Automated Machine Learning (AutoML)

Slides by Amir H. Payberah
payberah@Qkth.se

The Machine Learning Process

» Building an ML model is an iterative, complex, and time-consuming process.

» It can take a lot of trial and error.

Real-World
Model Building Predictions

Data Feature Engineering

State-of-The-Art and Open Challenges, 2019]

5,
Parameter
Tuning

4.
Algorithm
Selection

3.Feature
Selection

2. Feature
Extraction

1.Data
Preprocessing

Data
Collection

[Elshawi et al., Automated Machine Learning:

Automated vs. Manual Machine Learning

[N Human expert R —_ l‘@
manual trial and error
(and intuition)
performance

» AutoML: build models in a data-driven, intelligent, and purposeful way.

- R "
Task —— S R — l'
optimization @

automated, efficient

search for beitmof—/
performance

[Joaquin Vanschoren, Automatic Machine Learning - A Tutoriall

Search space Architecture Performance
design search strategy estimation strategy

AutoML Subproblems - Neural Architecture Search

> Represent and search all pipelines or neural nets, e.g., neural layers, interconnections,

3)
888 ° %8
\.ﬁ./

arch
Search space Architecture i Performance
design search strategy ~__ estimation strategy

score

[Joaquin Vanschoren, Automatic Machine Learning - A Tutoriall

AutoML Subproblems - Hyperparameter Optimization

» Which hyperparameters are important? How to optimize them?

/ . . \
arch
/\ Performance
design search strategy estimation strategy
_/

score

[Joaquin Vanschoren, Automatic Machine Learning - A Tutoriall

AutoML Subproblems - Meta-learning

» How can we transfer experience from previous tasks?

» Don't start from scratch (search space is too large).
Search space
design

Architecture TN Performance
[Joaquin Vanschoren, Automatic Machine Learning - A Tutoriall

search strategy estimation strategy

score

Search space Architecture - Performance
design search strategy estimation strategy
Mgt
score
—— —— —

Meta-learning Neural Architecture Search Hyperparameter Optimization

Hyper-Parameter Optimization (HPO)

AutoML Definition

>

A denotes a ML algorithm with m hyperparameters.

v

{A1,Ap,--- Ay} is a set of ML algorithms.

v

A4 is the domain of jth hyperparameter.

v

N =17g X Ay X -+ X Ny is the overall hyperparameter configuration space.

» 0 € N is a vector of hyperparameters.

v

J(0, Xtrain, Xva1ia) is the loss of the ML model created by 6, trained on X¢yain, and
validated on Xya1i4.

v

Find the configuration that minimizes the expected loss on a dataset X¢rain:
0 = arg mingep E(x,,..n Xoarsa)~X I (05 Xerain, Xvaia)

Types of Hyperparameters

Continuous

>

e E.g., learning rate

v

Integer
e E.g., number of hidden units

v

Categorical

e E.g., choice of operator (Convolution, MaxPooling, DropOut, etc.)
e E.g., choice of activation function (ReLU, Leaky ReLU, tanh, etc.)

Conditional

v

e E.g., convolution kernel size, if convolution layer is selected

Hyper-Parameter Optimization

» Black-box optimization
» Grid search
e Random search
» Population-based search
» Bayesian optimization

» Multi-fidelity optimization
e Modeling learning curve
» Bandit based

Hyper-Parameter Optimization

» Black-box optimization
» Grid search
e Random search
» Population-based search
» Bayesian optimization

» Multi-fidelity optimization

* Modeling learning curve
» Bandit based

Black-box Optimization - Grid and Random Search

Unimportant parameter

Grid Search
@ @ @
@] 0] 0]
@ 0]]

Important parameter

Unimportant parameter

Random Search

Important parameter

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Population-based Search

>

They maintain a population, i.e., a set of configurations.

v

Improve this population to obtain a new generation of better configurations.

v

Achieve this by applying:
e Local perturbations (so-called mutations)
¢ Combinations of different members (so-called crossover)

» E.g., genetic algorithms, evolutionary algorithms, particle swarm optimization

Black-box Optimization - Bayesian Optimization (1/3)

>

Start with a few (random) hyperparameter configurations.

v

Fit a surrogate model to predict other configurations.

v

An acquisition function drives the proposition of new points to test, in an exploration
and exploitation trade-off.

v

Sample for the best configuration under that function.
tR2

objective fn (f(-))

performance

observation (x)

V¥ acquisition max

acquisition function (u(-))
value of /;

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization

objective fn (f())

observation (x)

¥_ acquisition max

acquisition function (u(-))

t=3

new observation (x,)

posterior mean (y(-))

posterior uncertainty

(u() £o()) v

[Hutter et al., Automated Machine Learning, 2019]

Bayesian Optimization (2/3)

Black-box Optimization - Bayesian Optimization (3/3)

Erid i F . . Handom

[Hutter et al., Automated Machine Learning, 2019]

Hyper-Parameter Optimization

» Black-box optimization
e Grid search
¢ Random search
» Population-based search
» Bayesian optimization

» Multi-fidelity optimization
e Modeling learning curve
» Bandit based

Multi-fidelity Optimization

Massive dataset sizes and complex models make blackbox performance evaluation
expensive.

Probe a hyperparameter configuration on a small subset.

Multi-fidelity methods use low fidelity approximations of the actual loss function to
minimize.

These approximations introduce a tradeoff between optimization performance and
runtime.

Multi-fidelity Optimization - Modeling Learning Curves

Learning curve extrapolation is used in predicting early termination for a particular
configuration.

Models learning curves during hyper-parameter optimization.

Decides whether to allocate more resources or to stop the training procedure for a
particular configuration.

The learning process is terminated if the performance of the predicted configuration
is less than the performance of the best model trained so far in the optimization
process.

Multi-fidelity Optimization - Bandit-Based

» Successive halving algorithm (SHA)

» HyperBand

Multi-fidelity Optimization - SHA (1/4)

» Train on small subsets, infer which regions may be interesting to evaluate in more
depth.

» Randomly sample candidates and evaluate on a small data sample.

» E.g., retrain the 50% best candidates on twice the data.

1/16 1/8 1/4 1/2

sample size

[Hutter et al., Automated Machine Learning, 2019]

Multi-fidelity Optimization - SHA (2/4)

» Successive halving for eight algorithms/configurations.

» After evaluating all algorithms on 1/8 of the total budget, half of them are dropped
and the budget given to the remaining algorithms is doubled.

1085

—
\

12.5% 25% 50% 100%
budget

[Hutter et al., Automated Machine Learning, 2019]

Multi-fidelity Optimization - SHA (3/4)

SUCCESSIVEHALVING (Finite horizon)
input: Budget B, and n arms where ¢; ;. denotes the kth loss from the ith arm,
maximum size R, n > 2 (n = 3 by default).
Initialize: Sy = [n], s = min{t € N: nR(t + 1)n~" < B,t < log, (min{R,n})}.
For k=0,1,...,s

Set ng = |nn~*|, rp = [RpF—2|

Pull each arm in S, for r; times.

Keep the best Lmj*(k“)J arms in terms of the rth observed loss as Sy_;.

Output : 7, {; g where i = arg minjes,,, fir

Multi-fidelity Optimization - SHA (4/4)

>

Successive halving suffers from the budget-vs-number of configurations trade off.

v

Given a total budget, the user has to decide beforehand whether:

 to try many configurations and only assign a small budget to each, or
e to try only a few and assign them a larger budget.

» Assigning too small a budget can result in prematurely terminating good configura-
tions.

» Assigning too large a budget can result in running poor configurations too long and
thereby wasting resources.

Multi-fidelity Optimization - HyperBand (1/2)

» HyperBand combats SHA problem when selecting from randomly sampled configu-
rations.

» |t divides the total budget into several combinations of number of configurations vs.
budget for each.

» Then it calls SHA on each set of random configurations.

Multi-fidelity Optimization - HyperBand (2/2)

Algorithm 1: HYPERBAND algorithm for hyperparameter optimization.

input : R, n (default n = 3)
initialization : spmax = [log,(R)], B = (Smax + 1)R

1 for s € {Smax; Smax — 1,...,0} do

2 n= f%(;’Ta)'\, r=Rn"*

// begin SUCCESSIVEHALVING with (n,7) inner loop

3 T =get_hyperparameter_configuration(n)

4 for i € {0,...,s} do

5 ng = [y~

6 ri =1y

7 L = {run_then return_val loss(t,r;):t € T}

8 T =top.k(T, L, [n;/n])

9 end

10 end

11 return Configuration with the smallest intermediate loss seen so far.

» The inner loop invokes SHA for fixed values of n and r.

» The outer loop iterates over different values of n and r.

Neural Architecture Search (NAS)

Neural Architecture Search

» The process of automating architecture engineering.

» Search space: which architectures can be represented in principle.

» Search strategy: how to explore the search space.

» Performance estimation: to perform a standard training and validation of the archi-

tecture on data.

& architecture
Ac A

Search Space Performance
Search Strategy Estimation
A B Strategy

performance
estimate of A

[Hutter et al., Automated Machine Learning, 2019]

Search Space

A

Search Space

B

Search Strategy

architecture
Ac A

L

N~

Performance
Estimation
Strategy

performance
estimate of A

Search Space

>

Which neural architectures a NAS approach might discover.

v

Chain-structured neural network

Multi-branch networks

v

v

Repeated motifs

Chain-Structured Neural Network

> A sequence of n layers.

>

The i'th layer L; receives its input from layer i — 1 and its output
serves as the input for layer i + 1.
Parameters of the search space:

e The (maximum) number of layers n.

e The type of operation every layer can execute, e.g., pooling, conv.

e Hyperparameters associated with the operation, e.g., number of filters,
kernel size and strides for a convolutional layer.

Multi-Branch Networks

» The input of layer i: a function g; (LY, - ,L8"") of previous layer outputs.

. —
» Special cases:

¢ The chain-structured networks: g; (L%, -+ ,L3"") = L$"%,

i—10"
» Residual networks, where previous layer outputs are summed:
gi(L({litlﬂ T 7L8ut) - Lcinitl + L(imt7j <i

e DenseNets, where previous layer outputs are out concatenated:
gi(Lgu—tlv T 7LSUt) - Concat(Lglitiv T 7L8ut)

Repeated Motifs

» Normal cell: preservers the
dimensionality of the input.

» Reduction cell: reduces the
spatial dimension.

Search Strategy

& architecture
Ac A

Search Space L—— | Performance
Search Strategy Estimation
A N~ Strategy
performance

estimate of A

Search Strategy

Random search

>

v

Reinforcement learning

v

Gradient-based optimization

v

Bayesian optimization

v

Evolutionary methods

Random Search

» For each node in the DAG, determine what decisions must be made.

e Choose a node as input and a corresponding operation to apply to generate the
output of the node.

e E.g., node i can take the outputs of nodes 0 to node i — 1 as input.

e E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.

» Sample uniformly from the set of possible choices for each decision that needs to be
made.

» Moving from node to node.

[Li et al., Random Search and Reproducibility for Neural Architecture Search, 2020]

Evolutionary Methods

Evolves a population of models, i.e., a set of (possibly trained) networks.

In every evolution step, at least one model from the population is sampled and serves
as a parent to generate offsprings by applying mutations to it.
e E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip
connections, etc.

After training the offsprings, their fitness (e.g., performance on a validation set) is
evaluated and they are added to the population.

Evolutionary methods differ in how they sample parents, update populations, and
generate offsprings.

Reinforcement Learning

>

» Action space: the search space.

>

Action: the generation of a neural architecture.

Reward: based on an estimate of the performance of the trained architecture on
unseen data.

v

Policy: different approaches.

Gradient-based Optimization

» The previous methods search over a discrete set of candidate architectures.

> Here, it relaxes the search space to be continuous, so that the architecture can be
optimized with respect to its validation set performance by gradient descent.

» We relax the categorical choice of a particular operation to a softmax over all possible
operations.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]

Bayesian Optimization (1/3)

>

Find the architecture a € A that maximizes f(a).

v

Choose several architectures from A at random and evaluating £(a) for each of them.

v

Based on these results, iteratively choose new architectures to evaluate.

v

The full algorithm: T rounds of choosing an architecture a; and computing f(a;).

v

The output is the architecture a* with the largest value of £(a*) among all those
that were tried in the previous rounds.

Bayesian Optimization (2/3)

Choose the next architecture in round i + 1, given £(a;), -, £(a;).
Assume f : A — [0, 1] follows a Gaussian Process (GP).
Makes an assumption about the distribution £(A).

The assumptions about the mean and variance of £(A) are constantly being updated
as the algorithm gathers more data in the form of f(a;), - ,f(ai).

Chooses the architecture with the greatest chance of giving a large improvement.

The algorithm chooses a; 11 = arg maxaea max(0, E[f(a) —£*]) = arg maxaca E[£(a)].

£* is the best accuracy observed so far.

Bayesian Optimization (3/3)

» The top graph: three evaluations of £ (blue circles), an estimate of £ (solid red line),
and confidence intervals (dotted red lines).

» The bottom graph: the expected improvement value for each architecture. The
architecture with the largest expected improvement is chosen (blue x).

GP posterior on f T

&88)+
2
13888)+

Acquisition function

Performance Estimation

Search Space

A

Performance
Estimation
Strategy

& architecture
Ac A
L
Search Strategy
_/
performance

estimate of A

Performance Estimation

» The search strategies need to estimate the performance of a given architecture A
they consider.

» The simplest way of doing this is to train A on training data and evaluate its perfor-
mance on validation data.

» However, training each architecture to be evaluated from scratch frequently yields
computational demands in the order of thousands of GPU days for NAS.

Reduce the Computational Burden

> Low-fidelity approximation

» Learning curve extrapolation

» One-shot architecture

BOHB: Robust and Efficient Hyperparameter
Optimization at Scale

BOHB: Bayesian Optimization and Hyperband

» Bayesian optimization (BO): for choosing the configuration to evaluate

» Hyperband (HB): for deciding how to allocate budgets

Bayesian Optimization vs. Random Search

» BO advantage: much improved final performance

10_1ll T T 5 e e 3 mug:

—% Random Search

20x speed up —=— Bayesian Optimization

—4— Hyperband
-o- BOHB

1072

regret

10—3 1 O 1 O A 1 pnl il

10t 102 10° 10* 10° 108

wall clock time [s]

Hyperband vs. Random Search

» HB advantage: much improved anytime performance

10_1ll T T 5 e e 3 TTT
—% Random Search

20x speed up —=— Bayesian Optimization
—4— Hyperband

-o- BOHB

1072

regret

10—3 1 O 1 O A 1 pnl il

10t 102 10° 10* 10° 108

wall clock time [s]

Combining Bayesian Optimization and Hyperband

» Best of both worlds: strong anytime and final performance

10_1ll T T 5 e e 3 mug:

—% Random Search

20x speed up —=— Bayesian Optimization
—4— Hyperband

-o- BOHB

1072

regret

10—3 1 O 1 O A 1 pnl il

10t 102 10° 10* 10° 108

wall clock time [s]

HBOB Algorithm

> Relies on HB to determine how many configurations to evaluate with which budget.

» Replaces the random selection of configurations at the beginning of each HB iteration
by a BO model-based search.

» Once the desired number of configurations for the iteration is reached, the SHA
procedure is carried out using these configurations.

A System for Massively Parallel
Hyperparameter Tuning

SHA

>

SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top %.

v

It then increases the budget per configuration by a factor of p.

v

Repeats until the maximum per-configuration budget of R is reached.

v

SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

Asynchronous SHA (ASHA)

ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

DARTS: Differentiable Architecture Search

Differentiable ARchiTecture Search (DARTS)

> Instead of searching over a discrete set of candidate architectures, we relax the search
space to be continuous.

» The architecture can be optimized with respect to its validation set performance by
gradient descent.

Search Space

> It searches for a computation cell as the building block of the final architecture.
» A cell is a DAG consisting of an ordered sequence of N nodes.
» Each node x(!) is a latent representation (e.g. a feature map in CNNs).

» Each directed edge (i, j) is associated with some operation o(*:3) that transforms
(1)
X .

» Each intermediate node is computed based on all of its predecessors:

«<(3) = Zi<j o(i)j)(xi)

Continuous Relaxation and Optimization

Let O be a set of candidate operations, where each operation represents some func-
tion o to be applied to x(1).

To make the search space continuous, it relaxes the categorical choice of a particular
operation to a softmax over all possible operations:

o (1.9)
s (x) =T %o(x)

°€0 v~ o exp(ali?))

0/

The operation mixing weights for a pair of nodes (i, j) are parameterized by a vector
o(13) of dimension |O].

At the end of search, a discrete architecture can be obtained by replacing each mixed

operation 5(+3) with the most likely operation, i.e., o(:3) = arg maxoco a$™Y).

Summary

Summary

» Hyperparameter optimization

» Black-box optimization
e Multi-fidelity optimization

» Nural architecture search

 Search space
e Search strategy
e Performance estimation

Reference

> Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges,
2019

» Falkner et al., BOHB: Robust and Efficient Hyperparameter Optimization at Scale,
2018

» Liet al.,, A System for Massively Parallel Hyperparameter Tuning, 2020

» Liu et al., DARTS: Differentable Architecture Search, 2019

Questions?

