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Real-Time and Interactive Systems with SLOs

e Areal-time system processes messages in a bounded amount of time.

e The upper bound on the time available to process the request or event
is defines how “real-time” by the system requirements.

e Due to the best-effort nature of the Internet Protocol, Internet Services provide
service level objectives (SLOs) for the maximum latency for processing data.

e Interactive (user-facing) systems have SLOs - they need to return results before
users decide that the service is too slow and stops using it.

[Image from http://retis.sssup.it/~giorgio/courses/rts/rts.html ]
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Bing’s test: Bing delayed server response by ranges from 50ms to 2000ms for their
control group. You can see the results of the tests above. Though the number may seem
small it's actually large shifts in usage and when applied over millions can be very
significant fo usage and revenue. The resulis of the test were so clear that they ended it
earlier than originally planned. The metric Time To Click is guite interesting. Notice that as
the delays get longer the Time To Click increases at a more extreme rate (1000ms

increases by 1900ms). The theory is that the user gets distracted and unengaged in the
- page. In other words, they've lost the user’s full attention and have to get it back.




Example: Hugging Face Spaces with Stable Diffusion

Stable Diffusion v2
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Note 1: Stable Diffusion v2 does not use any history or context info - only the user input is needed to generate the prediction.
Note 2: if we replaced Stable Diffusion v2 with ChatGPT, we would have the same simple stateless model serving system.




Reduce Model Inference Latency with Distillation

e Big models, such as Stable Diffusion, have high latency (seconds) even on
GPUs, such as the Nvidia A100.
o “On Distillation of Guided Diffusion Models” reduces the latency of
Stable Diffusion by a factor of 10 through progressive distillation.
e The Lottery Ticket Hypothesis (Frankle and Carbin) identifies situations where a
smaller network can be trained to a similar accuracy as a large network.
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Model Distillation prunes the number of weights and amount of compute needed for inference, while minimally affecting model performance
Image from https://herbiebradley.com/The-Lottery-Ticket-Hypothesis




Personalized Models require History and Context (Feature
Store)
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Note: If our model requires history or state (for users, in this example), then we need to plug in a feature store to provide the
precomputed historical and contextual feature values.




Feature pipelines write to both the Online/Offline Feature
Stores
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You need to instrument your retail website to generate the events used to compute the historical/contextual features.
Some features are computed by batch programs, but some features are fresh and computed with streaming pipelines.
The features can be stored in both the offline and online stores of the feature store.




When writing, Ensure Consistency Between Offline and Online
Feature Stores

Shared Schema for Features
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The Online Feature Store



Hopsworks: Write to Feature Groups, Read from Feature Views
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Real-Time APlIs for Writing and Reading to the Feature Store
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Programming Frameworks for Streaming Feature Pipelines

Real-Time Features using the Hopsworks’ Streaming API

e Apache Spark Streaming spOf"zzStreaming
e Apache Flink a

A streaming framework in Python

bytewax

e Byvtewax (Uses Kafka for Stateful Recovery)




Streaming Feature Pipelines - Windows (1/2)
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Streaming Feature Pipelines - Windows (2/2)
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PySpark Streaming Program

df_read - spark.readStream.format("kafka")...option("subscribe"
KAFKA_TOPIC_NAME) . load()

# Deserialise data from Kafka and create streaming query
df_deser df_read.selectExpr(....).select(...)

# 10 minute window
windowed10mSignalDF = df_deser \
.selectExpr(...)\
.withWatermark(...) \
.groupBy (window("datetime", "10 minutes™), "cc_num").agg(avg("amount")) \
.select(...)

card_transactions_10m_agg -fs.get_feature_group('"card_transactions_l@m_agg", version = 1)

query_10m = card_transactions_lem_agg.insert_stream(wigggygglgw§iggglgf)




On-Demand Features

online-feature-engineering.py Application Input
import library.features as f

Feature UDF

library/features.py Hopsworks
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On-Demand Features - Example

UDF (user-defined function) for computing an on-demand feature (haversine distance)

def haversine_distance(long: float, lat: float, prev_long: float, prev_lat: float)-> float:

.. check/cast parameters as a Pandas Series (batch API for training)
.. or keep as primitive values (online inference)

prev_lat = radians(prev_lat)
long_diff - prev_long - long
lat_diff = prev_lat - lat

a = np.sin(lat_diff/2.0)**2
b = np.cos(lat) = np.cos(prev_lat) *» np.sin(long_diff/2.0)x*2
c = 2*np.arcsin(np.sqrt(a + b))

return c




Online or Interactive Applications
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Making an Application “Intelligent” with a Model and Features

Most interactive applications are stateless
o Separating storage and compute makes it easier to build highly
available systems. State is stored in an operational database and/or
object store.

Interactive applications need a model and sometimes a feature store
o Host the model in model serving infrastructure to decouple it from the app

e Use a feature store if the application needs
o historical information to make a decision
o context information in the system to make a decision

Features can be
o computed on-demand if the feature is based on live input data
o precomputed as historical features using a feature pipeline
o precomputed as contextual features using a feature pipeline




Online Inference and the Online Feature Store

Online
Application

precomputed
features

The Online Feature Store provides low-latency, row-oriented access to features.
You provide the primary keys, and it returns feature vectors.
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Example transformer.py program

class Transformer (object):

.. get reference to feature_view
def  init_ (self):

project = hopsworks.login()
fs = project.get feature store()
self.trans fv = self.fs.get feature view("transactions", 1)

def preprocess (self, inputs): get feature vector for cc_num from feature store

cc_num = inputs["inputs"][0] ["credit_card_number"
feature vector = self.trans fv.get feature vector({"cc num": cc num})
# compute any on-demand features needed here

return { "inputs" : [{"features": feature vector.values.tolist()}] }

def postprocess(self, outputs): any changes needed before returning the prediction
preds = outputs["predictions"]
return preds




Example predictor.py program

import jobklib
import numpy as np

class Predict (object):

load model
def 7init7(self):
self.model = joblib.load("/path/to/model.pkl")
def predict(self, inputs): make prediction with model
features = inputs[0]
return self.model.predict proba(features).tolist()




Putting it together in an Operational ML System
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Online Feature/Prediction Monitoring
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Feature Group Drift

What should you monitor in a ML System?
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4l Feature Drift
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Feature Group Drift

Q,(X), where Q(X) is the distribution of Q,,,(X), where Q_,(X) is the distribution
feature X up to time t of feature X from time t to time t+1
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You have Feature Drift when
Q_,(X) is statistically significantly different from Q(X)




Training Data Feature Shift

You have Feature Drift when

Q/(X) is statistically significantly different from Q,_,(X)
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Models Degrade in Quality over Time

Model Accuracy

Time

Image from https://concept-drift.fastforwardlabs.com/




Label Shift

Reference Window
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For example, in the training data for our credit card fraud detection dataset, 0.001% of the credit card
transactions are labelled as fraud.

In inference, however, 0.003% of the credit card transactions are predicted to be fraud.

Is this because there is more fraud is actually happening or because the model is degrading in quality?




Concept Drift - where the model degrades over time
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How to handle Concept Drift - Retrain models

Model Accuracy
N
N

W

Time

Here, a model is retrained after drift is detected, and it's accuracy improves, only to
decay over time, requiring periodic retraining to keep model accuracy high.

Image from [https://concept-drift.fastforwardlabs.com/ ]




Algorithm for Detecting and Retraining models
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Image from [hitps://concept-drift.fastforwardlabs.com/ ]




TikTok - online model retraining for recommendations

Actions
User ——————————= LogKalka ——— Training Example Dump Batch Data
. Kafh \
Joiner Online Batch Training Data
Flink Job Training HDFS
Batch
Generate
Features
Model Server ————————— = Feature Kafka p— Training Worker
Parameter Synchronization |
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Figure 4: Streaming Engine.
The information feedback loop from [User — Model Server — Training Worker — Model Server — User] would spend a long time when taking the Batch Training
path, while the Online Training will close the loop more instantly.

hitps://arxiv.org/pdf/2209.07663.pdf




Real-Time Personalized
Recommendations/Search
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Real-Time Personalized Recommender/Search Service
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Embeddings can be used for Similarity Search with a VectorDB

“Find me a similar image” - Similarity Search using Image Embeddings (Google)




What about Multi-Modal Similarity Search?

Can a “user query” find “items”
with similarity search?

Yes, by mapping the “user query” embedding
into the “item” embedding space with a two-tower
model.

Representation learning for retrieval usually involves supervised learning with labeled or
pseudo-labeled data from user-item interactions.
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Training data for our Two-Tower Model will be User-ltem
Interactions

Log user-item interactions as training data for our two-tower model and ranking model.

Retail Website
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Two Tower Model for Personalized Recommendations/Search

{ The dot product of a user embedding and Slg mo Id: Dot Produ Ctl
i item embedding pair that interacted is high i
and the dot product of a non interacting pair is :
i close to 0 i

User and Item Embeddings
are the same length

l User/Query Embedding

Item Embedding

Trainable (neural network) Trainable (neural network)
Encoder Encoder
e
= |
User Click User Session Static user Static item
features features

History History

You should provide both positive and negative pairs, where the user and item interacted and where they didn't interact,
respectively. Training produces 2 models: an item encoder model and a user encoder model.

Image from Yu et al




Build the ANN Index on Items. Similarity Search with user

queries on it.

ANN Index

(VectorDB)

Insert all pairs
(item-ID, embedding)

Insertion Job
with ltem
Embedding Model

Encode all items

Model Architecture

Database Tower

+): train neural networks

1. Encode and insert all the Items into your Approximate Nearest
Neighbor (ANN) Index in your VectorDB

2. Now you can search for the nearest ltem to the user query by
encoding the user query and searching for the most similar items
in the ANN Index




Build the ANN Index on Items. Similarity Search with user
queries on it.

Click here to show animated insertions and lookups in a ANN with a Two-Tower
Model



https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search
https://cloud.google.com/blog/products/ai-machine-learning/vertex-matching-engine-blazing-fast-and-massively-scalable-nearest-neighbor-search

Real-Time Retrieval and Ranking
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Real-Time Retrieval and Ranking Online Infrastructure
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Offline Infrastructure for Retrieval and Ranking
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Model Training for Embeddings and Ranking Model
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Extended Retrieval and Ranking Architecture

Embeddings, Retrieval, Filtering, Ranking

User/Query & —
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Built Approx Nearest
Neighbor (ANN) Index
with items and item
embedding model.
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With a ranking model,
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and item features,
ensuring, candidate
diversity.




Model Serving with VectorDB and Feature Store
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