Se /€ /8 &
& oL A 65' R 6 0 £ q‘?
$E/6/8 /8 JE J&8
§F I/ &S < 5 S E
50ms - - = - = -
200ms | - i - }-03%|-04%| 500
500ms - -0.6% -1.0% | -0.9% | 1200
1000ms | -0.7% | -0.9% 41.9% | -1.6% | 1900

2000ms | -1.8% |-2.1% 4% |-3.8% | 3100

Bing’s test: Bing delayed server response by ranges from 50ms to 2000ms for their
control group. You can see the results of the tests above. Though the number may seem
small it's actually large shifts in usage and when applied over millions can be very
significant fo usage and revenue. The resulis of the test were so clear that they ended it
earlier than originally planned. The metric Time To Click is guite interesting. Notice that as
the delays get longer the Time To Click increases at a more extreme rate (1000ms

increases by 1900ms). The theory is that the user gets distracted and unengaged in the
- page. In other words, they've lost the user’s full attention and have to get it back.

Example: Hugging Face Spaces with Stable Diffusion

Stable Diffusion v2
Website Model Serving
Infrastructure

‘ Enter Text

Text string input

Stable Diffusion Model

<<GPU>> g

Generated Image Output

Note 1: Stable Diffusion v2 does not use any history or context info - only the user input is needed to generate the prediction.
Note 2: if we replaced Stable Diffusion v2 with ChatGPT, we would have the same simple stateless model serving system.

Reduce Model Inference Latency with Distillation

e Big models, such as Stable Diffusion, have high latency (seconds) even on
GPUs, such as the Nvidia A100.
o “On Distillation of Guided Diffusion Models” reduces the latency of
Stable Diffusion by a factor of 10 through progressive distillation.
e The Lottery Ticket Hypothesis (Frankle and Carbin) identifies situations where a
smaller network can be trained to a similar accuracy as a large network.

before pruning after pruning

pruning ___,
synapses

pruning
neurons

Model Distillation prunes the number of weights and amount of compute needed for inference, while minimally affecting model performance
Image from https://herbiebradley.com/The-Lottery-Ticket-Hypothesis

Personalized Models require History and Context (Feature
Store)

Website Model Serving

Infrastructure
Item 2 i
Browse [4
o I~
Search e User History Onllne
Trending ltems. Feature
Item Features

Store

Click 3

Note: If our model requires history or state (for users, in this example), then we need to plug in a feature store to provide the
precomputed historical and contextual feature values.

Feature pipelines write to both the Online/Offline Feature
Stores

Kafka / Kinesis /
PubSub /etc

Website

Item 2 Log User Clicks, Non-Clicks) ‘
Browse . : i
Activity Events [} — F.:l:’:’:;'ﬂm . Online +
Search Ttem 4 Offline
Feature
store

Log User Searches s
Search Events —_ i
Click 3 Feature Pipeline

You need to instrument your retail website to generate the events used to compute the historical/contextual features.
Some features are computed by batch programs, but some features are fresh and computed with streaming pipelines.
The features can be stored in both the offline and online stores of the feature store.

When writing, Ensure Consistency Between Offline and Online
Feature Stores

Shared Schema for Features

Hopsworks
Feature Store

Online
Feature Store

Vo I OnlineFsS Service | & nr;lered

DataFrame
Python at-least-once
PySpark Apache./_
Flink single-writer Kafka

Offline

\ [Spark Job - at-most
Feature Store

. Hudi Delta Streamer J once

The Online Feature Store

Hopsworks: Write to Feature Groups, Read from Feature Views

#» HOPSWORKS

Applications, Services

Online API

Online Apps

Feature Groups Feature Views |
‘ . Batch Apps
Model
Development

Feature Pipelines

Offline API

Data warehouse

[Search, Versioning, Statistics, Code]

[Lineage, Provenance]

Real-Time APlIs for Writing and Reading to the Feature Store

Streaming API

Write DataFrames

'... HOPSWORKS FEATURE STORE
[

Feature Groups

\

Read Feature Vectors
Online AP!

®» | Feature Views

Read Files/DataFrames

Offline API

Real-time

° 0On Demand @

Data Sources B
¢ Streaming Training e Online 4/
O O Feature P O O Inference
Pipeline Pipeline Pipeline
Batch § \
Data Sources + H ‘
features, | + model fe“t";e? H
labels fmodet |

Ly

& Model Registry

@ Hopsworks Feature Store

Programming Frameworks for Streaming Feature Pipelines

Real-Time Features using the Hopsworks’ Streaming API

e Apache Spark Streaming spOf"zzStreaming
e Apache Flink a

A streaming framework in Python

bytewax

e Byvtewax (Uses Kafka for Stateful Recovery)

Streaming Feature Pipelines - Windows (1/2)

Input Stream

AOO & oo < AO O Tumbling window <& O A

—— L ® o—©O

s

WINDOW 3 WINDOW 2 WINDOW 1

Input Stream

ACO < o0 < AO O Sliding window S 0 A

— D L) o L ©
-

-
R — WINDOW 1
WINDOW 2
WINDOW 3

Streaming Feature Pipelines - Windows (2/2)

Input Stream

NSO O (& oo < AO O Session window O O A
—0—9 o ;] o—©0
L]
WINDOW 2 WINDOW 1
Input Stream
NSO <& Q) & AO O Global window S 0 A

— D D o L ©

WINDOW 1

PySpark Streaming Program

df_read - spark.readStream.format("kafka")...option("subscribe"
KAFKA_TOPIC_NAME) . load()

Deserialise data from Kafka and create streaming query
df_deser df_read.selectExpr(....).select(...)

10 minute window
windowed10mSignalDF = df_deser \
.selectExpr(...)\
.withWatermark(...) \
.groupBy (window("datetime", "10 minutes™), "cc_num").agg(avg("amount")) \
.select(...)

card_transactions_10m_agg -fs.get_feature_group('"card_transactions_l@m_agg", version = 1)

query_10m = card_transactions_lem_agg.insert_stream(wigggygglgw§iggglgf)

On-Demand Features

online-feature-engineering.py Application Input
import library.features as f

Feature UDF

library/features.py Hopsworks

Online Serving ‘

Feature Store

Feature UDF
DataFrame
or Files

e_training_data.ipynb

Training Data import library.features as f

On-Demand Features - Example

UDF (user-defined function) for computing an on-demand feature (haversine distance)

def haversine_distance(long: float, lat: float, prev_long: float, prev_lat: float)-> float:

.. check/cast parameters as a Pandas Series (batch API for training)
.. or keep as primitive values (online inference)

prev_lat = radians(prev_lat)
long_diff - prev_long - long
lat_diff = prev_lat - lat

a = np.sin(lat_diff/2.0)**2
b = np.cos(lat) = np.cos(prev_lat) *» np.sin(long_diff/2.0)x*2
c = 2*np.arcsin(np.sqrt(a + b))

return c

Online or Interactive Applications

19 /51

Making an Application “Intelligent” with a Model and Features

Most interactive applications are stateless
o Separating storage and compute makes it easier to build highly
available systems. State is stored in an operational database and/or
object store.

Interactive applications need a model and sometimes a feature store
o Host the model in model serving infrastructure to decouple it from the app

e Use a feature store if the application needs
o historical information to make a decision
o context information in the system to make a decision

Features can be
o computed on-demand if the feature is based on live input data
o precomputed as historical features using a feature pipeline
o precomputed as contextual features using a feature pipeline

Online Inference and the Online Feature Store

Online
Application

precomputed
features

The Online Feature Store provides low-latency, row-oriented access to features.
You provide the primary keys, and it returns feature vectors.

ﬂServe on-demand

KServe - Open-Source Model Serving Infrastructure

Online
Feature Store

features
Yy
. request .
predictor.py Hitps/ Online
(model) transformer.py gRPC Application
(Istio) prediction

Prediction precomputed

Logs from features

Sidecar

Example transformer.py program

class Transformer (object):

.. get reference to feature_view
def init_ (self):

project = hopsworks.login()
fs = project.get feature store()
self.trans fv = self.fs.get feature view("transactions", 1)

def preprocess (self, inputs): get feature vector for cc_num from feature store

cc_num = inputs["inputs"][0] ["credit_card_number"
feature vector = self.trans fv.get feature vector({"cc num": cc num})
compute any on-demand features needed here

return { "inputs" : [{"features": feature vector.values.tolist()}] }

def postprocess(self, outputs): any changes needed before returning the prediction
preds = outputs["predictions"]
return preds

Example predictor.py program

import jobklib
import numpy as np

class Predict (object):

load model
def 7init7(self):
self.model = joblib.load("/path/to/model.pkl")
def predict(self, inputs): make prediction with model
features = inputs[0]
return self.model.predict proba(features).tolist()

Putting it together in an Operational ML System

Operational
Service

Training
Pipeline

on-demand
features

precomputed

features Model
.......... - Hopsworks Serving

— i Batch
o
. Pipeline

features

Stream Source

Streaming
Feature
Pipeline

request .
Online

Application

prediction

_________ - prediction logging
S
e

Online Feature/Prediction Monitoring

26 /51

Feature Group Drift

What should you monitor in a ML System?

Training Data Feature Drift
P (X) = P(X)
Al

Training Data On-Demand Features
P(X), P(Y) PX) P (Y)

1

QOutcomes ‘

1=
Q, () != Q)
A

Feature Pipeline ®

New DataFrame Feature Group
Q,,(X) Q(x) .

S
Feature Store

~—

Concept Drift

I P.(¥)1=P, (Y)
Model ——* Prg:i?\i{c;ns
Label Shift

P, (V) 1= P(Y)

4l Feature Drift

Reference Window

@eocey

ﬂ DATA STREAM >

Q(X) is statistically significantly different from

L]
L]
e
°
L]
oOriginal Data a. Feature Drift No Feature Drift Feature Drift Cccured
(at time t) (at time t+1)

Reference [Detection

Images from [hitps://concept-drift.fastforwardlabs.com/ |

Feature Group Drift

Q,(X), where Q(X) is the distribution of Q,,,(X), where Q_,(X) is the distribution
feature X up to time t of feature X from time t to time t+1

l 1

Feature Group

gl 1:8 -8 |8 |:8] |:8] |:8 g8 |8
sl | 2% 2= sl | & =35 s 2 gl |z |
iy | 2@ 2§ (2@ | i@ |2 |E° 8| | | 3%
£0 |0 (£ol Eollto Eol fo solléol |50
26| |28 |Ze| |3e |20 |20 2g tol|&e| |Be
g.’. 53 g.’. 53 53 5.’. 53 z3| 13| 1:3
=3 |=3 =3 =3 /|=3 =3 =3 =31 |=22) |2

L g L L e - ad - - -

Time

You have Feature Drift when
Q_,(X) is statistically significantly different from Q(X)

Training Data Feature Shift

You have Feature Drift when

Q/(X) is statistically significantly different from Q,_,(X)

Features in Training Data
Q,(X)

t+1

Online Inference Features
Q,,(X)

1

OO 0O

—_—
TIME WINDOW

Batch Inference Features
Q,_,(X)

t+1

Feature View

Time

Models Degrade in Quality over Time

Model Accuracy

Time

Image from https://concept-drift.fastforwardlabs.com/

Label Shift

Reference Window

@eoee9

£ DATA STREAM ¥

P (Y) is statistically significantly different from

For example, in the training data for our credit card fraud detection dataset, 0.001% of the credit card
transactions are labelled as fraud.

In inference, however, 0.003% of the credit card transactions are predicted to be fraud.

Is this because there is more fraud is actually happening or because the model is degrading in quality?

Concept Drift - where the model degrades over time

L J "~
o
L]
o
L]
o
°
Original Data a. Real Concept
(at time t) Drift

(at time t+1)

accuracy(P_ (Y), P, (Y)) < accuracy(P(Y), P(Y))

t+1 t+1

Image from https://concept-drift. fastforwardlabs.com/

How to handle Concept Drift - Retrain models

Model Accuracy
N
N

W

Time

Here, a model is retrained after drift is detected, and it's accuracy improves, only to
decay over time, requiring periodic retraining to keep model accuracy high.

Image from [https://concept-drift.fastforwardlabs.com/]

Algorithm for Detecting and Retraining models

Train Model on
Reference Window

4

Predict on
Detection Window N
J

Infer Concept Advance Reference
Drift Using Unsupervised and Detection
Method Window

Drift Lo, Sl e
«~—— NO Detected? YES 4 Detection Window to
Leamn New Concept

Image from [hitps://concept-drift.fastforwardlabs.com/]

TikTok - online model retraining for recommendations

Actions
User ——————————= LogKalka ——— Training Example Dump Batch Data
. Kafh \
Joiner Online Batch Training Data
Flink Job Training HDFS
Batch
Generate
Features
Model Server ————————— = Feature Kafka p— Training Worker
Parameter Synchronization |
Serving PS Training PS

Figure 4: Streaming Engine.
The information feedback loop from [User — Model Server — Training Worker — Model Server — User] would spend a long time when taking the Batch Training
path, while the Online Training will close the loop more instantly.

hitps://arxiv.org/pdf/2209.07663.pdf

Real-Time Personalized
Recommendations/Search

37/51

Real-Time Personalized Recommender/Search Service

User History & Context

\

Item
Corpus

¢ tem1

Candidate > Ranking |—— Item 2

Generation Hundreds

millions :
or :
billions : Item 3 H

: Item 4

Item 5

Total Latency < 100ms

Embeddings can be used for Similarity Search with a VectorDB

“Find me a similar image” - Similarity Search using Image Embeddings (Google)

What about Multi-Modal Similarity Search?

Can a “user query” find “items”
with similarity search?

Yes, by mapping the “user query” embedding
into the “item” embedding space with a two-tower
model.

Representation learning for retrieval usually involves supervised learning with labeled or
pseudo-labeled data from user-item interactions.

40 /51

Training data for our Two-Tower Model will be User-ltem
Interactions

Log user-item interactions as training data for our two-tower model and ranking model.

Retail Website

Features

e

Item 2
Search ltem 2 Features Score: 1
Click to add text
Item 4
Item 3 Features
Click 2 |
Click 3

Item 4 Features

Two Tower Model for Personalized Recommendations/Search

{ The dot product of a user embedding and Slg mo Id: Dot Produ Ctl
i item embedding pair that interacted is high i
and the dot product of a non interacting pair is :
i close to 0 i

User and Item Embeddings
are the same length

l User/Query Embedding

Item Embedding

Trainable (neural network) Trainable (neural network)
Encoder Encoder
e
= |
User Click User Session Static user Static item
features features

History History

You should provide both positive and negative pairs, where the user and item interacted and where they didn't interact,
respectively. Training produces 2 models: an item encoder model and a user encoder model.

Image from Yu et al

Build the ANN Index on Items. Similarity Search with user

queries on it.

ANN Index

(VectorDB)

Insert all pairs
(item-ID, embedding)

Insertion Job
with ltem
Embedding Model

Encode all items

Model Architecture

Database Tower

+): train neural networks

1. Encode and insert all the Items into your Approximate Nearest
Neighbor (ANN) Index in your VectorDB

2. Now you can search for the nearest ltem to the user query by
encoding the user query and searching for the most similar items
in the ANN Index

Build the ANN Index on Items. Similarity Search with user
queries on it.

Click here to show animated insertions and lookups in a ANN with a Two-Tower
Model

https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search
https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search

Real-Time Retrieval and Ranking

User

Embedding Retrieve closest items Enrich items Rank items with Ranked
Mogdel with similarity search with features Ranking Model items
¥ v ¥

Model = Model
S VectorDB Feature Serving
Store -

Real-Time Retrieval and Ranking Online Infrastructure

rank items E enrich item with
o = — history+context

/ retrieve |items

Model Serving

Feature Store

Model
Deployments

Vector Database < Data Sources
Embeddings feature
pipelines

G I
Model Registry

compute & insert embeddings

Offline Infrastructure for Retrieval and Ranking

User and Item Model
Embedding Models. deploy Serving
Two Tower Training g
~ 3. Insert to Index ;E
Compute embeddings
Feature Store for items and neort VectorDB
. add to ANN index
2. Model Training %
Ranking Model deploy

[Data Warehouse

| 1. Feature Engineering
user, item profiles

Historical transactions

Model
Serving

Model Training for Embeddings and Ranking Model

-
Feature Store
p
Feature Views
S
: items
- ____ v
S,
: user queries
__ J
e
: item user clicks
\ v
.

————
mcC

mbedding

ser/Query 1F)

Model Registry

ﬁ Models

1
|
s

ﬁ Train Models ﬁ Train Models ﬁ
— 5
—

Training Data

5 [|

Extended Retrieval and Ranking Architecture

Embeddings, Retrieval, Filtering, Ranking

User/Query & —
Item Embeddings

Jointly train with
two-tower model:
User/query embedding
ltem embedding models

Built Approx Nearest
Neighbor (ANN) Index
with items and item
embedding model.

Retrieval —

Retrieve candidate
items based on the user
embedding from the
ANN Index -

similarity search

Filtering —

Remove candidate
items for various
reasons:

underage user
item sold out
item bought
before

item not available
in user's region

Ranking

With a ranking model,
score all the candidate
items with both user
and item features,
ensuring, candidate
diversity.

Model Serving with VectorDB and Feature Store

_ predict _ |
(https)

devices

Transformer

Predictor 1F

i
613

Transformer

User/Query Model

Predictor :

Ranking Model

\

References

» Real-time machine learning: challenges and solutions by Chip Huyen

» Concept Drift by FastForwardLabs

> Scale faster with less code using Two Tower with Merlin by Nvidia

https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://concept-drift.fastforwardlabs.com/
https://medium.com/nvidia-merlin/scale-faster-with-less-code-using-two-tower-with-merlin-c16f32aafa9f

